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Abstract

In few-shot settings, fully conveying the se-
mantic information of dialogue act is a cru-
cial challenge for Natural Language Genera-
tion (NLG) in task-oriented dialogue systems.
It is noteworthy that NLG and Spoken Lan-
guage Understanding (SLU) form a natural
dual problem pair. If the SLU module can suc-
cessfully restore the generated response by the
NLG module to the corresponding dialogue
act, this would demonstrate that the response
is effectively conveying the semantic informa-
tion of the dialogue act. Based on this idea, a
novel Dual Supervised Pre-trained Model for a
few-shot Natural Language Generation (DSPM-
NLG) is proposed to regularize the pre-training
process. We adopt a joint model with a dual
supervised framework to learn the dual corre-
lation between NLG and SLU from a proba-
bilistic perspective. In addition, a slot-masked
strategy is designed to enable the model to fo-
cus more effectively on the key slot-value pairs.
DSPM-NLG is continuously trained on pub-
licly available and large-scale labeled data, al-
lowing it to gain a thorough understanding of
the duality between the two tasks and to en-
hance the pre-trained model’s ability for se-
mantic control and generalization. Experimen-
tal results illustrate that our proposed model
demonstrates exceptional performance on the
few-shot benchmark dataset, outperforming the
previous state-of-the-art results.

1 Introduction

Task-oriented dialogue systems have been demon-
strated to be effective in aiding users accomplish
various tasks in multiple domains, such as airline
ticket booking, restaurant and hotel reservations.

∗Contribution during the internship at Institute for Info-
comm Research.

†Corresponding author.

 Intent: Confirm

Dialogue Act

Slot-value pairs:

[price: inexpensive, 

area = center]

System Response

Just make sure, you are 

looking for an inexpensive 

hotel in the center area.
Spoken Language Understanding

Natural Language Generation

Figure 1: NLG and SLU are two complementary com-
ponents that form a natural duality. While NLG is the
process of generating a response in natural language
based on a structured semantic representation (in green),
SLU is the act of transforming natural language into a
structured semantic representation (in blue).

A complete task-oriented dialogue system typi-
cally consists of four components (Zhang et al.,
2020): spoken language understanding (SLU), dia-
logue state tracking (DST), dialogue policy learn-
ing (DPL), and natural language generation (NLG).
The NLG module aims to convert the dialogue act
generated by DPL into a natural language, which
can be abstracted as a semantically conditioned lan-
guage generation task. As depcicted in Figure 1,
the generated utterance should be sufficient to con-
vey semantic information of the dialogue act, as
well as being fluent, natural, and resembling human
language to engage users’ attention. As the primary
module for user interaction, NLG plays a crucial
impact in the performance of dialogue systems.

Recently, pre-trained models have revolutionized
the field of natural language processing. The intro-
duction of pre-trained models such as GPT2 (Rad-
ford et al., 2019) in the NLG task has resulted in
a significant improvement in overall performance
(Budzianowski and Vulić, 2019; Wu et al., 2019;
Hosseini-Asl et al., 2020; Ham et al., 2020; Yang
et al., 2020; Peng et al., 2021). Despite their supe-
rior performance on simple domains, they necessi-
tate a great deal of high-quality labeled data and are
challenging to generalize to the domain-specific.

Nevertheless, acquiring large amounts of
domain-specific labeled data in practical scenarios

12389



is cost-prohibitive. It is essential that an NLG mod-
ule is able to effectively generalize with limited
domain-specific labeled data in few-shot settings.
Recently, a paradigm of the few-shot learning uti-
lizs the existing large-scale annotated data to train
a pre-trained model such as GPT-2 (Radford et al.,
2019) and subsequently is fine-tuned with only a
few domain-specific labeled data to adapt to tar-
get domains. Thereby, the paradigm narrows the
gap between pre-traineds model and downstream
tasks. For instance, Peng et al. (2020) adopted
the paradigm and achieved a state-of-the-art per-
formance for few-shot NLG. However, in few-shot
settings, one of the challenges of NLG is prone to
omit important slot-value pairs and make it diffi-
cult to fully convey the semantic information of the
dialogue act fully.

To go beyond this limitation, we explore further
enhancing the semantically controlling ability of
the pre-trained model. It is noteworthy that NLG
and SLU are a natural dual problem pair, as illus-
trated in Figure 1. Ideally, the response generated
by the NLG module can be restored to the corre-
sponding dialogue acts by the SLU module. The
two dual tasks are intrinsically connected due to
the joint probabilistic correlation. Moreover, SLU
can provide an additional supervision signal for
NLG so that the NLG model better focuses on key
slot-value pairs in the dialogue acts. Thus, we ex-
plicitly exploit the dual correlation between NLG
and SLU to regularize the pre-training process and
improve the semantically controlling ability of the
pre-trained model.

