
Findings of the Association for Computational Linguistics: ACL 2023, pages 12707–12730
July 9-14, 2023 ©2023 Association for Computational Linguistics

Revisiting the Architectures like Pointer Networks to Efficiently Improve
the Next Word Distribution, Summarization Factuality, and Beyond

Haw-Shiuan Chang∗†§ Zonghai Yao∗‡ Alolika Gon‡ Hong Yu‡ Andrew McCallum‡
‡ CICS, University of Massachusetts, Amherst

§Amazon Alexa AI
chawshiu@amazon.com, zonghaiyao@cs.umass.edu, agonagon@umass.edu,

{hongyu,mccallum}@cs.umass.edu

Abstract

Is the output softmax layer, which is adopted
by most language models (LMs), always the
best way to compute the next word probabil-
ity? Given so many attention layers in a mod-
ern transformer-based LM, are the pointer net-
works redundant nowadays? In this study, we
discover that the answers to both questions
are no. This is because the softmax bottle-
neck sometimes prevents the LMs from pre-
dicting the desired distribution and the pointer
networks can be used to break the bottleneck
efficiently. Based on the finding, we propose
several softmax alternatives by simplifying the
pointer networks and accelerating the word-by-
word rerankers. In GPT-2, our proposals are
significantly better and more efficient than mix-
ture of softmax, a state-of-the-art softmax al-
ternative. In summarization experiments, with-
out significantly decreasing its training/testing
speed, our best method based on T5-Small im-
proves factCC score by 2 points in CNN/DM
and XSUM dataset, and improves MAUVE
scores by 30% in BookSum paragraph-level
dataset.

1 Introduction

When recurrent neural networks such as
LSTM (Hochreiter and Schmidhuber, 1997)
are the mainstream language model (LM) ar-
chitecture, pointer networks, or so-called copy
mechanisms (Gu et al., 2016), have been shown
to improve the state-of-the-art LMs for next word
prediction (Merity et al., 2017) and summariza-
tions (See et al., 2017) by a large margin. However,
after transformer (Vaswani et al., 2017) becomes
the dominating LM architectures, the pointer
networks are rarely used in the state-of-the-art
pretrained LMs.One major reason is that the
attention mechanism in every transformer layer
can learn to copy the words from the context, so it

∗indicates equal contribution
†The work is done while the author was at UMass

GPT-2

After debating whether to bow to the  
king or the woman first, the jester decided on the

Softmax

Global Word
Embeddings

woman man

queen king

he,k he,w

……

Softmax

…

Prob of
copying king

Prob of copying
woman

king or queenking or woman
Pointer Network Standard Softmax

… king … woman first , the jester decided on the

Dot
Product

Dot
Product

hct,Vhct,S

Input
context Ct

Figure 1: Illustration of the softmax bottleneck and
pointer network using an example from Chang and
McCallum (2022). GPT-2 cannot output both king or
woman as the possible next word due to the parallel-
ogram structure in the output word embedding space,
while the pointer network could solve this by directly
copying words from the context. The standard softmax
estimate the probabilities of outputting king and woman
by the dot products between the hidden state hct,V and
their global word embeddings. By contrast, The pointer
networks compute the dot products between the pro-
jected current hidden state hct,S and projected hidden
states he,. for king and woman to estimate their proba-
bilities.

seems to be redundant to add a copying mechanism
on top of the transformer.

In this paper, we demonstrate that the architec-
tures like pointer networks can still substantially
improve the state-of-the-art transformer LM archi-
tectures such as GPT-2 (Radford et al., 2019) and
T5 (Raffel et al., 2020) mainly due to breaking the
bottleneck of their final softmax layer (Yang et al.,
2018; Chang and McCallum, 2022).

In Figure 1, we illustrate a simple example from
Chang and McCallum (2022) to explain the soft-
max bottleneck and why the pointer networks could
alleviate the problem. When predicting the next

12707

GPT-2

woman man

queen king

king or woman

Context Partition / Reranker Partition

hct,V

Softmax

Global Word Embeddings

hct,S

After debating whether to bow to the  
king or the woman first, the jester decided on the

… king … woman first , the jester decided on the

Context / Top k Vocabulary

Dot
Product

Dot
Product

Input
context Ct

Figure 2: We simplify the pointer network / reranker
by using another embedding hct,S for the words in the
context / the top-k likely words.

word, most LMs would try to output a hidden state
hct,V that is close to all the next word possibilities.
For example, when the next word should be either
king or woman with similar probabilities, the ideal
hidden state is supposed to be the average of the
global output word embeddings of king and woman.
However, there might be other interfering words
(queen and man in this case) between the ideal next
word candidates, which force the LM to output the
wrong distribution.

To solve this problem, we can let the LMs pre-
dict the probability of copying the words in the
context separately by paying attention to the previ-
ous hidden states (Gu et al., 2016) and we call this
kind of architecture pointer networks in this paper.
That is, we can compute the dot products with the
hidden states of king he,k and the hidden states of
woman he,w rather than with their global output
word embeddings in order to estimate the probabili-
ties of copying these two words in the context. Our
experiments show that the pointer networks consis-
tently improve the performance of GPT-2 in next
word prediction and the quality of summarization
from T5 and BART.

Contrary to the mainstream explanation in pre-
vious pointer network literature, we discover that
most of the improvements in our experiments do
not come from the attention mechanism. To study
these improvements, we propose a very simple
pointer network variant that does not use any pre-
vious hidden states and we show that the proposed
method can achieve similar improvements.

As shown in Figure 2, we simply project the last
hidden state into two embeddings. One embedding

hct,S is to compute the dot product with the context
words, and hct,V is for the dot product of the other
words. Then, the GPT-2 can output the hidden state
for context words hct,S as the average embedding
of the king and woman without interfered by the
words of man and queen that are handled by hct,V .
We call this method context partition. In addition to
words in the context, we can also use another em-
bedding for the top-k likely next words. This can
be viewed as a very simple and efficient alternative
to a reranker, so we call it reranker partition.

In our experiments, we show that the context par-
tition performs similarly to pointer networks while
combining a pointer network, context partition, and
reranker partition would significantly outperform
each individual method. Compared to the state-of-
the-art solutions for alleviating the softmax bottle-
neck such as mixture of softmax (Yang et al., 2018;
Chang and McCallum, 2022), our proposed method
is more efficient while achieving lower perplexity
on GPT-2. Furthermore, we find that adding a very
expensive word-by-word reranker only improves
our method slightly, which suggested the difficulty
of further improving the final softmax layer over
the proposed alternatives.

In the text completion task using GPT-2, we find
that the proposed softmax alternatives reduce hal-
lucination by copying more proper nouns from the
context even though we did not provide any part-
of-speech information during training. In summa-
rization, our methods and pointer networks output
a more specific summary, increase the factuality,
and consistently improve 9 metrics, especially in
the smaller language models. Finally, we show that
the softmax bottleneck problem is not completely
solved in GPT-3.5 in the limitation section.

1.1 Main Contributions
• We propose a series of efficient softmax alter-

natives that unify the ideas of pointer network,
reranker, multiple embeddings, and vocabulary
partitioning.1

• We evaluate the proposed softmax alternatives
in text completion tasks and summarization
tasks using various metrics to identify where
our methods improve the most.

• Our experiments indicate pointer networks and
our proposed alternatives can still improve the
modern transformer-based LMs. By breaking

1Our codes are released at https://github.com/iesl/
Softmax-CPR

12708

https://github.com/iesl/Softmax-CPR
https://github.com/iesl/Softmax-CPR

the softmax bottleneck, our methods learn to
sometimes copy the context words to reduce
generation hallucination and sometimes exclude
the context words to reduce the repetition. Be-
sides, we find that the softmax bottleneck prob-
lem won’t be completely solved by the huge
size of GPT-3.5.

2 Background

Before introducing our method, we would first
briefly review the problem we are solving and its
state-of-the-art solutions.

2.1 Softmax Bottleneck Problem

Most LMs use a softmax layer to compute the final
probability of predicting the word x:

PM (x|ct) =
exp(Logit(x, ct))∑
x′ exp(Logit(x′, ct))

, (1)

where ct is the context words. Typically, the logit
Logit(x, ct) = (hM

ct)
Twx, hM

ct is the M th-layer
hidden state given the input context ct and wx is
the output word embeddings for x.

One problem is that the output word embeddings
wx are global and independent to the context. After
pretraining, the similar words would have similar
output word embeddings. However, the similarity
structure in the word embedding space might pre-
vent LMs from outputting the desired distribution.
The parallelogram structure among the embeddings
of king, queen, woman, and man is a simple exam-
ple. Chang and McCallum (2022) generalize this
observation and show that some words in a small
subspace would create some multi-mode distribu-
tions that a LM cannot output using a single hidden
state hct in the softmax layer.

2.2 Mixture of Softmax Method

To overcome the bottleneck, one natural solution is
to have multiple hidden states and each hidden state
corresponds to a group of possible words (Yang
et al., 2018). For example, we can have one hidden
state for king and another hidden state for woman.

One major concern of this mixture of softmax
(MoS) approach is the computational overhead.
MoS needs to compute the final softmax multi-
ple times and merge their resulting distributions.
That is, we need to compute the dot products be-
tween every hidden state and all the words in the
vocabulary, which is expensive especially when the
vocabulary size is large.

Abbr. Partition (S) Word Emb (ex)
Context Partition C Decoder context Global word emb
Encoder Partition E Encoder input Global word emb
PS (LD) (Merity et al., 2017)

P
Decoder context Decoder state

PG (LE) (See et al., 2017) Encoder input Encoder state
Reranker Partition R Top k Global word emb

Table 1: Comparison of different softmax alternatives
and their abbreviation (Abbr.) using Equation 3. PS:
Pointer Sentinel. PG: Pointer Generator. LD: local
decoder embedding. LE: local encoder embedding.

2.3 Multiple Input State Enhancement
In MoS, the multiple hidden states come from the
linear projections of the last hidden state. Chang
and McCallum (2022) point out that the total de-
gree of freedom among the multiple hidden states
is limited by the dimensionality of the hidden state.

To allow LMs to move multiple hidden states
more freely, Chang and McCallum (2022) propose
to concatenate the projection of a block of hidden
state with the last hidden state hM

ct so as to increase
its dimensionality:

qct = hM
ct ⊕GELU

(
Lh(⊕i,mhM−m

ct−i
)
)
, (2)

where GELU is the non-linear transformation used
in GPT-2 and Lh is a linear transformation that al-
lows us to consider more hidden states without sig-
nificantly increasing the model size. ⊕i,mhM−m

ct−i

is the concatenation of a block of hidden states. We
set the block size to be 3x3 in our GPT-2 experi-
ments and 1x3 in our summarization experiments
(i.e., considering the last 3 hidden states in the last
layer as shown in Figure 3).

3 Methods

To break the softmax bottleneck more efficiently
compared to MoS, our overall strategy is simple.
If we can identify a small partition of words that
are very likely to become the next word, we can
just compute the dot products between a hidden
state and the embeddings of these likely words
instead of all the words as in MoS. For example,
if we can identify king and woman are much more
likely to appear than queen and man, we can only
compute the dot product between a hidden state
and the embeddings of king and woman without
being interfered by other words.

Specifically, when we compute the next word
probability in Equation 1, the logit of the word x
given the context ct

Logit(x, ct) =
{
fT
ct,S

ex if x ∈ S

fT
ct,V

wx O/W
, (3)

12709

 

……

fx,ct,LD fct,V

Softmax

Global Word Embeddings

fct,R2fct,Cfct,PD

Local Word Embeddings

qct

LfV

GELU(Lh(.))

Context
Partition (C)

Reranker
Partition (R)

LfPD

Top k2
Top
k1

Decoder
Context

Encoder
Input Vocabulary

Decoder
Context

Encoder
Input

 

fct,R1fct,Efct,PEfx,I,LE

Sum

Sum

Encoder
Partition (E)

Encoder Decoder

Encoder Input (I) Decoder Context (ct)

LfLE

LE
Emb

LD
Emb

Pointer
Network (P)

LfLD

LfC

Figure 3: Architectures of our method for T5/BART that computes LogitCEPR in Equation 6. In GPT-2, we use
same architecture except that we take the 3x3 input hidden state block rather than the 1x3 block and there are no
encoder-related components, which are marked by dotted lines.

where fct,S = Lf
S(qct) and fct,V = Lf

V (qct) are
the linear projections of the hidden state concate-
nation qct in Equation 2. As shown in Table 1,
different softmax alternatives have different ways
of constructing this set S and use different word
embeddings ex.

