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Abstract

Compared to sentence-level systems,
document-level neural machine translation
(NMT) models produce a more consistent
output across a document and are able to better
resolve ambiguities within the input. There are
many works on document-level NMT, mostly
focusing on modifying the model architecture
or training strategy to better accommodate the
additional context-input. On the other hand, in
most works, the question on how to perform
search with the trained model is scarcely
discussed, sometimes not mentioned at all.
In this work, we aim to answer the question
how to best utilize a context-aware translation
model in decoding. We start with the most
popular document-level NMT approach and
compare different decoding schemes, some
from the literature and others proposed by us.
In the comparison, we are using both, standard
automatic metrics, as well as specific linguistic
phenomena on three standard document-level
translation benchmarks. We find that most
commonly used decoding strategies perform
similar to each other and that higher quality
context information has the potential to further
improve the translation.

1 Introduction

Neural machine translation (NMT) (Bahdanau
et al., 2014; Vaswani et al., 2017) is widely adopted
and produces excellent translations for many do-
mains and language pairs. However, when these
automatic translations are evaluated on the docu-
ment level, they reveal shortcomings when it comes
to consistency in style, entity-translation or correct
inference of the gender, among other things (Läubli
et al., 2018; Müller et al., 2018; Thai et al., 2022).
Document-level NMT aims to resolve these short-
comings by taking the context of a sentence into
account during translation. There exist many works
on the topic of document-level NMT, proposing var-
ious changes to the standard transformer (Vaswani

et al., 2017) architecture and training criteria to
improve context incorporation and consequently
translation quality. However, while the modeling
and training aspects are covered in great detail in
these works, the exact decoding strategy is often
not very clearly described and sometimes not men-
tioned at all.

In this work, we head out to answer the ques-
tion, which decoding strategy is most beneficial
for document-level NMT systems. We compare all
commonly used strategies, as well as some addi-
tional ones, on three standard document-level trans-
lation benchmarks. We find that most of the ana-
lyzed decoding strategies perform similar to each
other. Also, higher quality context information can
lead to better translations in certain scenarios.

2 Related Work

The earliest approaches to document-level NMT
simply concatenate consecutive sentences with-
out any further changes to the architecture com-
pared to the sentence-level systems (Tiedemann
and Scherrer, 2017; Agrawal et al., 2018). Later,
some changes were made to the vanilla transformer
architecture, like segment embeddings (Ma et al.,
2020) or attention masking (Zhang et al., 2020; Pet-
rick et al., 2022) and a move was made towards
translating longer segments (Junczys-Dowmunt,
2019; Liu et al., 2020; Zheng et al., 2021; Bao
et al., 2021; Sun et al., 2022). Other works employ
a separate encoder to include the additional con-
text on the source side (Jean et al., 2017; Bawden
et al., 2018; Zhang et al., 2018; Voita et al., 2018)
or make use of the context in a post-editing fashion
(Voita et al., 2019; Xiong et al., 2019). Further
approaches include the usage of a cache (Wang
et al., 2017; Maruf and Haffari, 2018; Tu et al.,
2018) or hierarchical attention networks (Miculi-
cich et al., 2018; Maruf et al., 2019; Wong et al.,
2020). Recently, several works have concluded that
the simple concatenation approach used with the
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vanilla transformer architecture performs as good
- if not better - than more complicated approaches
that modify the model structure (Sun et al., 2022;
Majumde et al., 2022). Since we also observed this
in our internal comparisons, we decided to focus on
this simple approach for our analysis in this work.