In this paper, we propose a dual supervised pre-
trained model for a few-shot Natural Language
Generation (DSPM-NLG). DSPM-NLG consists
of two primary, the dual supervised pre-training
and fine-tuning. In the pre-training stage, the frame-
work of dual supervised learning is introduced to
learn the explicit joint probabilistic correlation be-
tween NLG and SLU from existing large-scale an-
notated data. Moreover, a slot-masked strategy is
designed, which selects the key slot information
detected by SLU, thereby constraining the NLG
module to focus more on the slot-value pairs in
the dialogue act. In the fine-tuning stage, the pre-
trained model is fine-tuned with only a few domain-
specific labels for adaptation. Experiments demon-
strate that the semantically controlling and gener-
alization abilities of DSPM-NLG are significantly
improved. In general, the major contributions of

this paper are described below:

• We propose a novel pre-trained framework
for NLG based on dual supervised learning,
which explicitly exploits the probabilistic cor-
relation between NLG and SLU to regularize
the pre-trained process.

• We design a slot-masked strategy that con-
tributes to constraining the NLG module to
focus more on the key slot-value pairs con-
tained in the dialogue act.

• We carry out extensive ablation experiments
to demonstrate the advantages of building the
framework. The experimental results demon-
strate that our model outperforms the existing
state-of-the-art results on the few-shot bench-
mark dataset.

2 Related Work

Existing NLG models can be mainly summarized
into two major categories. (1) Template-based
NLG models (Langkilde and Knight, 1998; Stent
et al., 2004) generate responses according to man-
ually developed rules. These models generate re-
sponses that can convey the semantics information
of certain predefined dialogue acts. Nevertheless,
the handcraft templates are difficult to cover poten-
tially unforeseen dialogue acts, and the generated
response is not always natural. (2) Statistical-based
NLG models (Wen et al., 2015; Dušek and Jurčíček,
2016; Tran and Nguyen, 2017; Su et al., 2018; Gao
et al., 2019; Zhu et al., 2019; Wolf et al., 2019b;
Su et al., 2020b,a) generate responses via training
from massive annotated data. With the rise of at-
tention mechanism, more approaches have been
proposed, e.g., Hierarchical attention network (Su
et al., 2018; Zhu et al., 2019; Chen et al., 2019).
And then, some NLG works adapted a multi-task
learning framework to improve the performance
(Su et al., 2020b,a). In particular, some scholars
exploit the relationship between SLU and NLG to
improve the performance of two tasks (Su et al.,
2019, 2020a; Zhu et al., 2020; Tseng et al., 2020;
Chang et al., 2021). Subsequently, many works
introduce pre-trained models (Budzianowski and
Vulić, 2019; Edunov et al., 2019; Dai et al., 2019;
Ham et al., 2020; Brown et al., 2020; Kale and
Rastogi, 2020; Madotto et al., 2020) such as GPT2,
and the overall performance of NLG is greatly im-
proved.
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Recently, to deal with the challenge of few-shot
learning, data augmentation has been widely ap-
plied to NLG. Peng et al. (2020) proposed SC-GPT
model. They pre-train GPT with large-scale NLG
corpus collected from publicly available dialogue
datasets and then fine-tuned the model on the tar-
get domain with few training instances. Xu et al.
(2021) proposed a data augmentation approach that
constructed dialogue acts and responses from the
open-domain dialogues and applied the new data
to SC-GPT.

Compared with previous work, we try to ex-
plore the duality between SLU and NLG in the
pre-training stage. The difference between the pro-
posed model and the previous methods is mainly re-
flected in the following two aspects: First, dual su-
pervised learning is only applied in the pre-training.
Thus, in few-shot settings, our model does not re-
quire any SLU annotated data and does not increase
additional computation in fine-tuning and inference
stages. It is worth mentioning that our model also
avoids the error transfer between SLU and NLG
in the inference stage. Second, in the pre-training
stage, we collect a large amount of labeled data for
SLU and NLG. The training of a large amount of
labeled data enables the pre-trained model to have
a strong semantically controlling ability rather than
just learning the relationship between the two tasks
in some specific domains to improve the perfor-
mance of both tasks.

3 Background

Dual Supervised Learning Framework. The
overall architecture of the dual supervised learn-
ing as shown in Figure 2. Assuming that we in-
volve the dual tasks of NLG and SLU: the primal
NLG task takes a sample from the semantics space
X as input and maps it to the natural language
space Y . The NLG task learns a mapping function
f (x; θx→y) parameterized by θx→y. In contrast,
a dual task of SLU takes a sample from the natu-
ral language space Y as input and maps it to the
semantics space X . The SLU task learns a map-
ping function g (y; θy→x) parameterized by θy→x,
where x ∈ X and y ∈ Y . The joint probabilistic
duality can be computed as followings:

P (x, y) = P (x)P (y | x) = P (y)P (x | y) , (1)

where P (x), P (y) denote the marginal distribu-
tions; P (y|x), P (x|y) are conditional probability.

