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Abstract

The opaqueness of deep NLP models has moti-
vated efforts to explain how deep models pre-
dict. Recently, work has introduced hierarchi-
cal attribution explanations, which calculate
attribution scores for compositional text hier-
archically to capture compositional semantics.
Existing work on hierarchical attributions tends
to limit the text groups to a continuous text
span, which we call the connecting rule. While
easy for humans to read, limiting the attribu-
tion unit to a continuous span might lose im-
portant long-distance feature interactions for
reflecting model predictions. In this work, we
introduce a novel strategy for capturing feature
interactions and employ it to build hierarchi-
cal explanations without the connecting rule.
The proposed method can convert ubiquitous
non-hierarchical explanations (e.g., LIME) into
their corresponding hierarchical versions. Ex-
perimental results show the effectiveness of our
approach in building high-quality hierarchical
explanations.

1 Introduction

The opaqueness of deep natural language process-
ing (NLP) models has increased along with their
power (Doshi-Velez and Kim, 2017), which has
prompted efforts to explain how these “black-box”
models work (Sundararajan et al., 2017; Belinkov
and Glass, 2019). This goal is usually approached
with attribution method, which assesses the influ-
ence of inputs on model predictions (Ribeiro et al.,
2016; Sundararajan et al., 2017; Chen et al., 2018)

Prior lines of work on attribution explanations
usually calculate attribution scores for predefined
text granularity, such as word, phrase, or sentence.
Recently, work has introduced the new idea of hi-
erarchical attribution, which calculates attribution
scores for compositional text hierarchically to cap-
ture more information for reflecting model predic-
tions (Singh et al., 2018; Tsang et al., 2018; Jin
et al., 2019; Chen et al., 2020) As shown in Fig-

ure 1, hierarchical attribution produces a hierarchi-
cal composition of words, and provides attribution
scores for every text group. By providing composi-
tional semantics, hierarchical attribution can give
users a better understanding of the model decision-
making process. (Singh et al., 2018).

Figure 1: An example of hierarchical attribution from
Chen et al. (2020).

However, as illustrated in Figure 1, recent work
(Singh et al., 2018; Jin et al., 2019; Chen et al.,
2020) uses continuous text to build hierarchical
attributions, which we call the connecting rule.
While consistent with human reading habits, using
the connecting rule as an additional prior might lose
important long-distance compositional semantics.
The concerns are summarized as follows:

First, modern NLP models such as BERT (De-
vlin et al., 2019) and GPT (Radford et al., 2018,
2019) are almost all transformer-based, which use
self-attention mechanisms (Vaswani et al., 2017) to
capture feature interactions. Since all interactions
are calculated in parallel in self-attention mech-
anism, the connecting rule that only considering
neighboring text is incompatible with the basic op-
eration principle of these NLP models.

Second, unlike the example in Figure 1, NLP
tasks often require joint reasoning of different parts
of the input text (Chowdhary, 2020). For example,
Figure 2(a) shows an example of natural language
interface (NLI) task1, in which ‘has a’ and ‘avail-

1NLI is a task requiring the model to predict whether the
premise entails the hypothesis, contradicts it, or is neutral.
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(a) Natural Language Inference example.

(b) Sentiment Classification example.

Figure 2: Examples of hierarchical explanations which
need long-distance compositional semantics. ‘...’ repre-
sent omitted words for clear visualization.

able’ are the key compositional semantics to make
the prediction: entailment. However, the connect-
ing rule cannot highlight the compositional effect
between them because they are not adjacent. Even
in relatively simple sentiment classification task,
capturing long-distance compositional effect is also
necessary. As shown in Figure 2(b), ‘courage, is
inspiring’ is an important combination but not ad-
jacent.

In this work, we introduce a simple but effec-
tive method for generating hierarchical explana-
tions without the connecting rule. Moreover, we
introduce a novel strategy for detecting feature
interactions in order to capture compositional se-
mantics. Unlike earlier hierarchical attribution ap-
proaches, which use specific algorithms to calcu-
late attribution scores, the proposed method can
convert ubiquitous non-hierarchical explanations
(e.g., LIME) into their corresponding hierarchical
versions. We build systems based on two clas-
sic non-hierarchical methods: LOO (Lipton, 2018)
and LIME (Ribeiro et al., 2016), and the experi-
mental results show that both systems significantly
outperform existing methods. Furthermore, the ab-
lation experiment additionally reveals detrimental
effects of the connecting rule on the construction
of hierarchical explanations. Our implementation
and genenerated explanations are available at an
anonymous website: https://github.com/
juyiming/HE_examples.

2 Method

This section explains the strategy for feature in-
teraction detecting and the algorithm on building
hierarchical explanations.

Figure 3: An example of calculating text interaction.