Several works made the argument that the im-
provements seen in automatic metric scores for
document-level NMT systems are from regular-
ization effects rather than from utilizing the addi-
tional context information (Kim et al., 2019; Li
et al., 2020; Nguyen et al., 2021). In order to bet-
ter asses the improvements gained by document-
level NMT, several targeted test suites have been
released (Müller et al., 2018; Bawden et al., 2018;
Voita et al., 2019; Jwalapuram et al., 2019). How-
ever, all of these are based on just scoring con-
trastive examples without actually translating any-
thing. Recently, Jiang et al. (2022) and Currey
et al. (2022) have released frameworks that allow
to score MT systems on their ability to generate
contextually correct translations.1

3 Search Strategies

Training a document-level NMT system that takes
the last k sentences as context is straightforward
using the standard concatenation strategy (Tiede-
mann and Scherrer, 2017). Given some document
level training data (Fn, En), n = 1, ..., N , where
(Fn, En) denotes the n-th source-target sentence
pair, during training we optimize the parameters Θ
of the model towards

Θ̂ = argmax
Θ

{∑

n

log pΘ(E
n
n−k|Fn

n−k)

}
.

Here, En
n−k denotes the concatenation of the sen-

tences En−k, ..., En.
During search, given a document FM

1 , we want
to find the best translation ÊM

1 according to the
model. Of course, exact search can not be per-
formed and different works have used different
methods to generate a translation:

full segment (Liu et al., 2020; Bao et al., 2021;
Sun et al., 2022): we split the document into
non-overlapping parts F k

1 , F
2k
k+1, ..., F

M
M−k

and translate each part separately using

Êi
i−k = argmax

Ei
i−k

{
p(Ei

i−k|F i
i−k)

}
, (1)

1The framework by Currey et al. (2022) was not yet made
available when we conducted our experiments.

which is approximated using standard beam
search on the token level.

last sentence (Bawden et al., 2018; Agrawal et al.,
2018; Zhang et al., 2020; Petrick et al., 2022;
Majumde et al., 2022): we split the document
into overlapping parts ..., F i

i−k, F
i+1
i−k+1, ...

and translate each part separately using Equa-
tion 1. From each translated part we choose
only the last sentence to get one translation
for every sentence in the document.

first sentence (Zhang et al., 2020): similar to last
sentence, but from each translated part we
choose only the first sentence to get one trans-
lation for every sentence in the document.

2-pass decoding (Maruf and Haffari, 2018; Maruf
et al., 2019; Voita et al., 2019; Xiong et al.,
2019): we first generate a translation ẼM

1 of
the document using a sentence-level NMT sys-
tem. Then, the final hypothesis Êi for each
sentence Fi is created using

Êi = argmax
Ei

{
p(Ei|F i

i−k, Ẽ
i−1
i−k)

}
.

doc-trans (Miculicich et al., 2018; Voita et al.,
2019; Garcia et al., 2019; Fernandes et al.,
2021): we generate the translation sentence
by sentence, meaning

Ê1 = argmax
E1

{p(E1|F1)} ,

Ê2 = argmax
E2

{
p(E2|F 2

1 , Ê1)
}
,

...

doc-trans (beam) : similar to doc-trans, but in-
stead of keeping just the best context Êi−1

1 ,
we keep the top-h candidates and prune them
after each step i, analogous to beam search
on the token level. h = 12 for all our experi-
ments, the same as our token-level beam-size.

cheating : this is just used as a tool for analysis.
The translation of each sentence Fi is created
using the true target reference E̊M

1 as context

Êi = argmax
Ei

{
p(Ei|F i

i−k, E̊
i−1
i−k)

}
.

no context : this is just used as a tool for analysis.
The translation of each sentence Fi is created
using no context information at all

Êi = argmax
Ei

{p(Ei|Fi)} .
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Cost
sentence-level O(NL)

document-level
full segment O(NL)
last sentence O(NLk)
first sentence O(NLk)
2-pass decoding O(2NL)
doc trans O(NL)
doc trans (beam) O(NLh)

Table 1: Computational cost of decoding (=number
of forward passes through the decoder) for each of
the search strategies described above. h denotes the
sentence-level beam size.