For any x ∈ X , y ∈ Y , ideally, the conditional

𝑥 = 𝑔(𝑦) 𝑦 = 𝑓(𝑥) 

Primal Task: NLG

𝑓: 𝑥 → 𝑦 

Labeled data x

Dual Task: SLU

Labeled data y

𝑴𝒊𝒏|𝑷 𝒙 𝑷 𝒚 𝒙; 𝒇 − 𝑷 𝒚 𝑷 𝒙 𝒚; 𝒈 | 

𝑀𝑎𝑥 𝑙𝑜𝑔𝑃 𝑥 𝑦; 𝑔  

𝑔: 𝑦 → 𝑥 

Feedback singles during the loop：

𝑅 𝑥, 𝑓, 𝑔 = 𝑃 𝑥 𝑃 𝑦 𝑥; 𝑓 − 𝑃 𝑦 𝑃 𝑥 𝑦; 𝑔  

𝑀𝑎𝑥 𝑙𝑜𝑔𝑃 𝑦 𝑥; 𝑓  

The gap between the joint probability 𝑝(𝑥, 𝑦) obtained in two directions. 

Figure 2: Illustration of the dual supervised learning.

distributions of the primal and dual tasks should
satisfy the following equality:

P (x)P (y | x; θx→y) = P (y)P (x | y; θy→x) , (2)

where θx→y and θy→x are the learnable parameter
of the model.

The core idea of dual supervised learning is to
jointly model the two dual tasks by minimizing
their loss functions and incorporating the probabil-
ity duality constraint. A total of three loss functions
are optimized. Obtain the maximum likelihood es-
timation of yi from the labeled input xi via the
primal NLG task:

min
θxy

(1/M)
M∑

i=1

lNLG (f (xi; θx→y) , yi) . (3)

Obtain the maximum likelihood estimation of xi
from the dual input yi via the dual task:

min
θyx

(1/M)
M∑

i=1

lSLU (g (yi; θy→x) , xi) . (4)

The probabilistic duality constraint is incorporated:

s.t P (x)P (y | x; θx→y) = P (y)P (x | y; θy→x) , (5)

where lNLG, lSLU are loss functions; M is the num-
ber of the samples and s.t. denotes the constraint.

4 Methodology

4.1 Task Definition
The goal of NLG is to generate a natural language
response containing the dialogue act’s semantic in-
formation. A dialogue act (DA) includes different
types of system actions and slot-value pairs, the
formal definition of DA is described as follows:
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DA = [A, (slot1 = value1) , . . . , (slotk = valuek)] , (6)

where A indicates different types of system actions,
such as confirm, inform, request, etc.; k is the num-
ber of slot-value pairs, which varies in different
dialogue acts; slot-value pairs indicate critical struc-
tured semantic information of the dialogue act.

The formal definition of NLG is described as
follows: given a DA consisting of a system action
and k slot-pairs, a response Y = [y1, y2, . . . . , yn]
can be generated by the NLG model, where n is the
response length. For example, a DA is [confirm,
(price range = inexpensive)] and the corresponding
response is “just to make sure, you are looking
for an inexpensive hotel”. The format of the SLU
labels is described as follows: the utterance “just
to make sure, you are looking for an inexpensive
hotel” is labeled as “O O O O O O O O O B-
hotel-pricerange O”, where “B-hotel-pricerange”
and “O” are called slots. There is a one-to-one
correspondence between a slot and a word.

4.2 Proposed Model

The section introduces the proposed DSPM-NLG
model. The training procedure of DSPM-NLG
mainly includes the dual supervised pre-training
and fine-tuning stages. The overall architecture of
DSPM-NLG is shown in Figure 3.

4.3 Dual Supervised Pre-training Stage

We inherit GPT-2 model (Radford et al., 2019)
as our original pre-trained model in the proposed
model. The GPT-2 model is a powerful language
model which can be used for several downstream
tasks. In order to enhance the generalization abil-
ity and semantically controlling ability of the pre-
trained model, we continuously train the GPT-
2 model on existing large-scale high-quality an-
notation pairs (DA, response, slots)1. The pre-
training dataset includes annotated training pairs
from the MultiWOZ dataset (Eric et al., 2019)
and schema-guided dialogue dataset (Rastogi et al.,
2020). The total size of the dual supervised pre-
training datasets is approximately 470k samples.

Encoder At the pre-training stage, the DA is
pre-processed as a text sequence D. In the mean-
while, the response Y is pre-processed via append-
ing response with a special start token [BOS] and
an end token [EOS]. The input of our model is

1In this paper, we introduce the dual task SLU in the pre-
training stage. The slots are denoted as ground-truth labels.