2.1 Detecting Feature Interaction
The structure of hierarchical explanations should be
informative enough to capture meaningful feature
interactions while displaying a sufficiently small
subset of all text groups (Singh et al., 2018). Exist-
ing work uses different methods to calculate feature
interactions for building hierarchical explanations.
For example, Jin et al. (2019) uses multiplicative
interactions as feature interaction and Chen et al.
(2020) uses Shapley interaction index (Fujimoto
et al., 2006).

Unlike previous methods, our approach quanti-
fies feature interaction based on the chosen non-
hierarchical method. Specifically, given an attri-
bution algorithm Algo, our method measures the
influence of one text group on the attribution score
of another one. The interaction score between text
group gi and gj can be calculate as follows:

ϕij = abs(Algo(gi)−Algo−gj (gi))

+ abs(Algo(gj)−Algo−gi(gj)),
(1)

where Algo−gj (gi) denotes the attribuition score
of gi with gj be marginalized, abs stands for taking
the absolute value.

Figure 3 shows an example of feature interaction
detecting. Non-hierarchical method LIME gives
the word ‘Buffet’ a high attribution score, indicat-
ing that it is important for model prediction. This
score, however, sharply declines after the word ‘buf-
fet’ is marginalized, indicating that ‘buffet’ has a
strong impact on ‘Buffet’ under LIME. Note that in
our method, different non-hierarchical attribution
methods may lead to different hierarchical struc-
tures. Since the calculation principles and even the
meaning of scores vary in different attribution meth-
ods, this property is more reasonable than building
the same hierarchical structures for all attribution
methods.
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Method/Dataset
SST-2 MNLI

avgAOPCpad AOPCdel AOPCpad AOPCdel

10% 20% 10% 20% 10% 20% 10% 20%

LOO (Lipton, 2018) 34.8 43.3 34.6 42.0 64.5 65.8 66.5 68.2 52.5
L-Shapley (Chen et al., 2018) 31.9 41.0 38.8 45.6 62.1 67.4 69.2 71.8 53.5
LIME (Ribeiro et al., 2016) 39.3 56.6 40.3 55.8 73.4 79.3 76.6 78.9 62.5
ACD♢ (Singh et al., 2018) 31.9 38.3 31.1 39.0 60.5 61.4 59.5 61.1 47.9
HEDGE♢ (Chen et al., 2020) 34.3 46.7 34.0 44.1 68.2 70.9 68.3 70.9 54.7

HELOO
♢ 43.9 59.0 42.9 56.3 76.3 78.5 74.7 76.8 63.6

HELIME
♢ 42.0 62.4 44.1 61.9 80.1 86.6 83.2 87.3 68.5

Table 1: AOPC(10) and AOPC(20) scores of different attribution methods in on the SST and MNLI datasets. ♢
refers to method with hierarchical structure. del and pad refer to different modification strategies in AOPC.

Algorithm 1 Generating Hierarchical Structures

Input: sample text X with length n
Initialization: G0 = {{x1} , {x2} , ..., {xn}}
Initialization: is HX = {G0}
for t = 1, ..., n− 1 do

i, j = argmaxϕ ( gi, gj |Gt−1 )
Gt ← (Gt−1 \ {gi, gj}) ∪ {gi ∪ gj}
HX .add(Gt)

end for
Output: HX

Feature marginalization. The criterion of select-
ing the feature marginalization approach is to avoid
undermining the chosen attribution method. For
example, LOO assigns attributions by the probabil-
ity change on the predicted class after erasing the
target text, so we use erasing as the marginalization
method. For LIME, which estimates attribution
scores by learning a linear approximation, we ig-
nore the sampling points with the target feature
during linear fitting.

2.2 Building Hierarchical Explanations

Based on the non-hierarchical attribution algorithm
Algo, our method builds the hierarchical structure
of input text and calculates attribution scores for
every text group. Algorithm 1 describes the de-
tail procedure, which recursively chooses two text
groups with strongest interaction and merges them
into a larger one. X = (x1, ..., xn) denotes model
input with n words; g denotes a text group contain-
ing a set of words in X; Gt denotes the collection
of all text groups for the current step t; HX denotes
the hierarchical structure of X . G0 is initialized
with each x as a independent text group and HX is

Figure 4: An example of visualization.

initialized as {G0}. Then, at each step, text groups
with the highest interaction score from Gt−1 are
merged as on, and Gt is add into HX . After n− 1
steps, all words in X will be merged in one group,
and HX can constitute the final hierarchical struc-
ture of the input text.