The different search strategies also have a dif-
ferent computational cost associated with them.
The biggest factor regarding the decoding cost is
the number of forward passes through the model,
specifically the decoder, that we have to do. We list
the computational costs for the different decoding
approaches in Table 1 under the assumption that
the document consists of N sentences with aver-
age sentence length L and the model uses k − 1
sentences as context. Please note that the decoding
time might follow a different dependence than the
cost in the above table, since it heavily depends on
the available hardware. For example, doc trans and
doc trans (beam) might have the same decoding
time, if we have enough computational resources
available, since the additional computations in doc
trans (beam) can all be done in parallel.

4 Experiments

We perform experiments on three document-level
translation benchmarks, called NEWS (En→De),
TED (En→It) and OS (En→De). For the details
regarding data conditions and preparation, as well
as model training, we refer to Appendix A. For the
context-aware systems, we concatenate 3 adjacent
sentences (i.e. k = 3) using a special token <sep>.
For the two En→De tasks, we also evaluate the sys-
tems on the ContraPro test set (Müller et al., 2018).
Instead of scoring and ranking the contrastive ex-
amples in ContraPro, as the authors have originally
envisioned, we translate the source side to calcu-
late BLEU and TER as well as to score the pronoun
translations according to Section 4.1. We can not
evaluate the full segment search strategy on Con-
traPro, because the sentences are not adjacent since
they come from different documents.

NEWS TED OS
sentence-level
ref 4.61 4.15 2.97
hyp 1.63 1.56 1.48
document-level
ref 4.46 3.96 2.70
hyp no context 1.64 1.53 1.47
hyp full segment 1.62 1.50 1.41
hyp last sentence 1.61 1.48 1.42
hyp first sentence 1.63 1.52 1.48
hyp 2-pass decoding 1.68 1.49 1.48
hyp doc trans 1.67 1.48 1.42
hyp doc trans (beam) 1.67 1.48 1.41
hyp cheating 1.69 1.53 1.56

Table 2: Perplexity values on the test set for different
search strategies.

4.1 Evaluating Pronoun Translation

As further analysis, we measure how well ambigu-
ous pronouns are handled when translating from
English to German. Regarding gender, the English
third-person pronoun ‘it’ (and its other forms), can
be translated to the German words ‘er’, ‘sie’ or
‘es’, depending on which noun it refers to. On
the other hand, ambiguities in the formality come
from second-person pronouns. For example, the
English word ‘you’can be translated to ‘sie’ or
‘du’ depending if we are in a formal setting or
not. To report accuracies for pronoun (3 classes:
male/female/neuter) and formality (2 classes: for-
mal/informal) translation, we extend the BlonDe
metric created by Jiang et al. (2022)2. First, we ex-
pand the framework to work for German references,
by including German NER and POS taggers3 as
well as including German pronoun mappings. For
the gender category, we mostly follow Jiang et al.
(2022), but additionally require that a correspond-
ing pronoun must also be present in the source sen-
tence.4 For the style category, we take into account
examples where a second person pronoun appears
in the source sentence, and a corresponding formal

2Our extension can be found in this fork: https://
github.com/christian3141/BlonDe

3https://spacy.io/models/de
4In ContraPro, we find 5011/4085/4817 examples for

male/female/neuter respectively. The difference to the
4000/4000/4000 reported by (Müller et al., 2018) means that
in some cases we count multiple occurrences in a single ex-
ample.
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NEWS TED OS
test ConPro test test ConPro

BLEU TER BLEU TER BLEU TER BLEU TER BLEU TER

sentence-level
external †32.3 - - - ‡33.4 - *37.3 - *30.5 -
ours 32.8 49.0 18.4 65.5 34.2 46.3 37.1 43.8 29.7 52.8
document-level
no context 33.4 48.5 18.6 65.6 34.0 46.7 36.9 44.5 29.4 53.2
full segment 33.4 48.6 - - 34.3 46.3 38.2 43.9 - -
last sentence 33.4 48.3 19.7 63.4 34.7 45.9 37.8 43.9 31.4 51.5
first sentence 33.4 48.6 18.8 65.6 34.1 46.3 37.8 44.1 29.5 53.1
2-pass decoding 32.8 48.6 19.5 63.9 34.5 46.2 37.4 44.4 31.1 51.8
doc trans 33.0 48.3 19.8 63.3 34.6 46.0 37.7 44.0 31.4 51.3
doc trans (beam) 33.0 48.3 19.7 63.4 34.5 46.0 38.3 43.8 31.3 51.5
cheating 32.2 49.4 19.3 65.1 34.1 46.6 39.6 42.9 33.3 49.1