To simplify our explanation, we will focus on
the decoder-only LM (i.e., GPT-2) first and extend
our method to encoder-decoder LM (i.e., T5 and
BART).

3.1 GPT-2

We will explain each softmax alternative individu-
ally and their connections to previous work such as
pointer networks or rerankers.

3.1.1 Pointer Network (P) as Local Word
Embedding

Similar to Pointer Sentinel (PS) (Merity et al.,
2017), we treat the words in the context differently
(S = {x|x ∈ ct}) and let their word embeddings
ex come from the previous hidden states:

ex = fx,ct,LD =

∑t
i=1 1cit=xL

f
LD(qcit)∑t

i=1 1cit=x

, (4)

where cit is the ith input words in the context ct,
Lf
LD is a linear layer, and 1cit=x = 1 if cit = x.
As a result, we can use the GPT-2 model to not

only predict the hidden state fct,S = fct,PD =

Lf
PD(qct) and fct,V but also predict the word em-

bedding of context words ex. Unlike the global
word embedding wx, the local word embedding ex
is context-dependent, so the LM can break the soft-
max bottleneck by adjusting the similarity of words
based on the context. For example, GPT-2 could
increase the similarity between eking and ewoman to
output the high probability for both words easily.

We call this version of pointer network local
decoder (LD) embedding, which has some minor
differences compared to PS (Merity et al., 2017)
and other variants. For example, we merge their
logits while PS merges their probabilities. PS does
not do normalization when computing ex. In our
experiments, we would show that these pointer net-
work variants all have very similar improvements
in modern LMs.

3.1.2 Context Partition (C)
To understand the source of the improvements from
pointer networks, we simplify their architectures by
setting the word embedding ex = wx and the par-
tition S is still the set of context words. Although
much simpler, the LM with this context partition
method can still break the softmax bottleneck by
properly coordinating the hidden state specifically
for the context words fct,S = fct,C = Lf

C(qct)
and the hidden state for other words fct,V . Com-
pared to the pointer network, one advantage of
context partition is that the LM can still leverage
the learned global word similarity when estimating

12710

the probabilities of context words.

3.1.3 Reranker Partition (R)
In some cases, the possible next words might not
be mentioned in the context. For example, in the
context My favorite actor is Ryan [MASK], the
next word could be Reynolds, Gosling, or the last
names of other Ryan. Hence, using only the context
partition does not completely solve the multimodal
distribution problem.

Inspired by the idea of the reranker, we set S to
be the top k words with the highest logits fT

ct,V
wx.

In practice, finding an ideal k could be difficult.
When k is small, the reranker partition might not
include the very likely next word. When k is large,
the reranker partition might not be able to separate
the output candidates and the interfering words.
To alleviate the problem, we can have multiple
reranker partitions and use different hidden state
embeddings (e.g., fct,R1 and fct,R2) for different
partitions.

3.1.4 Hybrid Approach (CPR)
Local embeddings in the pointer networks and
global embeddings in the context partition are com-
plementary. Using local embeddings is representa-
tional powerful while using global embedding can
leverage the global similarity of words. Hence, we
can combine the two methods by summing their
dot products.

For the methods that use different S, we can
simply determine an order of computing the dot
products and let the later dot products overwrite
the existing values. In our experiments, we always
use the order illustrated in Figure 3. That is, we
compute the logits (LogitCPR(x, ct)) by

fT
ct,C

wx + fT
ct,PDfx,ct,LD if x ∈ ct

fT
ct,R1wx if x ∈ W (k1)− ct

fT
ct,R2wx if x ∈ W (k2)−W (k1)− ct

fT
ct,V

wx O/W

, (5)

where W (k2) is the top k2 words with the highest
fT
ct,V

wx and W (k1) is the top k1 words with the
highest max(fT

ct,V
wx,f

T
ct,R2wx).

3.2 T5 and BART

In the encoder-decoder architectures, our local de-
coder embedding, context partition, and reranker
partitions are still applicable. Besides, we can lever-
age the words in the encoder input to further im-
prove the performance.

3.2.1 Encoder Partition (E) and Local
Encoder Embedding (P)

Similar to the context partition, the encoder par-
tition handles the words in the encoder input I
differently by setting S = {x|x ∈ I} and using the
global word embedding ex = wx.

As in Equation 4, we can also let the hidden
states in the last layer pass through another linear
layer Lf

LE() to predict the embeddings of the words
in the encoder input. The method is called local
encoder (LE) embedding.

3.2.2 Hybrid Approach (CEPR)
Similar to GPT-2, we combine local encoder em-
bedding and encoder partition for computing the
probabilities of the words that are in the encoder
context but not in the decoder context. As shown
in Figure 3, we compute LogitCEPR(x, ct) by

fT
ct,C

wx + fT
ct,PDfx,ct,LD if x ∈ ct

fT
ct,E

wx + fT
ct,PEfx,I,LE if x ∈ I − ct

fT
ct,R1wx if x ∈ W (k1)− ct − I

fT
ct,V

wx O/W

, (6)

which is the same as Equation 5 except that we add
the encoder partition and local encoder embedding,
and we remove the second reranker partition.

4 Experiments

The pointer network was a popular technique in
language modeling (Merity et al., 2017) and sum-
marization (See et al., 2017). Thus, we also focus
on these two fundamental applications.

4.1 GPT-2
We follow the setup in Chang and McCallum
(2022) to continue training GPT-2 on Wikipedia
2021 and OpenWebText (Radford et al., 2019).

4.1.1 Perplexity Comparison
In Table 2, we first compare their predictions on
the next word distribution using the testing data
perplexity, which is a standard metric in the LM
architecture studies. In the table, Mi refers to mul-
tiple input state enhancement, which is proposed
to break the softmax bottleneck more effectively
(please see details in Section 2.3 and Chang and
McCallum (2022)).

As we can see, Softmax + CPR:20,100 + Mi,
which combines all the efficient approaches (i.e.,
context partition, reranker partition, and local de-
coder embedding), results in better performance

12711

GPT-2 Small GPT-2 Medium
Model Name Size Time (ms) OWT (↓) Wiki (↓) Size Time (ms) OWT (↓) Wiki (↓)

Softmax (GPT-2) 125.0M 82.9 18.96 24.28 355.9M 207.8 15.81 20.12
Softmax + Mi 130.9M 85.6 18.74 24.08 366.4M 213.8 15.71 20.07

Mixture of Softmax (MoS) (Yang et al., 2018) 126.2M 130.2 18.97 24.10 358.0M 262.9 15.71 19.95
MoS + Mi (Chang and McCallum, 2022) 133.3M 133.2 18.68 23.82 370.6M 268.2 15.61 19.86
Pointer Generator (PG) (See et al., 2017) 126.2M 106.0 18.67 23.70 358.0M 237.8 15.72 19.95
Pointer Sentinel (PS) (Merity et al., 2017) 126.2M 94.1 18.70 23.79 358.0M 218.3 15.72 19.95

Softmax + R:20 + Mi 132.1M 90.4 18.67 24.03 368.5M 203.6 15.64 19.94
Softmax + R:20,100 + Mi 133.3M 101.1 18.69 23.93 370.6M 228.5 15.61 19.89

Softmax + C + Mi 132.1M 94.8 18.48 23.56 368.5M 222.7 15.60 19.83
Softmax + P + Mi 133.3M 99.1 18.58 23.66 370.6M 214.7 15.63 19.90

PG + Mi 133.3M 111.2 18.43 23.43 370.6M 242.5 15.60 19.89
PS + Mi 133.3M 98.0 18.48 23.53 370.6M 224.6 15.60 19.87

Softmax + CR:20,100 + Mi 134.5M 113.3 18.46 23.48 372.7M 234.5 15.54 19.75
Softmax + CPR:20,100 + Mi 136.8M 119.9 18.43 23.42 376.9M 249.9 15.53 19.71

MoS + CPR:20,100 + Mi 139.2M 165.1 18.39 23.29 381.1M 300.6 15.44 19.57

Table 2: Comparison of different methods on top of GPT-2. Wiki and OWT refer to the testing perplexity of
Wikipedia 2021 and OpenWebText, respectively. Lower perplexity is better. Time is the inference time of a batch;
Mi is the multiple input hidden state enhancement; C is the context partition; R:20,100 is the reranker partition with
k1 = 20 and k2 = 100; P is the pointer network (i.e., local decoder embedding). Please see Equation 5 for the
details of CPR. The best scores are highlighted.

and faster inference speed than the mixture of soft-
max (MoS) (Yang et al., 2018; Chang and McCal-
lum, 2022). The inference speed is measured by
our pure PyTorch implementation, which we be-
lieve could be further accelerated by implementing
some new PyTorch operations using CUDA code.

If only using one method, the context partition
(Softmax + C + Mi) is better than the reranker
partitions (Softmax + R:20,100 + Mi) while per-
forming similarly compared to local decoder word
embedding (Softmax + P + Mi), Pointer Generator
(PG + Mi) (See et al., 2017), and Pointer Sentinel
(PS + Mi) (Merity et al., 2017).2 Their similar per-
formances indicate that the improvement of pointer
networks come from breaking the softmax bottle-
neck. The significantly better performance of PS +
Mi compared to PS further supports the finding.

To know how well our method breaks the soft-
max bottleneck, we implement a word-by-word
reranker model on GPT-2, which appends the most
likely 100 words to the context when predicting
each next word (see Appendix C.3 for more details).
In Table 3, we show that our efficient softmax al-
ternative Softmax + CPR:20,100 + Mi achieves
significantly lower perplexity. Furthermore, the
word-by-word reranker is at least 10 times slower
during training. Combining word-by-word reranker
with our method only improves the perplexity very

2Notice that the pointer networks from the previous work
were originally designed for RNN. To add them on top of the
transformer based LMs and make it more comparable to our
methods, we simplify their architectures a little. Please see
Appendix C.2 for more details.

Softmax + Mi 29.33 Softmax + wbwR:100 + Mi 28.89
Softmax +

28.46
Softmax +

28.40
CPR:20,100 + Mi CPR:20,100 + wbwR:100 + Mi

Table 3: Comparison between our method and word-
by-word reranker for the most likely 100 words
(wbwR:100). The numbers are the validation perplexi-
ties on Wikipedia 2021 after training for 0.15 epochs.

All Proper Noun
Model Name Ref Context Ref Context
Softmax + Mi 22.90 24.04 7.49 14.84

MoS + Mi 22.88 23.98 7.70 15.49
PS + Mi 22.85 25.01 8.16 18.21

Softmax + CPR:20,100 + Mi 23.05 25.36 8.16 17.92

Table 4: ROUGE-1 F1 (%) of different methods on GPT-
2. We compare the scores between the generated text
and the reference (i.e., continuation), and between the
generation and context. More methods and metrics are
reported in Table 8.

slightly, which suggests the challenges of further
improving LM by breaking softmax bottleneck.

4.1.2 Generated Text Comparison
Next, we would like to understand how the distri-
bution improvement affects the text generation. We
sample some contexts in the test set of Wikipedia
2021 and compare the generated text quality of the
different models given the contexts. The quality
is measured by the ROUGE-1 F1 scores between
the generated text and the actual continuation. To
know how much the different models copy from
the context, we also report the ROUGE-1 scores
between the generation and the contexts.

The results in Table 4 show that different meth-

12712

ods have very similar overall ROUGE-1 scores.
Nevertheless, compared to Softmax + Mi, Soft-
max + CPR:20,100 + Mi is 21% more likely to
copy the proper nouns (i.e., entity names) from the
context and 9% more likely to generate the proper
nouns in the actual continuation. This suggests that
our method could alleviate the common incoher-
ence problem of entities in generated text (Shuster
et al., 2022; Papalampidi et al., 2022; Zhang et al.,
2022; Guan et al., 2022; Goyal et al., 2022b). In
Table 8, we compare methods using more metrics
to further support the conclusion.