2.3 Visualization

Clear visualization is necessary for human read-
ability. Since text groups in our hierarchical ex-
planations are not continuous spans, the generated
explanations cannot be visualized as a tree struc-
ture as shown in Figure 1. To keep clear and in-
formative, the visualization only shows the newly
generated unit and its attribution score at each layer.
As shown in Figure 4, the bottom row shows the at-
tribution score with each word as a text group (non-
hierarchical attributions); The second row indicates
{‘Buffet’} and {‘buffet’} are merged togather as one
text group: {‘Buffet, buffet’}; Similarly, the fourth
row indicates the {‘has, a’} and {‘availiable’} are
merged togather as one text group: {‘availiable,
has, a’}.

3 Experiment

We build systems with Leave-one-out (LOO) (Lip-
ton, 2018) and LIME (Ribeiro et al., 2016) as the
basic attribution algorithms, denoted as HEloo and
HElime. To reduce processing costs, we limit the
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maximum number of the hierarchical layers to ten
in HELIME .

3.1 Datasets and Models.

We adopt two text-classification datasets: binary
version of Stanford Sentiment Treebank (SST-2)
(Socher et al., 2013) and MNLI tasks of the GLUE
benchmark (Wang et al., 2019). We use the dev set
on SST-2 and a subset with 1,000 samples on MNLI
(the first 500 dev-matched samples and the first 500
dev-mismatched samples) for evaluation. We build
target models with BERTbase (Devlin et al., 2019)
as encoder, achieving 91.7% (SST-2) and 83.9%
(MNLI) accuracy.

3.2 Evaluation Metrics.

Following previous work, we use the area over the
perturbation curve (AOPC) to perform quantita-
tive evaluation. By modifying the top k% words,
AOPC calculates the average change in the predic-
tion probability on the predicted class as follows:

AOPC(K) =
1

N

N∑

i=1

{
p(ŷ|xi)− p(ŷ|x̃(k)i )

}
,

where p(ŷ|) is the probability on the predicted class,
x̃
(k)
i is modified sample, and N is the number of

examples,. Higher AOPCs is better, which means
that the words chosen by attribution scores are more
important2.

We evaluate with two modification strategies
del and pad. del modifies the words by deleting
them from the original text directly while pad mod-
ifies the words by replacing them with <pad> to-
kens. For hierarchical explanations, we gradually
select words to be modified according to attribution
scores. If the word number in a text group exceed
the number of remaining words to be modified , this
text group will be ignored. The detailed algorithm
are described in the appendix.

3.3 Results Compared to Other Methods

As shown in Table 1, we compare our approach
with a number of competitive baselines. Except
for LIME, none of other baselines (hierarchical
or not) shows a obvious improvement over LOO.

2Note that because there may be multiple words in a text
group in hierarchical explanations, it is impossible to increase
the number of perturbed words one at a time until reaching
k%. Thus, we directly calculate the change in prediction after
perturbing top k% words, which is the same as Chen et al.
(2020).

Figure 5: Results of Ablation Experiment.

In contrast, our LOO-based hierarchical explana-
tions outperform LOO on average by more than
11%. Moreover, our LIME-based hierarchical ex-
planations outperform LIME by 6% on average and
achieves the best performance. The experimental
results in Table 1 demonstrate the high quality of
the generated explanations and the effectiveness of
our method in converting non-hierarchical explana-
tions to their corresponding versions.

3.4 Results of Ablation Experiment

We conduct an ablation experiment with two spe-
cial baselines modified from HELOO: HE-random
and HE-adjacent. HE-random merges text groups
randomly in each layer; HE-adjacent merges adja-
cent text groups with the strongest interaction.

As shown in Figure 5, both adjacent and pro-
posed baselines outperform non-hierarchical and
random baselines, demonstrating our approach’s
effectiveness in building hierarchical explanations.
Moreover, HE-proposed outperforms HE-adjacent
consistently on two datasets, demonstrating the
detrimental effects of the connecting rule on
generating hierarchical explanations. Note that
HE-random on SST-2 slightly outperforms non-
hierarchical baseline but has almost no improve-
ment on MNLI. We hypothesize that this is be-
cause the input text on SST-2 is relatively short, and
thus randomly combined text groups have greater
chances of containing meaningful compositional
semantics.
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4 Conclusion

In this work, we introduce an effective method for
generating hierarchical explanations without the
connecting rule, in which a novel strategy is used
for detecting feature interactions. The proposed
method can convert ubiquitous non-hierarchical
explanations into their corresponding hierarchical
versions. We build systems based on LOO and
LIME. The experimental results demonstrate the
effectiveness of proposed approach.