Table 3: BLEU and TER scores (in percent) for the different tasks and decoding strategies. External baselines are
from † Kim et al. (2019), ‡ Yang et al. (2022) and *Huo et al. (2020).

NEWS OS
ConPro test ConPro
gender style gender

sentence-level 45.3 59.4 41.4
document-level
no context 45.9 59.7 42.3
full segment - 60.8 -
last sentence 56.1 60.3 66.5
first sentence 44.9 59.2 43.0
2-pass decoding 55.6 59.9 65.1
doc trans 56.1 58.7 66.4
doc trans (beam) 56.1 60.6 66.3
cheating 63.3 73.2 73.7

Table 4: F1 scores (in percent) for pronoun translation
on different test sets.

or informal pronoun appears in the reference.5

4.2 Perplexities

First, we compare the perplexities of the hypothe-
ses from the different search strategies, which are
listed in Table 2. The first thing to note is, that
the reference has a much higher perplexity than
all hypotheses, which is commonly seen for NMT
systems. All document-level search strategies re-
sult in different hypotheses, which however have a
similar perplexity score. Surprisingly, the cheating
setting generates the worst translation perplexity-

5In the OS test set, we count 416 and 605 examples for
formal and informal examples respectively.

wise, even worse than using no context. This might
be related to the observation, that the reference has
a worse perplexity than any hypothesis, which is
rather a modelling error than a search error.

4.3 Automatic Metrics

Next, we evaluate the hypotheses based on the com-
mon automatic metrics BLEU and TER. The results
are shown in Table 3. The hypotheses created with
no context seem to have the same quality as the
sentence-level baseline. Surprisingly, the true ref-
erence as context does not improve performance
on the NEWS and TED test sets. This indicates
that the improvements seen on these test sets for
the document-level system might not be related to
better context incorporation. On the contrary, the
OS system creates the best hypothesis with the true
reference as context. All the actual decoding strate-
gies give similar performance in terms of BLEU and
TER with 2-pass decoding being a little bit behind.
A special case is the first sentence strategy, which
performs quite well on the standard test sets but
poorly on ContraPro. This is, because ContraPro is
designed in a way that the left side context is more
important for translation than the right side.

Finally, we analyze the quality of the pronoun
translation as discussed in Section 4.1. In principle,
we could calculate the F1 score for both, gender and
formality, on all En→De test sets. However, we dis-
card the cases where one or more classes have less
than 100 examples. This leaves us with the three
test sets depicted in Table 4. As a sanity check,
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we also report the ContraPro accuracies calculated
from scoring the contrastive references as described
in (Müller et al., 2018). They are 48.2/45.8 for
sentence-level and 68.2/82.2 for document-level
for NEWS/OS respectively. That means, with just
scoring, we overestimate the capabilities of the sys-
tem, but the trend is still consistent.6 Using the true
reference leads to the best results in all cases. no
context and first sentence leaves us with sentence-
level performance on the gender tasks, while all
other decoding strategies perform similarly. For
the formality, none of the methods can significantly
outperform the sentence level system, although the
cheating experiment shows that the system could
do better if a better context information is provided.
This might be, because segments of 3 sentences are
too short to reliably detect if a setting is formal or
informal, without access to the true reference.