4.1.3 Qualitative Analysis
In Table 5, we visualize some distributions to ex-
plain our improvements. The softmax layer of GPT-
2 is unable to properly learn to copy or exclude the
word from the input context. For example, Softmax
+ Mi and MoS + Mi might output “There are plates,
keys, scissors, toys, and balloons in front of me, and
I pick up the phone”, which causes a hallucination
problem, while Softmax + CPR:20,100 + Mi and
Pointer Sentinel (PS) + Mi can output the men-
tioned options with similar probability by copying
the words in the context. In addition, GPT-2, MoS,
and PS + Mi are very likely to output “I like tennis,
baseball, golf, basketball, and tennis”. This repeti-
tion problem happens because the next word should
be some words similar to the listed sports names
except for the sports that have been mentioned and
the softmax layer has difficulties in outputting a
donut-shape next word distribution in embedding
space. In contrast, Softmax + CPR:20,100 + Mi
can learn to exclude the listed sports by putting
very negative logits on the context words, which
yield the desired donut-shape distribution.

4.2 T5 and BART in Summarization

We test our methods on two popular encoder-
decoder LMs, T5 (Raffel et al., 2020) and
BART (Lewis et al., 2020). We fine-tune the pre-
trained LMs with different softmax alternatives on
two news summarization datasets: CNN/DM (See
et al., 2017) and XSUM (Narayan et al., 2018),
one narrative summarization dataset: BookSum at
paragraph level (Kryściński et al., 2021), and one
dialogue summarization dataset: SAMSUM (Gliwa
et al., 2019).

In the main paper, we evaluate the quality of
summaries using four metrics. ROUGE-1 F1 (Lin,
2004) measures the unigram overlapping between
the generated summary and the ground truth sum-

mary; CIDEr (Vedantam et al., 2015) adds a tf-
idf weighting on the n-gram overlapping score
to emphasize correct prediction of rare phrases;
factCC (Kryscinski et al., 2020) evaluates the fac-
tuality of the summary; MAUVE (Pillutla et al.,
2021) compares the word distribution of summary
and ground truth in a quantized embedding space.
To further support our conclusions, we also com-
pare the quality measured by several other metrics
and their model sizes in Table 9 and Table 10.

The results are reported in Table 6. Similar to
the GPT-2 experiments, the results are generally
better as we combine more partitions and local
embedding approaches. This demonstrates that we
can directly fine-tune the LMs with our softmax
alternatives without expensive pretraining.

Unlike the GPT-2 experiments, multiple input
hidden state enhancement (Mi) is not very effective,
so we mainly compare the methods without Mi (i.e.,
qct = hM

ct , unlike Equation 2). We hypothesize
one possible reason is that we haven’t pretrained
the T5 and BART with our softmax alternatives.

Our improvements are larger in smaller models.
This is probably because in a smaller word embed-
ding space, there are more likely to be interfering
words between the desired next word possibilities.
Compared to our methods, the pointer networks
perform well in BART-base but usually perform
worse in other LMs. We need further investigations
in the future to explore the reasons.

Compared to ROUGE-1 score, the improvement
percentage of CIDEr is overall higher. One ma-
jor problem of the summarization LMs is that the
generated summary contains too many commonly
used phrases (King et al., 2022) and our consider-
ably higher CIDEr scores indicate the alleviation
of the problem. Our improvement on the factCC
is also significant (Cao and Wang, 2021). Finally,
our MAUVE improvement percentage on Book-
Sum Paragraph dataset could reach around 30% in
T5-Small. We hypothesize this is because we often
mention the global entity names in the news (e.g.,
Obama) while the meaning of names in stories (e.g.,
John) is often defined by the context.

5 Related Work

Repetition and hallucination are two common prob-
lems in language generation tasks. One common
solution for repetition is to avoid outputting the
words in the context, which is often called unlike-
lihood training (Welleck et al., 2020; Jiang et al.,

12713

Input Context
There are plates, keys, scissors, toys,
and balloons in front of me, and I

pick up the

Choosing between John, Alex,
Mary, Kathryn, and Jack, I decided

to first talk to

I like tennis, baseball, golf, basketball,
and

Softmax + Mi
keys 0.108, pieces 0.045, key 0.036,

phone 0.020, balloons 0.019
John 0.108, the 0.102, them 0.095,

him 0.045, my 0.032
tennis 0.089, baseball 0.075, football

0.041, basketball 0.036, I 0.032

Mixture of Softmax (MoS) + Mi
keys 0.085, phone 0.035, key 0.031,

pieces 0.029, balloons 0.016
John 0.099, the 0.097, them 0.083,

Alex 0.055, Mary 0.040
baseball 0.076, basketball 0.062, tennis

0.059, golf 0.037, bad 0.035

Pointer Sentinel (PS) + Mi
keys 0.091, plates 0.079, scissors
0.050, balloons 0.034, toys 0.033

John 0.130, the 0.105, Alex 0.076,
them 0.076, Mary 0.037

tennis 0.095, golf 0.050, baseball 0.043,
I 0.038, other 0.038

Softmax + CPR:20,100 + Mi
keys 0.077, balloons 0.052, plates

0.036, toys 0.030, pieces 0.030
the 0.106, John 0.099, my 0.060,

Alex 0.057, them 0.044
football 0.075, volleyball 0.058,
soccer 0.056, I 0.047, bad 0.038

Table 5: Prediction visualization of three input contexts. We show the top five words with the highest prediction
probabilities of each model. The reasonable next word predictions are boldfaced.

CNN/DM XSUM BookSum Paragraph SAMSUM
Model Name R1 CIDEr factCC MAUVE R1 CIDEr factCC MAUVE R1 CIDEr factCC MAUVE R1 CIDEr factCC MAUVE

T5-Small
Softmax (S) 38.255 0.442 0.462 0.861 28.713 0.446 0.254 0.939 16.313 0.083 0.424 0.328 39.472 0.817 0.577 0.898

CopyNet (Gu et al., 2016) 37.990 0.438 0.482 0.865 28.573 0.442 0.274 0.940 16.666 0.092 0.439 0.402 39.525 0.853 0.579 0.924
PG (See et al., 2017) 37.913 0.442 0.467 0.874 28.777 0.450 0.257 0.931 16.432 0.088 0.429 0.376 32.451 0.585 0.552 0.153

PS (Merity et al., 2017) 38.058 0.444 0.466 0.854 28.442 0.435 0.267 0.932 16.408 0.090 0.436 0.395 38.731 0.817 0.578 0.865
S + R:20 37.881 0.433 0.474 0.872 28.557 0.440 0.256 0.931 16.336 0.086 0.431 0.370 39.073 0.752 0.579 0.847

S + E 38.137 0.441 0.477 0.866 28.723 0.444 0.272 0.942 16.542 0.090 0.435 0.390 39.056 0.784 0.579 0.904
S + CE 38.461 0.460 0.475 0.874 29.155 0.464 0.270 0.948 16.628 0.093 0.436 0.403 40.055 0.835 0.583 0.943

S + CER:20 38.346 0.450 0.482 0.890 29.067 0.459 0.276 0.942 16.638 0.093 0.436 0.400 40.505 0.846 0.580 0.915
S + CEPR:20 38.807 0.456 0.481 0.877 29.395 0.474 0.273 0.942 16.894 0.098 0.440 0.418 40.127 0.891 0.582 0.946

S + CEPR:20 + Mi 38.675 0.451 0.475 0.878 29.348 0.470 0.275 0.946 16.738 0.096 0.438 0.426 40.328 0.874 0.582 0.932
T5-Base

Softmax (S) 40.198 0.504 0.478 0.907 33.571 0.667 0.249 0.979 16.761 0.096 0.424 0.467 44.348 1.046 0.574 0.986
CopyNet (Gu et al., 2016) 39.940 0.507 0.484 0.903 33.557 0.666 0.253 0.979 16.918 0.101 0.430 0.531 44.141 1.052 0.570 0.973

PG (See et al., 2017) 39.982 0.489 0.485 0.911 33.605 0.663 0.255 0.982 16.611 0.095 0.423 0.463 37.597 0.784 0.548 0.140
PS (Merity et al., 2017) 40.018 0.495 0.483 0.914 33.638 0.672 0.249 0.983 16.905 0.100 0.428 0.504 43.098 1.008 0.575 0.946

S + CEPR:20 40.354 0.511 0.487 0.919 33.700 0.675 0.260 0.980 16.997 0.100 0.432 0.549 44.860 1.064 0.573 0.963
S + CEPR:20 + Mi 40.510 0.506 0.481 0.918 33.853 0.683 0.263 0.983 16.975 0.101 0.431 0.546 44.488 1.055 0.576 0.980

BART Base
Softmax (S) 39.390 0.428 0.479 0.900 35.675 0.814 0.241 0.985 16.393 0.094 0.414 0.404 45.132 1.129 0.567 0.966

CopyNet (Gu et al., 2016) 39.385 0.438 0.484 0.906 35.515 0.814 0.251 0.988 16.642 0.100 0.422 0.495 44.316 1.103 0.577 0.970
PG (See et al., 2017) 39.264 0.444 0.489 0.909 35.653 0.810 0.242 0.987 16.402 0.094 0.414 0.402 45.278 1.153 0.578 0.977

PS (Merity et al., 2017) 39.471 0.459 0.490 0.906 35.411 0.809 0.247 0.986 16.718 0.099 0.422 0.492 44.575 1.084 0.573 0.974
S + R:20 39.181 0.434 0.475 0.905 35.586 0.808 0.247 0.988 16.419 0.096 0.418 0.439 45.024 1.154 0.572 0.970

S + E 39.267 0.439 0.483 0.907 35.698 0.819 0.241 0.988 16.442 0.097 0.415 0.429 44.825 1.106 0.572 0.981
S + CE 39.416 0.442 0.481 0.908 35.727 0.812 0.241 0.988 16.555 0.096 0.417 0.435 44.295 1.116 0.572 0.985

S + CER:20 39.421 0.439 0.482 0.900 35.576 0.812 0.236 0.987 16.553 0.096 0.418 0.454 45.054 1.150 0.576 0.988
S + CEPR:20 39.723 0.441 0.483 0.908 35.732 0.822 0.242 0.986 16.664 0.098 0.420 0.467 44.732 1.115 0.575 0.974

S + CEPR:20 + Mi 39.626 0.442 0.482 0.907 35.846 0.828 0.245 0.986 16.597 0.097 0.419 0.466 44.728 1.132 0.574 0.988
BART Large

Softmax (S) 40.749 0.424 0.495 0.899 38.828 0.921 0.263 0.988 17.271 0.103 0.420 0.461 47.384 1.187 0.574 0.975
CopyNet (Gu et al., 2016) 40.622 0.407 0.487 0.890 38.576 0.920 0.258 0.989 17.342 0.106 0.425 0.512 47.911 1.232 0.573 0.980

PG (See et al., 2017) 40.766 0.407 0.489 0.902 38.869 0.944 0.256 0.990 17.289 0.103 0.424 0.470 47.737 1.199 0.573 0.964
PS (Merity et al., 2017) 40.643 0.424 0.502 0.907 38.886 0.952 0.255 0.988 17.382 0.105 0.426 0.527 48.253 1.246 0.574 0.986

S + CEPR:20 40.876 0.458 0.500 0.925 38.991 0.955 0.248 0.990 17.337 0.106 0.423 0.467 47.253 1.298 0.572 0.976
S + CEPR:20 + Mi 40.441 0.463 0.500 0.927 38.705 0.965 0.242 0.991 16.995 0.105 0.421 0.482 47.488 1.271 0.571 0.986

Table 6: The performance on test sets of four summarization datasets. R1 is ROUGE-1 F1 (%). E refers to the
encoder partition; C is the context partition; R:20 is the reranker partition with k1 = 20; The P in CEPR means using
the pointer networks for both encoder (LE) and decoder (LD); Mi is the multiple input hidden state enhancement;
PS means Pointer Sentinel and PG means Pointer Generator. CEPR is described in Equation 6. The model size,
inference time, and more metrics are reported in Table 9 and Table 10.

2022b; Su et al., 2022). However, when LM should
mention some names in the context, this might ex-
acerbate the hallucination problem. In contrast, our
method can learn to copy and exclude the words in
context as in Table 5.

To alleviate the hallucination problem or sat-
isfy some constraints, many recent generation mod-
els rerank the generated text (Deng et al., 2020;
Gabriel et al., 2021; Cobbe et al., 2021; Ravaut
et al., 2022; Krishna et al., 2022; Glass et al.,
2022; An et al., 2022; Arora et al., 2022; Adolphs
et al., 2022; Meng et al., 2022; Mireshghallah et al.,
2022; Kumar et al., 2022; Wan and Bansal, 2022;
Jiang et al., 2022a). Although being effective, the

rerankers usually slow down significantly the train-
ing and/or inference speed (as our word-by-word
reranker baseline) and might occupy extra memory
resources.