Limitation

Since there is currently no standard evaluation
metric for evaluating post-hoc explanations, we
use AOPC(k) as the quantitative evaluation met-
ric, which is widely used in the research field.
However, because different modification strategies
might lead to different evaluation results, AOPC(k)
is not strictly faithful for evaluation attribution ex-
planations (Ju et al., 2022), Thus, we evaluate with
two modification strategies del and pad and we
didn’t introduce new strategies to get attribution
scores, which avoid the risk of unfair comparisons
due to customized modification strategies men-
tioned in Ju et al. (2022). Even so, there is a risk
of unfair comparisons because the AOPC(k) tends
to give higher scores to erasure-based explanation
methods such as LOO. We don’t conduct human
evaluation because we believe human evaluation
needs a very large scale to guarantee objective and
stable, of which we can afford the cost. Thus, we
post visualizations of all explanations in our exper-
iment to demonstrate the effectiveness of our ap-
proach (https://github.com/juyiming/
HE_examples).
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Appendix

A Experiment Details

Our implementations are based on the Hugging-
face’s transformer model hub3 and the official code
repository of LIME4 We use the default model
architectures in transformer model hub for corre-
sponding tasks. We use the special token <pad> to
replace the erased text in LOO. For LIME, we use
a kernel width of 25 and sample 2000 points per
instance, which is the same as settings of the orig-
inal paper of LIME. For each dataset, we use one

3https://github.com/huggingface/
transformers

4https://github.com/marcotcr/lime

well-trained model for experiments. For methods
that require sampling, such as LIME and HEDGE,
we conduct experiments three times with different
random seeds and report the average results.

Different sampling result will lead to instabil-
ity in LIME attribution scores. Thus, in HELIME ,
when calculating the attribution scores with text
group g be marginalized, we will not conduct new
sampling, but select samples that does not contain
g among the existing sample points. Although this
strategy will reduce the sampling points participat-
ing in the linear approximation by about half, it
ensures the stability of the attribution scores when
calculating interaction scores for HELIME , which
is important for

B Experimental Computation Complexity

LOO. For LOO, calculate an interaction score be-
tween to text groups is comparable to three forward
pass through the network. For the step 1, we need
to calculate the interaction score between each two
groups. In other step, we need to calculate the in-
teraction scores between the new generated group
and other groups. In total, we need to calculate
C2
n + (n − 2)+, ..., 1 = O(n2) times, where n

refers to the sequence length of the input text. Note
that through record the model prediction during
every iteration, the computational complexity can
be reduced by about half.

LIME. As described in Section A, we will not
conduct new sampling for calculating attribution
scores after feature marginalization. To quantifying
feature interactions in each layer, we need to per-
form n linear approximations with n input features,
where n refers to the sequence length of the input
text.

C Evaluation

For hierarchical explanations, we gradually se-
lect words to be modified according to attribution
scores. As shown in Algorithm 2, we first deter-
mine the number of words that need to be modified,
denoted as k. The target set S is the word set to
be modified and is initialized as an empty set. Text
groups in hierarchical explanations G is sorted ac-
cording to their attribution scores score from high
to low. Then, text groups in G is added to S in
order until the number of words in S equals k. If
the number of words in a text group is larger than
the number of needed words (k subtracts the num-
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Algorithm 2 Evaluation Algorithm For Hierarchi-
cal Explanations

Input: the modified word number k, text groups
G, attribution scores score
Initialize S = {}
Sort(G) according to score
for each text group g ∈ G do

if size(g) <= k − size(S) then
S = S

⋃
g

end if
end for

Output: S

ber of words in S), we abandon this text group
to guarantee that the number of words in S does
not exceed k. For HELIME , since the attribution
scores at different levels come from multiple linear
fitting results, the attribution scores at different lev-
els can not be compare to each other. We evaluate
the aopc score of each layer separately and take the
best result for HELIME . For fair comparison, the
best evaluation result of ten times experiments are
selected for non-hierarchical LIME.

D Visualization

We provide visualizations of all evaluated examples
(3,742 samples) at an anonymous website: https:
//github.com/juyiming/HE_examples.

Note that the maximum number of the hierarchical
layers in HELIME is limited to ten. Moreover,
for the convenience of reading, we also select
some short-length examples and put them in
the appendix, where positive attribution score
indicates supporting the model prediction while
negative attribution score indicates opposing
model prediction. The visualization of hierarchical
attributions show that the proposed approach can
not only get obvious improvement on quantitative
evaluation but also are easy to read for humans.

(a) HELIME example.

(b) HELOO example.

Figure 6: An example of visualization

12606

https://github.com/juyiming/HE_examples
https://github.com/juyiming/HE_examples


(a) HELIME example.

(b) HELOO example.

Figure 7: An example of visualization

(a) HELIME example.

(b) HELOO example.

Figure 8: An example of visualization
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(a) HELIME example.

(b) HELOO example.

Figure 9: An example of visualization

(a) HELIME example.

(b) HELOO example.

Figure 10: An example of visualization
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(a) HELIME example.

(b) HELOO example.

Figure 11: An example of visualization
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