5 Conclusion

In this work, we analyze decoding strategies for
document-level NMT systems. Using the most
popular document-level translation approach, we
compare different search strategies found in the lit-
erature against methods developed by us. We find
that most of the commonly used decoding strate-
gies result in similar performance, both in terms of
common automatic metrics, as well as on specific
pronoun evaluation tasks. Therefore, we conclude
that it is important to include the context informa-
tion during decoding, but the exact way in which
to do this is not as important. Also, we find that the
document-level systems could actually profit from
higher quality context information, in situations
where this context is most relevant for translation.
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Limitations

In this work, we limit our experiments to the most
commonly used document-level system architec-

6The precision and recall are roughly the same for the F1
scores reported in Table 4.

ture and training criterion. Other approaches exist,
which might exhibit a different behavior in decod-
ing. Two out of the three document-level trans-
lation tasks we use in this work are low resource
with less than 500k sentence-pairs as training data.
We chose these tasks due to computational limita-
tions and to be better comparable to other works,
but higher resource scenarios are more realistic for
actual applications. We limit the analysis of pro-
noun translation to the English-German language
pair. Also, there are other aspects of document-
level NMT, like consistent translation of entities,
which we did not consider in our analysis.
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A Appendix

For the NEWS En→De task, the parallel train-
ing data (around 300k sentence pairs, news-
domain) comes from the NewsCommentaryV14 cor-
pus7. As validation/test set we use the WMT
newstest2015/newstest2018 test sets from the
WMT news translation tasks (Farhad et al., 2021).
For the TED En→It task, the parallel training
data (around 200k sentence pairs, scientific-talks-
domain) comes from the IWSLT17 Multilingual
Task (Cettolo et al., 2017). As validation set we
use the concatenation of IWSLT17.TED.dev2010
and IWSLT17.TED.tst2010 and as test set we
use IWSLT17.TED.tst2017.mltlng. For the OS
En→De task, the parallel training data (around
22.5M sentence pairs, subtitle-domain) comes from
the OpenSubtitlesV2018 corpus (Lison et al.,
2018). We use the same train/validation/test splits
as Huo et al. (2020) and additionally remove all
segments that are used in the ContraPro test suite
(Müller et al., 2018) from the training data. The
data statistics for all tasks can be found in Table 5.

task dataset # sent. # doc.
NEWS train 330k 8.5k

valid 2.2k 81
test 3k 122
ContraPro 12k 12k

TED train 232k 1.9k
valid 2.5k 19
test 1.1k 10

OS train 22.5M 29.9k
valid 3.5k 5
test 3.8k 5
ContraPro 12k 12k

Table 5: Data statistics for the different document-level
translation tasks.

Since in the original release of ContraPro only
left side context is provided, we extract the right
side context ourselves from OpenSubtitlesV2018
based on the meta-information of the segments.

We tokenize the data using byte-pair-encoding
(Sennrich et al., 2016; Kudo, 2018) with 15k joint
merge operations (32k for OS En→De). The mod-
els are implemented using the fairseq toolkit (Ott
et al., 2019) following the transformer base archi-
tecture (Vaswani et al., 2017) with dropout 0.3 and
label-smoothing 0.2 for NEWS En→De and TED

7https://data.statmt.org/news-commentary/v14/

En→It and dropout 0.1 and label-smoothing 0.1
for OS En→De. This resulted in models with
ca. 51M parameters for NEWS and TED and
ca. 60M parameters for OS for both the sentence-
level and the document-level systems. All systems
are trained until the validation perplexity does no
longer improve and the best checkpoint is selected
using validation perplexity as well. Training took
around 24h for NEWS and TED and around 96h
for OS on a single NVIDIA GeForce RTX 2080 Ti
graphics card. Due to computational limitations,
we report results only for a single run. For the
generation of segments (see Section 3), we use
beam-search on the token level with beam-size 12
and length normalization. To calculate BLEU (Pa-
pineni et al., 2002) and TER (Snover et al., 2006)
we use SacreBLEU (Post, 2018).
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