Our analyses demonstrate that parts of the hal-
lucination and repetition problem come from the
softmax bottleneck. The findings provide an expla-
nation for the effectiveness of prior studies such
as the above reranker approaches and pointer net-
works (Li et al., 2021; Zhong et al., 2022; Ma et al.,
2023). Another example is encouraging the word
embeddings to be isotropy (Wang et al., 2020; Su
et al., 2022). Their improvement might also come
from reducing linear dependency of the candidate

12714

word embeddings. Nevertheless, their side effect
of breaking the similarity structure in the word em-
bedding space might hurt the generation quality
in some cases. Concurrently to our work, Wan
et al. (2023) also use the softmax bottleneck the-
ory (Chang and McCallum, 2022) to explain the
improvement of a pointer network. Their empirical
results also support our conclusion that softmax
bottleneck is a major reason that causes the factual-
ity problem of LMs.

Our work is motivated and inspired by Chang
and McCallum (2022). In their work, they also
propose to use different hidden states for differ-
ent vocabulary partitions, but their partitioning is
global and needs to be combined with the mixture
of softmax (MoS) approach, which adds a signif-
icant overhead compared to the standard softmax
layer. Our dynamic partitioning methods not only
perform better but greatly reduce the overhead by
removing the reliance on MoS.

6 Conclusion

Since the transformer becomes the mainstream en-
coder and decoder for LMs, the output softmax
layer seems to be the only reasonable option for
computing the word probability distribution. Al-
though being simple and efficient, the softmax layer
is inherently limited while the existing solutions
are relatively slow (Chang and McCallum, 2022).
This work proposes a series of softmax alternatives
that can improve the text generation models with-
out increasing the computational costs significantly.
Our experiments suggest that the main improve-
ment of the pointer network on top of a transformer
comes from breaking the softmax bottleneck. Our
results also indicate that the alternatives could al-
leviate some problems of hallucination, repetition,
and too generic generation. Furthermore, all of the
proposed alternatives can be applied to the LMs
that have already been pretrained using softmax
without requiring retraining from scratch. For the
practitioner, we recommend using all the partition-
ing methods together to get the best performance,
or using only the simple context partition to keep
the architecture simple while getting the majority
of the gain.

7 Acknowledgement

We thank Nadar Akoury and the anonymous re-
viewers for their constructive feedback. This work
was supported in part by the Center for Data Sci-

ence and the Center for Intelligent Information Re-
trieval, in part by the Chan Zuckerberg Initiative
under the project Scientific Knowledge Base Con-
struction, in part by the IBM Research AI through
the AI Horizons Network, in part using high per-
formance computing equipment obtained under
a grant from the Collaborative R&D Fund man-
aged by the Massachusetts Technology Collabo-
rative, and in part by the National Science Foun-
dation (NSF) grant numbers IIS-1922090 and IIS-
1763618. Any opinions, findings, conclusions, or
recommendations expressed in this material are
those of the authors and do not necessarily reflect
those of the sponsor.

8 Limitations

In our experiments, we find that the improvement
of our methods tend to be larger in relatively
smaller language models. Due to our limited ac-
cess of computational resources, we are not able
to try our methods on larger LMs. To know if a
larger LM still suffers from the softmax bottleneck
problem, we input the examples we used in Table 5
to GPT-3.5 and report their results in Figure 4.

We find that although GPT-3.5 greatly reduces
the chance of hallucination compared to GPT-2,
the next word distribution is still not ideal. For ex-
ample, in Figure 4a, although the incorrect answer
queen receives only a small probability, GPT-3.5
puts around 67% probability on woman. Similarly,
even though GPT-3.5 is unlikely to hallucinate the
sentence: There are plates, keys, scissors, toys, and
balloons in front of me, and I pick up the phone
as GPT-2, Figure 4b and Figure 4d show that the
output distribution is still heavily biased toward
one of the options and the most likely next word
could change if the order of the options in the con-
text changes. These results suggest that increasing
model size indeed alleviates the softmax bottleneck
problem but the problem is not completely solved
even if a huge hidden state size (12k) and model
size (175B) are used (Brown et al., 2020). We
expect that adding our methods to the large LMs
could rectify the biased distributions as shown in
our experiments on smaller LMs (Table 5). There-
fore, although improving smaller LMs has already
had wide applications in practice, trying our meth-
ods on a larger LM is a promising next step, which
we haven’t been able to do.

The current implementation of our methods also
has some room for improvements. Our codes cur-

12715

(a) The example where the next word should be either woman
or king (or their synonym such as former and latter).

(b) The example where the next word plates, keys, scissors,
toys, and balloons should receive similar probabilities.

(c) The example where the next word John, Alex, Mary,
Kathryn, and Jack should receive similar probabilities.

(d) Same as above except that the order of the objects in the
context is different.

Figure 4: The next word probabilities outputted by GPT-3.5 (text-davinci-003).

rently contain some unnecessary computation to
circumvent the restrictions of PyTorch library, so
we should be able to further accelerate it by writing
CUDA code. Furthermore, our codes haven’t sup-
ported the pretraining of BART or T5. We expect
that completing the future work could make our
method faster and better.

Since the focus of this paper is improving the
architecture of general transformer decoder, our
evaluation of each application is not as compre-
hensive as the studies for a particular application.
For example, although we test our methods using
many metrics and the metrics show a consistent
trend, there are many other factuality metrics we
haven’t tried (Li et al., 2022). We also haven’t
conducted human evaluation to further verify our
conclusion because conducting human evaluation
properly is challenging (Karpinska et al., 2021)
and time-consuming. In addition, if we include
more words in a context partition, the performance
might be better at the cost of extra computational
overhead. We leave the analyses of the tradeoff as
future work.

9 Ethics Statement

In our experiments, we find that our methods usu-
ally copy more words from the context or encoder
input. The tendency might have some potential
issues. For example, our improvements might be
reduced on the languages with more morphology.
Furthermore, in some summarization applications,
increasing the factuality by increasing the extrac-
tiveness might not be ideal (Ladhak et al., 2022;
Goyal et al., 2022a).

As described in Section 2.1, one major limita-
tion of the popular softmax layer is its global word

embeddings. The problem would become more se-
rious when there are more tokens whose meanings
are locally defined (e.g., names in the BookSum
dataset). Our methods would be more useful in
those circumstances and might alleviate some bi-
ases described in Shwartz et al. (2020) and Ladhak
et al. (2023). Moreover, the meaning of tokens
are also locally defined in many other applications
such as variables in code or math problems, the
new terminologies in a scientific paper, or the prod-
ucts in a sequential recommendation problem. We
believe that our methods could become an efficient
alternative of reranker (Cobbe et al., 2021; Welleck
et al., 2022) and create impacts in those areas.

Finally, our results show that when there are
some uncertainties in the next word (e.g., could be
king or woman), existing LMs could have some
difficulties of copying the words from the context
and our methods alleviate the problem. Thus, our
methods should also be able to improve the lexi-
cally controllable language generation models that
put the desired keywords into the context such as
Goldfarb-Tarrant et al. (2019) and Lu et al. (2021).

References
Leonard Adolphs, Tianyu Gao, Jing Xu, Kurt Shuster,

Sainbayar Sukhbaatar, and Jason Weston. 2022. The
cringe loss: Learning what language not to model.
ArXiv preprint, abs/2211.05826. 8

Chenxin An, Jiangtao Feng, Kai Lv, Lingpeng Kong,
Xipeng Qiu, and Xuanjing Huang. 2022. Cont:
Contrastive neural text generation. ArXiv preprint,
abs/2205.14690. 8

Kushal Arora, Kurt Shuster, Sainbayar Sukhbaatar, and
Jason Weston. 2022. Director: Generator-classifiers
for supervised language modeling. In Proceedings

12716

https://arxiv.org/abs/2211.05826
https://arxiv.org/abs/2211.05826
https://arxiv.org/abs/2205.14690
https://arxiv.org/abs/2205.14690

of the 2nd Conference of the Asia-Pacific Chapter of
the Association for Computational Linguistics and
the 12th International Joint Conference on Natural
Language Processing, pages 512–526. 8

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Process-
ing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual. 9

Shuyang Cao and Lu Wang. 2021. CLIFF: Contrastive
learning for improving faithfulness and factuality in
abstractive summarization. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 6633–6649, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics. 7

Haw-Shiuan Chang and Andrew McCallum. 2022. Soft-
max bottleneck makes language models unable to
represent multi-mode word distributions. In Proceed-
ings of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 8048–8073, Dublin, Ireland. Association
for Computational Linguistics. 1, 2, 3, 5, 6, 9, 16, 20,
21

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. ArXiv preprint, abs/2110.14168. 8,
10

Yuntian Deng, Anton Bakhtin, Myle Ott, Arthur Szlam,
and Marc’Aurelio Ranzato. 2020. Residual energy-
based models for text generation. In 8th International
Conference on Learning Representations, ICLR 2020,
Addis Ababa, Ethiopia, April 26-30, 2020. OpenRe-
view.net. 8

George Doddington. 2002. Automatic evaluation of ma-
chine translation quality using n-gram co-occurrence
statistics. In Proceedings of the second interna-
tional conference on Human Language Technology
Research, pages 138–145. 15

Saadia Gabriel, Antoine Bosselut, Jeff Da, Ari Holtz-
man, Jan Buys, Kyle Lo, Asli Celikyilmaz, and Yejin
Choi. 2021. Discourse understanding and factual
consistency in abstractive summarization. In Pro-
ceedings of the 16th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Main Volume, pages 435–447, Online. As-
sociation for Computational Linguistics. 8

Michael Glass, Gaetano Rossiello, Md Faisal Mahbub
Chowdhury, Ankita Naik, Pengshan Cai, and Alfio
Gliozzo. 2022. Re2G: Retrieve, rerank, generate.
In Proceedings of the 2022 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 2701–2715, Seattle, United States. Association
for Computational Linguistics. 8

Bogdan Gliwa, Iwona Mochol, Maciej Biesek, and Alek-
sander Wawer. 2019. SAMSum corpus: A human-
annotated dialogue dataset for abstractive summa-
rization. In Proceedings of the 2nd Workshop on
New Frontiers in Summarization, pages 70–79, Hong
Kong, China. Association for Computational Linguis-
tics. 7

Seraphina Goldfarb-Tarrant, Haining Feng, and Nanyun
Peng. 2019. Plan, write, and revise: an interac-
tive system for open-domain story generation. In
Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics (Demonstrations), pages 89–97,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics. 10

Tanya Goyal, Junyi Jessy Li, and Greg Durrett. 2022a.
News summarization and evaluation in the era of
gpt-3. arXiv preprint arXiv:2209.12356. 10

Tanya Goyal, Junyi Jessy Li, and Greg Durrett. 2022b.
Snac: Coherence error detection for narrative sum-
marization. ArXiv preprint, abs/2205.09641. 7

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor O.K. Li.
2016. Incorporating copying mechanism in sequence-
to-sequence learning. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1631–
1640, Berlin, Germany. Association for Computa-
tional Linguistics. 1, 2, 8, 17, 18, 19

Jian Guan, Zhenyu Yang, Rongsheng Zhang, Zhipeng
Hu, and Minlie Huang. 2022. Generating coherent
narratives by learning dynamic and discrete entity
states with a contrastive framework. ArXiv preprint,
abs/2208.03985. 7

Tom Henighan, Jared Kaplan, Mor Katz, Mark Chen,
Christopher Hesse, Jacob Jackson, Heewoo Jun,
Tom B Brown, Prafulla Dhariwal, Scott Gray, et al.
2020. Scaling laws for autoregressive generative
modeling. ArXiv preprint, abs/2010.14701. 15

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735–
1780. 1

Matthew Honnibal, Ines Montani, Sofie Van Lan-
deghem, and Adriane Boyd. 2020. spaCy: Industrial-
strength Natural Language Processing in Python. 22

Dongfu Jiang, Bill Yuchen Lin, and Xiang Ren. 2022a.
Pairreranker: Pairwise reranking for natural language
generation. arXiv preprint arXiv:2212.10555. 8

12717

https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.18653/v1/2021.emnlp-main.532
https://doi.org/10.18653/v1/2021.emnlp-main.532
https://doi.org/10.18653/v1/2021.emnlp-main.532
https://doi.org/10.18653/v1/2022.acl-long.554
https://doi.org/10.18653/v1/2022.acl-long.554
https://doi.org/10.18653/v1/2022.acl-long.554
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://openreview.net/forum?id=B1l4SgHKDH
https://openreview.net/forum?id=B1l4SgHKDH
https://doi.org/10.18653/v1/2021.eacl-main.34
https://doi.org/10.18653/v1/2021.eacl-main.34
https://doi.org/10.18653/v1/2022.naacl-main.194
https://doi.org/10.18653/v1/D19-5409
https://doi.org/10.18653/v1/D19-5409
https://doi.org/10.18653/v1/D19-5409
https://doi.org/10.18653/v1/N19-4016
https://doi.org/10.18653/v1/N19-4016
https://arxiv.org/abs/2205.09641
https://arxiv.org/abs/2205.09641
https://doi.org/10.18653/v1/P16-1154
https://doi.org/10.18653/v1/P16-1154
https://arxiv.org/abs/2208.03985
https://arxiv.org/abs/2208.03985
https://arxiv.org/abs/2208.03985
https://arxiv.org/abs/2010.14701
https://arxiv.org/abs/2010.14701
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.5281/zenodo.1212303

Shaojie Jiang, Ruqing Zhang, Svitlana Vakulenko, and
Maarten de Rijke. 2022b. A simple contrastive learn-
ing objective for alleviating neural text degeneration.
ArXiv preprint, abs/2205.02517. 7

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. ArXiv
preprint, abs/2001.08361. 15

Marzena Karpinska, Nader Akoury, and Mohit Iyyer.
2021. The perils of using Mechanical Turk to evalu-
ate open-ended text generation. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 1265–1285, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics. 10

Daniel King, Zejiang Shen, Nishant Subramani,
Daniel S Weld, Iz Beltagy, and Doug Downey. 2022.
Don’t say what you don’t know: Improving the con-
sistency of abstractive summarization by constraining
beam search. ArXiv preprint, abs/2203.08436. 7

Kalpesh Krishna, Yapei Chang, John Wieting, and Mo-
hit Iyyer. 2022. Rankgen: Improving text gener-
ation with large ranking models. ArXiv preprint,
abs/2205.09726. 8

Wojciech Kryscinski, Bryan McCann, Caiming Xiong,
and Richard Socher. 2020. Evaluating the factual
consistency of abstractive text summarization. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 9332–9346, Online. Association for Computa-
tional Linguistics. 7

Wojciech Kryściński, Nazneen Rajani, Divyansh Agar-
wal, Caiming Xiong, and Dragomir Radev. 2021.
BookSum: A collection of datasets for long-form
narrative summarization. 7, 21

Sachin Kumar, Biswajit Paria, and Yulia Tsvetkov. 2022.
Gradient-based constrained sampling from language
models. ArXiv preprint, abs/2205.12558. 8

Faisal Ladhak, Esin Durmus, He He, Claire Cardie, and
Kathleen McKeown. 2022. Faithful or extractive?
on mitigating the faithfulness-abstractiveness trade-
off in abstractive summarization. In Proceedings
of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 1410–1421, Dublin, Ireland. Association for
Computational Linguistics. 10

Faisal Ladhak, Esin Durmus, Mirac Suzgun, Tianyi
Zhang, Dan Jurafsky, Kathleen Mckeown, and Tat-
sunori B Hashimoto. 2023. When do pre-training
biases propagate to downstream tasks? a case study
in text summarization. In Proceedings of the 17th
Conference of the European Chapter of the Associa-
tion for Computational Linguistics, pages 3198–3211.
10

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871–7880, Online. Association for Computa-
tional Linguistics. 7

Haoran Li, Song Xu, Peng Yuan, Yujia Wang, Youzheng
Wu, Xiaodong He, and Bowen Zhou. 2021. Learn to
copy from the copying history: Correlational copy
network for abstractive summarization. In Proceed-
ings of the 2021 Conference on Empirical Methods
in Natural Language Processing, pages 4091–4101.
8

Wei Li, Wenhao Wu, Moye Chen, Jiachen Liu, Xinyan
Xiao, and Hua Wu. 2022. Faithfulness in natural
language generation: A systematic survey of analysis,
evaluation and optimization methods. ArXiv preprint,
abs/2203.05227. 10

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics. 7

Ximing Lu, Peter West, Rowan Zellers, Ronan Le Bras,
Chandra Bhagavatula, and Yejin Choi. 2021. Neuro-
Logic decoding: (un)supervised neural text genera-
tion with predicate logic constraints. In Proceedings
of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 4288–4299,
Online. Association for Computational Linguistics.
10

Xinbei Ma, Yeyun Gong, Pengcheng He, Hai Zhao,
and Nan Duan. 2023. Prom: A phrase-level copying
mechanism with pre-training for abstractive summa-
rization. arXiv preprint arXiv:2305.06647. 8

Tao Meng, Sidi Lu, Nanyun Peng, and Kai-Wei Chang.
2022. Controllable text generation with neurally-
decomposed oracle. ArXiv preprint, abs/2205.14219.
8

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2017. Pointer sentinel mixture mod-
els. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April
24-26, 2017, Conference Track Proceedings. Open-
Review.net. 1, 3, 4, 5, 6, 8, 16, 17, 18, 19

Tomás Mikolov, Ilya Sutskever, Kai Chen, Gregory S.
Corrado, and Jeffrey Dean. 2013. Distributed repre-
sentations of words and phrases and their composi-
tionality. In Advances in Neural Information Process-
ing Systems 26: 27th Annual Conference on Neural
Information Processing Systems 2013. Proceedings
of a meeting held December 5-8, 2013, Lake Tahoe,
Nevada, United States, pages 3111–3119. 16

12718

https://arxiv.org/abs/2205.02517
https://arxiv.org/abs/2205.02517
https://arxiv.org/abs/2001.08361
https://doi.org/10.18653/v1/2021.emnlp-main.97
https://doi.org/10.18653/v1/2021.emnlp-main.97
https://arxiv.org/abs/2203.08436
https://arxiv.org/abs/2203.08436
https://arxiv.org/abs/2203.08436
https://arxiv.org/abs/2205.09726
https://arxiv.org/abs/2205.09726
https://doi.org/10.18653/v1/2020.emnlp-main.750
https://doi.org/10.18653/v1/2020.emnlp-main.750
http://arxiv.org/abs/2105.08209
http://arxiv.org/abs/2105.08209
https://arxiv.org/abs/2205.12558
https://arxiv.org/abs/2205.12558
https://doi.org/10.18653/v1/2022.acl-long.100
https://doi.org/10.18653/v1/2022.acl-long.100
https://doi.org/10.18653/v1/2022.acl-long.100
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://arxiv.org/abs/2203.05227
https://arxiv.org/abs/2203.05227
https://arxiv.org/abs/2203.05227
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://doi.org/10.18653/v1/2021.naacl-main.339
https://doi.org/10.18653/v1/2021.naacl-main.339
https://doi.org/10.18653/v1/2021.naacl-main.339
https://arxiv.org/abs/2205.14219
https://arxiv.org/abs/2205.14219
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Byj72udxe
https://proceedings.neurips.cc/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html

Fatemehsadat Mireshghallah, Kartik Goyal, and Taylor
Berg-Kirkpatrick. 2022. Mix and match: Learning-
free controllable text generationusing energy lan-
guage models. In Proceedings of the 60th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 401–415,
Dublin, Ireland. Association for Computational Lin-
guistics. 8

Shashi Narayan, Shay B. Cohen, and Mirella Lapata.
2018. Don’t give me the details, just the summary!
topic-aware convolutional neural networks for ex-
treme summarization. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1797–1807, Brussels, Bel-
gium. Association for Computational Linguistics. 7

Pinelopi Papalampidi, Kris Cao, and Tomas Kocisky.
2022. Towards coherent and consistent use of
entities in narrative generation. ArXiv preprint,
abs/2202.01709. 7

Krishna Pillutla, Swabha Swayamdipta, Rowan Zellers,
John Thickstun, Sean Welleck, Yejin Choi, and Zaid
Harchaoui. 2021. MAUVE: Measuring the gap be-
tween neural text and human text using divergence
frontiers. Advances in Neural Information Process-
ing Systems, 34:4816–4828. 7

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. 1, 5

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67. 1, 7

Mathieu Ravaut, Shafiq Joty, and Nancy Chen. 2022.
SummaReranker: A multi-task mixture-of-experts
re-ranking framework for abstractive summarization.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 4504–4524, Dublin, Ireland.
Association for Computational Linguistics. 8

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1073–
1083, Vancouver, Canada. Association for Computa-
tional Linguistics. 1, 3, 5, 6, 7, 8, 16, 17, 18, 19

Abigail See, Aneesh Pappu, Rohun Saxena, Akhila
Yerukola, and Christopher D. Manning. 2019. Do
massively pretrained language models make better
storytellers? In Proceedings of the 23rd Confer-
ence on Computational Natural Language Learning
(CoNLL), pages 843–861, Hong Kong, China. Asso-
ciation for Computational Linguistics. 15

Kurt Shuster, Jack Urbanek, Arthur Szlam, and Jason
Weston. 2022. Am I me or you? state-of-the-art dia-
logue models cannot maintain an identity. In Find-
ings of the Association for Computational Linguis-
tics: NAACL 2022, pages 2367–2387, Seattle, United
States. Association for Computational Linguistics. 7

Vered Shwartz, Rachel Rudinger, and Oyvind Tafjord.
2020. “you are grounded!”: Latent name artifacts in
pre-trained language models. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 6850–6861,
Online. Association for Computational Linguistics.
10

Yixuan Su, Tian Lan, Yan Wang, Dani Yogatama, Ling-
peng Kong, and Nigel Collier. 2022. A contrastive
framework for neural text generation. ArXiv preprint,
abs/2202.06417. 8

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA, pages 5998–6008. 1

Ramakrishna Vedantam, C. Lawrence Zitnick, and Devi
Parikh. 2015. Cider: Consensus-based image descrip-
tion evaluation. In IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2015, Boston,
MA, USA, June 7-12, 2015, pages 4566–4575. IEEE
Computer Society. 7, 15

David Wan and Mohit Bansal. 2022. Factpega-
sus: Factuality-aware pre-training and fine-tuning
for abstractive summarization. arXiv preprint
arXiv:2205.07830. 8

David Wan, Shiyue Zhang, and Mohit Bansal. 2023.
Histalign: Improving context dependency in lan-
guage generation by aligning with history. arXiv
preprint arXiv:2305.04782. 9

Lingxiao Wang, Jing Huang, Kevin Huang, Ziniu Hu,
Guangtao Wang, and Quanquan Gu. 2020. Improv-
ing neural language generation with spectrum control.
In 8th International Conference on Learning Repre-
sentations, ICLR 2020, Addis Ababa, Ethiopia, April
26-30, 2020. OpenReview.net. 8

Sean Welleck, Ilia Kulikov, Stephen Roller, Emily Di-
nan, Kyunghyun Cho, and Jason Weston. 2020. Neu-
ral text generation with unlikelihood training. In
8th International Conference on Learning Represen-
tations, ICLR 2020, Addis Ababa, Ethiopia, April
26-30, 2020. OpenReview.net. 7

Sean Welleck, Jiacheng Liu, Ximing Lu, Hannaneh
Hajishirzi, and Yejin Choi. 2022. Naturalprover:
Grounded mathematical proof generation with lan-
guage models. ArXiv preprint, abs/2205.12910. 10

12719

https://doi.org/10.18653/v1/2022.acl-long.31
https://doi.org/10.18653/v1/2022.acl-long.31
https://doi.org/10.18653/v1/2022.acl-long.31
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
https://arxiv.org/abs/2202.01709
https://arxiv.org/abs/2202.01709
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/v1/2022.acl-long.309
https://doi.org/10.18653/v1/2022.acl-long.309
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/K19-1079
https://doi.org/10.18653/v1/K19-1079
https://doi.org/10.18653/v1/K19-1079
https://doi.org/10.18653/v1/2022.findings-naacl.182
https://doi.org/10.18653/v1/2022.findings-naacl.182
https://doi.org/10.18653/v1/2020.emnlp-main.556
https://doi.org/10.18653/v1/2020.emnlp-main.556
https://arxiv.org/abs/2202.06417
https://arxiv.org/abs/2202.06417
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.1109/CVPR.2015.7299087
https://doi.org/10.1109/CVPR.2015.7299087
https://openreview.net/forum?id=ByxY8CNtvr
https://openreview.net/forum?id=ByxY8CNtvr
https://openreview.net/forum?id=SJeYe0NtvH
https://openreview.net/forum?id=SJeYe0NtvH
https://arxiv.org/abs/2205.12910
https://arxiv.org/abs/2205.12910
https://arxiv.org/abs/2205.12910

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics. 22

Zhilin Yang, Zihang Dai, Ruslan Salakhutdinov, and
William W. Cohen. 2018. Breaking the softmax bot-
tleneck: A high-rank RNN language model. In 6th
International Conference on Learning Representa-
tions, ICLR 2018, Vancouver, BC, Canada, April 30 -
May 3, 2018, Conference Track Proceedings. Open-
Review.net. 1, 2, 3, 6, 16

Haopeng Zhang, Semih Yavuz, Wojciech Kryscinski,
Kazuma Hashimoto, and Yingbo Zhou. 2022. Im-
proving the faithfulness of abstractive summarization
via entity coverage control. In Findings of the Asso-
ciation for Computational Linguistics: NAACL 2022,
pages 528–535, Seattle, United States. Association
for Computational Linguistics. 7

Zexuan Zhong, Tao Lei, and Danqi Chen. 2022. Train-
ing language models with memory augmentation. In
Proceedings of the 2022 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2022, Abu Dhabi, United Arab Emirates, December
7-11, 2022, pages 5657–5673. Association for Com-
putational Linguistics. 8

12720

https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://openreview.net/forum?id=HkwZSG-CZ
https://openreview.net/forum?id=HkwZSG-CZ
https://doi.org/10.18653/v1/2022.findings-naacl.40
https://doi.org/10.18653/v1/2022.findings-naacl.40
https://doi.org/10.18653/v1/2022.findings-naacl.40
https://aclanthology.org/2022.emnlp-main.382
https://aclanthology.org/2022.emnlp-main.382

18.6 18.8 19.0 19.2 19.4 19.6 19.8
ln(number of parameters)

3.00

3.05

3.10

3.15

3.20

3.25

lo
ss

Softmax
Softmax + Mi
MoS + Mi
Softmax + C + Mi
PS + Mi
Softmax + CPR:100,20 + Mi

Figure 5: The model size versus the model loss in
Wikipedia test data after training for 0.4 epochs. The
left side points are the results from GPT-2 Small and the
right side points come from GPT-2 Medium. The lower
curves are better.

A Appendix Overview

In the appendix, we first analyze our methods using
more metrics in Appendix B and describe what
we learn from the results. Next, we provide some
details of our methods and baselines in Appendix C.
Finally, we specify some experiment setups and
hyperparameters in Appendix D.

B More Results and Analysis

In this section, we will report more results and
provide more detailed analyses accordingly to in-
vestigate the advantages of different methods.

B.1 GPT-2 Experiments

Kaplan et al. (2020); Henighan et al. (2020) demon-
strate that the loss decreases linearly as the log of
the model size increases. Therefore, a new architec-
ture needs to perform better than the old architec-
ture with a similar model size to verify that the im-
provement does not come from memorizing more
information through the extra parameters. From the
loss versus log(model size) curve in Figure 5, we
can see that our proposed methods are significantly
better than MoS and slightly better than a pointer
network baseline as the model becomes larger.

We use the following metrics to measure the text
generated by GPT-2.

• ROUGE-1 (R1): The prediction F1 for unigram
in the actual continuation.

• ROUGE-1 Context (R1C): The prediction F1
for unigram in the context.

18.0 18.2 18.4 18.6 18.8 19.0 19.2
ln(number of parameters)

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

lo
ss

Softmax
CopyNet
Softmax + CEPR:20

Figure 6: The model size versus the model loss in
CNN/DM test set. The left side points are the results
from T5-Small and the right side points come from T5-
Base. The lower curves are better.

• ROUGE-1 Proper (R1P): The same as
ROUGE-1 except that only the proper nouns
are considered. We measure this metric because
the correctness of the entity name prediction is
critical to the factuality of the generation.

• ROUGE-1 Proper Context (R1PC): The same
as ROUGE-1 Context (R1C) except that only
the proper nouns are considered.

• ROUGE-2 (R2): The prediction F1 for bigram
in the actual continuation.

• Proper Noun Ratio (P Ratio): The average
number of proper nouns in the generation di-
vided by the average number of proper nouns in
the actual continuation. The LMs usually gener-
ate fewer proper nouns compared to the actual
continuation (See et al., 2019), so the values are
usually lower than 1. The P Ratio closer to 1 is
better.

• CIDEr (Vedantam et al., 2015): A metric for
measuring the quality and specificity of the gen-
eration.

• NIST (Doddington, 2002): Similar to CIDEr.
CIDEr uses tf-idf to weigh the n-gram while
NIST measures the information gain.

The results are reported in Table 8. In terms
of R1, R2, CIDEr, and NIST, our proposed meth-
ods such as Softmax + C + Mi and Softmax +
CPR:20,100 + Mi are significantly better than the
pointer network baselines PS + Mi and PG + Mi.
Comparing with Softmax + CPR:20,100 + Mi, PS
+ Mi has a significantly higher P Ratio and R1PC
but similar R1P. This indicates that PS + Mi copies

12721

Diagonal (e.g., king or woman) Edge (e.g., king or queen)
Analogy Relation Types → capital- capital- city-in-

family
capital- capital- city-in-

family
Models ↓ valid common world state valid common world state

Softmax + Mi 2.27 3.36 1.94 2.32 3.09 2.13 2.61 1.90 2.21 2.49
MoS + Mi (Chang and McCallum, 2022) 1.86 2.62 1.66 1.86 3.59 1.87 2.24 1.66 1.90 3.10

Softmax + C + Mi 1.78 2.19 1.62 1.87 2.17 1.79 2.13 1.63 1.88 2.07
Softmax + CPR:20,100 + Mi 1.69 2.03 1.54 1.81 2.09 1.69 2.01 1.55 1.81 1.97

Table 7: Comparing the perplexity of different GPT-2 Small models using the synthetic dataset from Chang and
McCallum (2022).

Model Name R1 R1C R1P R1PC R2 P Ratio CIDEr NIST
Softmax (GPT-2) 22.668 23.548 7.323 14.340 3.219 0.885 0.182 1.792

Softmax + Mi 22.903 24.036 7.493 14.840 3.289 0.877 0.190 1.829
Mixture of Softmax (MoS) (Yang et al., 2018) 22.965 24.233 7.760 15.762 3.260 0.885 0.188 1.846

MoS + Mi (Chang and McCallum, 2022) 22.876 23.979 7.703 15.493 3.270 0.889 0.188 1.829
Pointer Generator (PG) (See et al., 2017) 23.055 24.872 8.052 17.830 3.311 0.889 0.193 1.856
Pointer Sentinel (PS) (Merity et al., 2017) 23.007 24.444 7.677 16.146 3.302 0.873 0.189 1.840

Softmax + R:20 + Mi 22.941 23.970 7.467 14.733 3.303 0.896 0.188 1.833
Softmax + R:20,100 + Mi 22.909 23.938 7.537 15.066 3.280 0.870 0.190 1.829

Softmax + C + Mi 23.116 25.027 7.894 17.048 3.372 0.917 0.197 1.873
Softmax + P + Mi 23.015 25.080 7.895 17.184 3.346 0.877 0.196 1.847

PG + Mi 22.827 24.759 8.049 17.874 3.289 0.914 0.191 1.819
PS + Mi 22.846 25.008 8.159 18.208 3.307 0.921 0.194 1.823

Softmax + CR:20,100 + Mi 23.017 25.056 8.089 17.798 3.328 0.894 0.198 1.858
Softmax + CPR:20,100 + Mi 23.053 25.361 8.160 17.921 3.363 0.882 0.197 1.863

MoS + CPR:20,100 + Mi 23.047 25.173 8.187 18.198 3.314 0.902 0.198 1.868

Table 8: Comparison of the continuation generated by GPT-2 Small in Wikipedia test data. Table 4 is a short
summary of this table. The meaning of the metrics is described in Appendix B.1. Higher R1C and R1PC mean
copying more words from the context. A higher P Ratio means generating more proper nouns. All ROUGE scores
are percentages.

more proper nouns from the context while there
is a similar number of proper nouns that are in ac-
tual continuation, so Softmax + CPR:20,100 + Mi
actually has a higher accuracy on the proper noun
prediction.

In text corpus such as Wikipedia, we do not know
the ground truth next word distribution and which
context leads to multiple probable next words, so
we cannot quantitatively analyze the improvement
on the ambiguous contexts. To alleviate the con-
cern, we test our methods on the synthetic dataset
constructed by Chang and McCallum (2022). The
dataset is built using templates and Google anal-
ogy dataset (Mikolov et al., 2013), so we know the
ground truth next word distribution. The dataset
consists of the ambiguous contexts such as I went
to Paris and Germany before, and I love one of
the places more, which is, where the next word
is either the diagonal words of the parallelogram
such as Paris and Germany or the edge words such
as Paris and France. For the details of the experi-
mental setup, please refer to Chang and McCallum
(2022).

In Table 7, we can see that Softmax +

CPR:20,100 + Mi achieves the lowest perplexity
in all subsets and outperforms the Softmax + Mi
baseline by a large margin, especially in the diago-
nal subset where the ground truth word embedding
distribution has multiple modes. Notice that the
performance of MoS + Mi is worse than what re-
ported in Chang and McCallum (2022) probably
because we shared the input and output word em-
beddings.

B.2 Summarization

Compared to Figure 5, Figure 6 shows that our
methods improve the loss of T5 in CNN/DM more
than GPT-2 in Wikipedia.

In Table 9 and Table 10, we compare the dif-
ferent summarization models by their model size,
evaluation losses, inference time, and other met-
rics which we use in subsection B.1. The pointer
network baselines and our methods significantly
improve most metrics over the softmax baseline,
which is used ubiquitously in nearly all LMs. Al-
though our method generally improves less on the
T5-Base model, the percentages of additional pa-
rameters and inference time overhead are much

12722

CNN/DM XSUM
Models Size Loss (↓) R2 R1P P Ratio NIST Loss (↓) R2 R1P P Ratio NIST

T5-Small
Softmax (S) 60.8M 0.995 15.147 0.462 0.915 4.650 0.538 7.098 0.292 0.853 2.738

CopyNet (Gu et al., 2016) 61.3M 0.966 14.942 0.458 0.985 4.607 0.533 7.055 0.286 0.865 2.742
PG (See et al., 2017) 61.3M 0.978 14.789 0.453 0.943 4.589 0.535 7.211 0.288 0.849 2.744

PS (Merity et al., 2017) 61.3M 0.970 14.866 0.455 0.946 4.629 0.535 7.000 0.283 0.853 2.718
S + R:20 61.0M 0.985 14.831 0.456 0.928 4.603 0.534 7.085 0.287 0.858 2.730

S + E 61.0M 0.956 14.935 0.457 0.950 4.629 0.530 7.152 0.292 0.864 2.759
S + CE 61.3M 0.954 15.124 0.462 0.956 4.691 0.528 7.304 0.297 0.873 2.815

S + CER:20 61.5M 0.953 14.996 0.463 0.953 4.667 0.527 7.194 0.296 0.871 2.800
S + CEPR:20 62.6M 0.944 15.194 0.476 0.971 4.739 0.525 7.363 0.305 0.878 2.844

S + CEPR:20 + Mi 65.5M 0.943 15.094 0.471 0.976 4.720 0.523 7.340 0.305 0.874 2.840
T5-Base

Softmax (S) 223.5M 0.850 16.410 0.491 0.959 4.948 0.417 10.773 0.386 0.910 3.454
CopyNet (Gu et al., 2016) 224.7M 0.833 16.253 0.486 0.979 4.915 0.416 10.804 0.387 0.915 3.467

PG (See et al., 2017) 224.7M 0.840 16.134 0.485 0.955 4.923 0.417 10.815 0.389 0.915 3.466
PS (Merity et al., 2017) 224.7M 0.836 16.275 0.490 0.978 4.908 0.417 10.838 0.386 0.915 3.473

S + CEPR:20 227.6M 0.821 16.292 0.497 0.990 4.966 0.412 10.778 0.389 0.930 3.477
S + CEPR:20 + Mi 234.1M 0.821 16.457 0.499 0.987 4.997 0.412 10.921 0.391 0.929 3.511

BART Base
Softmax (S) 140.0M 0.874 15.613 0.471 1.028 4.641 0.391 12.944 0.428 0.928 3.833

CopyNet (Gu et al., 2016) 141.2M 0.837 15.675 0.470 1.013 4.685 0.387 12.740 0.424 0.934 3.818
PG (See et al., 2017) 141.2M 0.845 15.485 0.465 1.018 4.669 0.389 12.849 0.425 0.928 3.827

PS (Merity et al., 2017) 141.2M 0.838 15.689 0.468 0.996 4.750 0.387 12.690 0.423 0.926 3.796
S + R:20 140.6M 0.863 15.486 0.468 1.028 4.655 0.389 12.804 0.426 0.941 3.824

S + E 140.6M 0.852 15.412 0.466 1.018 4.652 0.389 12.893 0.428 0.933 3.844
S + CE 141.2M 0.851 15.555 0.471 1.013 4.692 0.388 12.830 0.426 0.934 3.827

S + CER:20 141.8M 0.850 15.550 0.469 1.022 4.672 0.387 12.787 0.423 0.940 3.821
S + CEPR:20 144.1M 0.841 15.778 0.471 1.025 4.724 0.387 12.824 0.423 0.942 3.829

S + CEPR:20 + Mi 150.6M 0.843 15.632 0.472 1.027 4.700 0.387 12.969 0.426 0.939 3.847
BART Large

Softmax (S) 407.3M 0.794 16.386 0.488 1.091 4.654 0.359 15.386 0.476 1.006 4.136
CopyNet (Gu et al., 2016) 409.4M 0.774 16.268 0.485 1.113 4.619 0.358 15.293 0.473 0.995 4.144

PG (See et al., 2017) 409.4M 0.780 16.344 0.486 1.097 4.656 0.358 15.544 0.475 0.995 4.186
PS (Merity et al., 2017) 409.4M 0.774 16.142 0.484 1.099 4.654 0.358 15.547 0.475 1.000 4.227

S + CEPR:20 414.7M 0.780 16.394 0.488 1.073 4.767 0.359 15.466 0.476 0.982 4.240
S + CEPR:20 + Mi 426.2M 0.769 16.085 0.483 1.032 4.811 0.347 15.371 0.475 0.957 4.292

Table 9: Comparison of the summaries generated by different models in the test sets of CNN/DM and XSUM
datasets. We also report the number of parameters of each model. From top to bottom, the four sections are
the results of T5-Small, T5-Base, BART Base, and BART Large. The meaning of the metrics are described in
Appendix B.1. R2 (ROUGE 2-F1) scores are percentages. Within each section, we highlight the smallest loss, the P
Ratio that is closest to 1, and highest numbers in the other metrics.

smaller. Although our methods tend to improve
less in larger language model, we still improve
BART Large very significantly in NIST, CIDEr,
and MAUVE, and Mi seems to become more effec-
tive in BART Large.

The testing set of SAMSUM dataset only has
819 samples, so some metrics such as R1 and R2
are not as stable as other three datasets. PG (See
et al., 2017) for T5-Small and T5-Base perform
much worse in SAMSUM dataset. We hypothesize
that it is because the dialog input in SAMSUM
dataset is very different from the pretraining data
of T5, which makes training PG unstable.

In most datasets and models, the R Ratio from
our method is significantly closer to 1 than the soft-
max baseline, which means the average number of

proper nouns in our summaries is much closer to
the average number of proper nouns in the human-
written summary. For example, in BookSum Para-
graph, we improve its R Ratio by 26%, which par-
tially explains our large MAUVE improvement in
Table 6. Notice that our methods do not always
output more proper nouns. For example, for BART
Base in CNN/DM dataset, our methods reduce the
R Ratio of the softmax baseline, which is larger
than 1. This shows that our methods could learn
when we should copy the proper nouns according
to the training data.

C Method Details

We describe some details of our methods and base-
lines in this section.

12723

BookSum Paragraph SAMSUM
Models Time (ms) Loss (↓) R2 R1P P Ratio NIST Loss (↓) R2 R1P P Ratio NIST

T5-Small
Softmax (S) 30.1 0.654 1.673 0.149 0.589 1.383 0.383 13.806 0.605 0.873 3.945

CopyNet (Gu et al., 2016) 37.0 0.646 1.722 0.183 0.747 1.440 0.381 14.210 0.594 0.809 3.965
PG (See et al., 2017) 43.4 0.648 1.669 0.160 0.631 1.413 0.392 10.673 0.542 0.711 1.665

PS (Merity et al., 2017) 37.6 0.646 1.627 0.177 0.700 1.417 0.383 13.817 0.583 0.794 3.960
S + R:20 32.9 0.652 1.663 0.159 0.677 1.403 0.380 13.728 0.598 0.870 3.995

S + E 33.8 0.645 1.710 0.171 0.673 1.421 0.370 13.557 0.602 0.892 3.906
S + CE 34.0 0.644 1.734 0.173 0.680 1.436 0.368 14.136 0.619 0.892 3.971

S + CER:20 35.8 0.642 1.710 0.174 0.693 1.434 0.367 14.281 0.627 0.911 3.968
S + CEPR:20 38.4 0.641 1.768 0.184 0.725 1.461 0.365 14.451 0.639 0.909 4.034

S + CEPR:20 + Mi 41.7 0.641 1.733 0.185 0.721 1.458 0.365 14.193 0.630 0.922 4.011
T5-Base

Softmax (S) 102.4 0.587 1.876 0.160 0.650 1.443 0.308 17.662 0.672 0.915 4.559
CopyNet (Gu et al., 2016) 110.3 0.582 1.867 0.187 0.744 1.481 0.307 17.556 0.678 0.901 4.544

PG (See et al., 2017) 117.7 0.585 1.832 0.159 0.647 1.434 0.317 14.649 0.611 0.740 1.870
PS (Merity et al., 2017) 112.0 0.582 1.899 0.176 0.718 1.465 0.308 17.502 0.660 0.897 4.453

S + CEPR:20 115.3 0.580 1.842 0.191 0.771 1.482 0.300 18.082 0.677 0.950 4.553
S + CEPR:20 + Mi 116.3 0.584 1.860 0.187 0.770 1.477 0.301 17.617 0.677 0.938 4.521

BART Base
Softmax (S) 46.6 0.624 1.807 0.141 0.656 1.425 0.327 19.379 0.672 0.995 4.546

CopyNet (Gu et al., 2016) 57.8 0.613 1.866 0.166 0.728 1.454 0.326 18.227 0.662 0.944 4.535
PG (See et al., 2017) 64.8 0.624 1.864 0.140 0.668 1.428 0.328 18.791 0.673 0.963 4.537

PS (Merity et al., 2017) 57.9 0.613 1.867 0.163 0.723 1.461 0.324 18.367 0.674 0.951 4.573
S + R:20 50.5 0.627 1.807 0.154 0.720 1.430 0.326 19.022 0.671 0.971 4.608

S + E 54.2 0.620 1.825 0.150 0.688 1.429 0.324 18.902 0.680 0.970 4.501
S + CE 56.5 0.619 1.847 0.153 0.685 1.441 0.323 18.739 0.672 0.949 4.537

S + CER:20 57.2 0.618 1.834 0.156 0.727 1.444 0.321 19.267 0.678 0.981 4.561
S + CEPR:20 58.8 0.618 1.865 0.157 0.742 1.457 0.321 18.631 0.670 0.992 4.516

S + CEPR:20 + Mi 63.2 0.620 1.827 0.158 0.733 1.442 0.322 18.681 0.670 0.987 4.439
BART Large

Softmax (S) 143.5 0.554 2.094 0.171 0.722 1.472 0.303 20.848 0.711 1.006 4.621
CopyNet (Gu et al., 2016) 168.9 0.548 2.087 0.184 0.762 1.490 0.298 21.703 0.708 1.026 4.727

PG (See et al., 2017) 178.3 0.731 2.090 0.174 0.725 1.479 0.301 21.428 0.706 1.051 4.604
PS (Merity et al., 2017) 168.5 0.726 2.083 0.184 0.760 1.493 0.300 22.144 0.710 1.036 4.779

S + CEPR:20 169.9 0.552 2.069 0.178 0.763 1.505 0.302 21.326 0.691 1.017 4.595
S + CEPR:20 + Mi 177.4 0.544 2.024 0.175 0.737 1.500 0.294 21.244 0.713 0.959 4.746

Table 10: Comparison of the summaries generated by different models in the test sets of BookSum and SAMSUM
datasets. We also report the inference time of one samples. The meaning of the metrics are described in Appendix B.1.
R2 (ROUGE 2-F1) scores are percentages. Within each section, we highlight the smallest loss, the P Ratio that is
closest to 1, and highest numbers in the other metrics.

C.1 Proposed Methods
To allow us to start from existing LMs that are
pretrained using softmax, we keep the modified
softmax layer initially working almost the same as
the original softmax layer. We initialize the linear
transformation weights of Lf

PD(), L
f
LD(), L

f
PE(),

and Lf
LE() as 10−10 · I. The other linear weights

Lf
. () are initialized as the identity matrix I.
In the local decoder embedding method Softmax

+ P + Mi, the initialization would give the 0 logit
to all context words. To solve the issue, we revise
Equation 3 a little and compute LogitP (x, ct) by

{
fT
ct,V

wx + fT
ct,PDfx,ct,LD if x ∈ ct

fT
ct,V

wx O/W
. (7)

That is, we initially rely on the original softmax
layer to compute all the logits and let the term

fT
ct,PDfx,ct,LD gradually influences the logits of

the context words.
In MoS + CPR:20,100 + Mi, our proposed

method only revises the logit in one of the soft-
max.

C.2 Pointer Network Baselines

The pointer networks are originally designed for
RNN, so we are unable to use exactly the same
formula proposed in the papers. Nevertheless, we
try our best to adapt the pointer networks for the
transformer encoder while keeping the gist of the
formulas. In all methods, to let the results more
comparable to our methods, we use fct,PE and
Lf
LE to determine the probability of copying the

words from the context, and use fT
ct,V

wx to deter-
mine the probability of generating all the words in

12724

the vocabulary.
In CopyNet (Gu et al., 2016), we compute the

probability of outputting the word x as

Prob(x|I, ct) ∝ exp
(
fT
ct,V wx

)

+

|I|∑

j=1

1Ij=xexp
(
fT
ct,PEL

f
LE(h

M
Ij) + b

)
. (8)

Notice that CopyNet needs to sum up the expo-
nential of dot products, which often causes over-
flow problems in GPT-2. We can set b to be a large
negative value initially to solve the problem, but
its perplexity is much worse than the other two
pointer network variants. Thus, we choose to skip
the CopyNet in the GPT-2 experiments.

In Pointer Generator (See et al., 2017), we com-
pute the probability of x using

Prob(x|I, ct) = pgen
exp

(
fT
ct,V

wx

)

ZV

+(1− pgen)

|I|∑

j=1

1Ij=xPE(j|I, ct), (9)

where PE(j|I, ct) =
exp

(
vT tanh(fct,PE+Lf

LE(hM
Ij

)+b)
)

ZE
, pgen =

σ(qThM
ct + bptr), the normalization term

ZV =
∑

x∈V exp
(
fT
ct,V

wx

)
, and ZE =

|I|∑
j=1

exp
(
vT tanh(fct,PE + Lf

LE(h
M
Ij
) + b)

)
.

We skip the coverage mechanism in the pointer
generator paper to make it more comparable to
other methods. In T5 experiments, its training loss
is sometimes very large, so we set bptr as 3 initially
to keep the pgen close to 1 (i.e., turn pointer part off
initially). In other experiments, we set bptr = 0.

In Pointer Sentinel (Merity et al., 2017), the prob-
ability of x is computed by

Prob(x|I, ct) = g
exp

(
fT
ct,V wx

)

ZV

+

|I|∑

j=1

1Ij=x

exp
(
fT
ct,PE tanh(Lf

LE(h
M
Ij)) + b

)

Zp
, (10)

g =
exp(qThM

ct
)

Zp
, and Zp = exp(qThM

ct) +
∑|I|

j=1 exp
(
fT
ct,PE tanh(Lf

LE(h
M
Ij
)) + b

)
.

In our experiments, we find that the pointer net-
work variants usually have similar performance
(except that PG sometimes performs much worse

in summarization due to some training stability
issues). This suggests that the differences in the
pointer network variants often do not influence the
performance significantly, which justifies our sim-
plification of the formulas in the original paper
and supports our conclusion that the improvement
comes from breaking the softmax bottleneck.

Notice that in the above pointer network variants,
the pointer part can only increase the probability
of the context words from the generator part. As a
result, it cannot alleviate the repetition problem in
the last example of Table 5.

C.3 Word-by-word Reranker Baseline

We illustrate our word-by-word reranker (wbwR)
in Figure 7. The method has two stages. In the first
stage, we compute the logits using the projected
hidden state fct,V and retrieve the top k words. At
the second stage, we append the top k words to the
input context along with the hidden state fct,R for
reranking the context words.3 We use the same po-
sitional embeddings for all candidates to encourage
the model to change the ranking of the words. Next,
we use the hidden states corresponding to the can-
didates to compute their local word embeddings as
fx,ct,LD. Finally, we re-estimate the probabilities
of top k words by

{
fT
ct,V

wx + fT
ct,R

fx,ct,LD if x ∈ W (k)

fT
ct,V

wx O/W
. (11)

To improve the quality of our top k candidates,
the final loss is the addition of the wbwR loss at
the second stage and the loss of the original soft-
max layer that only uses the logits from fT

ct,V
wx

at the first stage. When we combine the wbwR
with Softmax + CPR:20,100 + Mi, we simply use
Softmax + CPR:20,100 + Mi at the first stage and
use the wbwR to overwrite the logits of Softmax +
CPR:20,100 + Mi at the second stage.

Using this method, we can update the embed-
dings of the words that are not in the context and
allow the candidates to interact with the input con-
text to determine their probabilities as the classic
two-stage reranker while keeping the model size
roughly unchanged. Nevertheless, the method can
only change the probability of the top k words and
its computational overhead and memory require-
ment prevents us from using a very large k.

3The motivation is helping GPT-2 to output the local word
embedding of a candidate closer to the fct,R if GPT-2 wants
to increase the probability of the candidate.

12725

Global Word Embeddings

 

GPT-2 encoder……
After debating whether to bow to the king or the woman first, the jester decided on the

Sum

fct,V

Softmax

qct

Top k words (king, queen, woman, …)

<|endoftext|> king, queen, woman, …

fct,R

Local Word
Embeddings

fx,ct,LD

fct,R

Top k Top k

Figure 7: Word-by-word reranker architecture.

Figure 8: Our efficient implementation of word-by-word
reranker. Ti is tokens and ki.j is top-k tokens for Ti.

Unlike the standard GPT-2, we cannot get the
probability of all positions in one forward pass
because the input contexts are different when com-
puting the probability at each position and the input
of the second stage reranker depends on the results
of the previous forward pass at the first stage. To
speed up, we reuse the computed hidden states and
batchify the forward passes.

In our implementation, we first get the top k can-
didates corresponding to all tokens in the stage1
(just original GPT2) as the input of stage2 reranker.
To avoid recalculating the hidden states of the con-
text at stage2, we store the hidden states using the
past-key-value in Hugging Face and only compute
the hidden states corresponding to the top k candi-

date tokens at stage2.
We divide the computation of the whole input

sequence into several blocks as shown in Figure
8. In each block, we input a batch containing the
last few tokens and top k candidates into the GPT-2
while reusing the hidden states of their common
contexts from stage1. In this way, we can increase
parallelism by increasing the block size if the GPU
memory allows it.

Even though we spent substantial effort on opti-
mizing the wbwR, the method is still too slow to be
practically useful. Even if we use four RTX 8000
(a faster GPU with a larger memory), our wbwR
implementation is still around 10 times slower than
our proposed Softmax + CPR:20,100 + Mi that
uses only one RTX 2080.

D Experiment Details

For the reproducibility, we provide some
experimental configuration in this sec-
tion. Please see our codes (https:
//github.com/iesl/Softmax-CPR) for more
details.

D.1 GPT-2 Experimental Details

We mostly follow the experimental setup Chang
and McCallum (2022) except that we share the
input and output word embeddings as in the stan-
dard GPT-2 models. As in Chang and McCallum
(2022), we use the last 2% of the corpus as the test
set and the 2% before that as the validation set.4 In

4We do not shuffle the corpus before splitting the datasets.
We found that our improvement could be even larger if we
shuffle the corpus to let the training data distribution closer to

12726

https://github.com/iesl/Softmax-CPR
https://github.com/iesl/Softmax-CPR

Train Val Test

CNN/DM 287113 13368 11490

XSUM 204045 11332 11334

BookSum Paragraph 210931 27222 26025

SAMSUM 14732 818 819

Table 11: Dataset size of our four summarization tasks.

the word-by-word reranking experiment, we only
use first 100k tokens in validation set to speed up
the evaluation. To show that our model could be
added to existing pretrained models, we continue
training the pretrained GPT-2. For GPT-2 Small,
we train for 1 epoch, and for GPT-2 Medium, we
train for 0.4 epoch. We find that the performance
improvements usually do not change significantly
after training for 0.1 epoch.

As in Chang and McCallum (2022), we set the
sequence length as 200, batch size as 4, and learn-
ing rate for AdamW as 1e− 5. Our methods only
have two hyperparameters, k1 and k2, and we try
values 20, 100, 200, 500 and select 20 and 100
using the validation data.

In the text completion experiment, we generate
360k continuations with a length of 50 given the
prompts in Wikipedia. We first sample 40k se-
quences in the test data of Wikipedia 2021. Next,
we use the first 20, 70, and 120 words in the se-
quence as our context and let the different models
generate the next 50 words as continuations. The
references are the actual next 50 words. All the
methods use Top-K sampling and K=5.

D.2 Summarization Experimental Details

BookSum dataset (Kryściński et al., 2021) includes
three summarization tasks: Summarizing a book, a
chapter, and a paragraph. We test our methods us-
ing the paragraph summarization task due to the in-
put length restriction of BART and T5. The dataset
is constructed by automatically aligning the para-
graphs in a chapter with the sentences in a chapter
summary, which introduces noise to the dataset.
Similarly, XSUM uses the first sentence in news in-
stead of manually-written summary as the ground
truth reference. The relatively noisier datasets such
as XSUM and BookSum Paragraph, and smaller
dataset like SAMSUM could test the stability of the
methods. The sizes of the summarization datasets
could be found in Table 11.

We conduct the summarization experiments

the testing data distribution.

based on a summarization example code from Hug-
ging Face5. Most of our hyperparameters use the
default value in the code. In our preliminary study,
our improvement is not sensitive to the hyperparam-
eter choice (e.g., the improvement gap is similar
across different numbers of epochs). Thus, we do
not tune the hyperparameters for each method or
for each dataset unless we cannot reach a low train-
ing loss at the end.

In CNN/DM, XSUM, and SAMSUM datasets,
We train models for 3 epochs. In BookSum
datasets, We trained models for 5 epochs.6 The
learning rate is set to be 5e− 05 except for BART
Large model in BookSum, where we use 1e− 05
to stablize the training of all methods.

All the experiments use batch size 8 and AdamW
with betas=(0.9,0.999), epsilon=1e − 06, weight-
decay=1.2e − 6. During the generation, we used
Top-K sampling (K=10) as our decoding method.
The maximum summary length is set as 128 and
maximum input length is 1024. We use warmup for
the first 1000 steps in all the experiments, which al-
lows us to change the architecture of T5 and BART
more significantly (e.g., using Mi) without having
a training stability issue.

The k in the reranker partition and the block
size of multiple input hidden states (Mi) is
coarsely tuned based on validation performance of
CNN/DM. Unlike considering the top 100 words
in the open-end text completion using GPT-2, we
find that reranking the top 20 words is sufficient for
our summarization models, probably because next
words are easier to predict in the summarization
task.

For our evaluation metrics, we use the default
setting for ROUGE7 and set use_stemmer=True.
When reporting the ROUGE scores, we follow the
conventions to show their percentages. We use
the default setting for MAUVE8, CIDER9, NIST10.
For MAUVE, we insert a new line symbol after
every sentence as in the original Hugging Face

5https://github.com/huggingface/transformers/
blob/main/examples/pytorch/summarization/run_
summarization.py

6The BookSum Paragraph is noisier, so we train longer to
be safe. And we find that different numbers of epochs do not
change the trend of the results.

7https://huggingface.co/spaces/
evaluate-metric/rouge

8https://huggingface.co/spaces/
evaluate-metric/mauve

9https://github.com/vrama91/cider
10https://www.nltk.org/api/nltk

12727

https://github.com/huggingface/transformers/blob/main/examples/pytorch/summarization/run_summarization.py
https://github.com/huggingface/transformers/blob/main/examples/pytorch/summarization/run_summarization.py
https://github.com/huggingface/transformers/blob/main/examples/pytorch/summarization/run_summarization.py
https://huggingface.co/spaces/evaluate-metric/rouge
https://huggingface.co/spaces/evaluate-metric/rouge
https://huggingface.co/spaces/evaluate-metric/mauve
https://huggingface.co/spaces/evaluate-metric/mauve
https://github.com/vrama91/cider
https://www.nltk.org/api/nltk

summarization example code. For factCC metric11,
we use the author-provided checkpoint to evalu-
ate CNN/DM results since factCC is originally
trained in CNN/DM. For the other three summa-
rization datasets, we follow the author’s codes to
constructed positive and negative data and contin-
ued training the CNN/DM factCC model on each
dataset with one epoch respectively. Then we eval-
uate different summarization tasks with the corre-
sponding factCC checkpoint.

D.3 Computational Environment and
Software

We implement our methods by revising the Hug-
ging Face library (Wolf et al., 2020). From Hug-
ging Face, we load the pretrained LMs including
GPT-2 Small12, GPT-2 Medium13, T5-Small14, T5-
Base15, BART Base16, and BART Large17. We use
SpaCy (Honnibal et al., 2020) to detect the proper
nouns.

For GPT-2 Medium, T5-Base, and BART Large,
we use NVIDIA GeForce RTX 8000 to train
the model and for other smaller models, we use
NVIDIA GeForce RTX 2080. Most of experiments
could be done within one week. In all the inference
time experiments, we use NVIDIA GeForce GTX
TITAN X, batch size 4 for GPT-2, and batch size 8
for BART and T5.

11https://github.com/salesforce/factCC
12https://huggingface.co/gpt2
13https://huggingface.co/gpt2-medium
14https://huggingface.co/t5-small
15https://huggingface.co/t5-base
16https://huggingface.co/facebook/bart-base
17https://huggingface.co/facebook/bart-large

12728

https://github.com/salesforce/factCC
https://huggingface.co/gpt2
https://huggingface.co/gpt2-medium
https://huggingface.co/t5-small
https://huggingface.co/t5-base
https://huggingface.co/facebook/bart-base
https://huggingface.co/facebook/bart-large

ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

section 8

�3 A2. Did you discuss any potential risks of your work?
section 9

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
section 1

�3 A4. Have you used AI writing assistants when working on this paper?
Grammerly

B �3 Did you use or create scientific artifacts?
section 4

�3 B1. Did you cite the creators of artifacts you used?
section 4

�7 B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
All the datasets and language models in the papers could be used for research purpose

� B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
Not applicable. Left blank.

�7 B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
Discussion of the privacy issues and offensive content in the language models is out of the scope of
this paper

�7 B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
People can check those information in the paper that releases the datasets

�3 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
section D

C �3 Did you run computational experiments?
section 4 and section B

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
Table 2, 8, and 9; section D.3

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

12729

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
section D

�7 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
For GPT-2 experiments, the perplexity on a large test set is known to have a very small variance.
For summarization experiments, we provide the results of lots of different metrics and most of the
metrics show the consistent trend. Due to sufficiently large test set, the papers in two domains
(self-supervised language modeling and summarization) often do not report their error bars.

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
section D

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

12730