X = {D,Y } = {x1, · · · , xm, xm+1, · · · , xm+n},
where m is the length of the DA and n is the length
of the response. The output of the last hidden
layer is H = {h0, · · · , hm, hm+1, · · · , hm+n},
hm+1, hm+n denote the final hidden state of the
special [BOS] and [EOS] token.

In the pre-training, the loss value is only com-
pututed for Y corresponding to the hidden layer
output Hy = {hm+1, · · · , hi, · · · , hn+m}, where
hi ∈ Hy denotes the final hidden state of the ith

token in Hy. For the NLG task, we utilize the final
hidden state Hy to generate responses, and proba-
bility distribution P (y′ | x; θx→y) of the generated
tokens is calculated by:

P
(
y′ | x; θx→y

)
= softmax(hiWU + bU ),

f(x; θx→y) = argmax
y′∈Y

{
P
(
y′ | x; θx→y

)}
,

(7)

where f (x; θx→y) is mapping function for NLG;
WU ∈ Rd×|U | and bU ∈ R|U | are weight matrix
and bias vector, respectively. d is the dimension of
the hidden state vector. Besides, |U | is the length
of vocabulary, θx→y is the learnable parameter of
the model.

For the SLU task, we input the final hidden state
Hy to another trainable linear layer, which is used
to predict the slot of the corresponding input token.
Then the probability distribution P (x′ | y; θy→x)
of slots is calculated by:

P
(
x′ | y; θy→x

)
= softmax(hiWS + bS),

g(y; θy→x) = arg max
x′∈X

{
P
(
x′ | y; θy→x

)}
,

(8)

where g (y; θy→x) is a mapping function for SLU;
WS ∈ Rd×|S| and bS ∈ R|S| are weight matrix
and bias vector, respectively. Besides, |S| is the
number of slot labels, and θx→y is the learnable
parameter of the model.

Loss Function In this section, we introduce the
joint training procedure with dual supervised learn-
ing in detail. lNLG, lSLU are loss functions, and
the loss values of NLG and SLU are computed as:

min
θx→y

(E [lNLG (f (x; θx→y) , y)]) ,

min
θy→x

(E [lSLU (g (y; θy→x) , x)]) .
(9)

The probabilistic duality constraint is incorporated:

s.tP (x)P (y | x; θx→y) = P (y)P (x | y; θy→x) , (10)

where P (x) and P (y) are the marginal distribu-
tions. Then, the method Lagrange multiplier is
used to transfer the probability duality constraint
into the objective function. The regularization term
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Confirm （ Price Range = ） [BOS] just to makeExpensive sure , you are looking for an expensive hotel [EOS]Confirm （ Price Range = ） [BOS] just to makeExpensive sure , you are looking for an expensive hotel [EOS]
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.

.

Dual Supervised Learning

𝑃(𝑦|𝑥;𝜃𝑥→𝑦) 

𝑃(𝑥|𝑦;𝜃𝑦→𝑥) 

𝑃 𝑥 𝑃 𝑦 𝑥;𝜃𝑥→𝑦 = 𝑃(𝑦)𝑃(𝑥|𝑦;𝜃𝑦→𝑥) 

.

.

Figure 3: Illustration of the DSPM-NLG model.

is the constraint of the duality probabilistic. The
new loss value of NLG is computed as:

min
θx→y

(E [lNLG (f (x; θx→y) , y)] + λx→ylduality ) , (11)

where λx→y is a hyper-parameter. Besides, ℓduality
denotes the regularization term. The regularization
term is computed as:

ℓduality =
(
log P̂ (x) + logP (y | x; θx→y)

− log P̂ (y)− logP (x | y; θy→x)
)2

.
(12)

Note that the true marginal distribution of P (x)
and P (y) are difficult to obtain. As an alternative,
we relace them with empirical marginal distribu-
tions P̂ (x) and P̂ (y). P̂ (x) is calculated by GPT-
2 (language model). The empirical marginal dis-
tribution of P̂ (y) is calculated by the statistics of
the percentage of each slot in the collected labeled
data. The meaning of the regularization term is
to minimize the gap between P̂ (x)P (y | x; θx→y)
and P̂ (y) P (x | y; θy→x). Thus, dual supervised
learning enhances the process of supervised learn-
ing from the duality of the structure between NLG
and SLU. The final NLG loss function is formu-
lated as:

Gf = ∇θx→y (1/M)
M∑

j=1

[lNLG (f (xj ; θx→y) , yj)

+λx→yℓduality (xj , yj ; θx→y, θy→x)] ,

(13)

where M is the number of samples. The regu-
larization term ℓduality is different from the SVM
regularization term or the L1 regularization term.
The regularization term of SVM or L1 is only de-
pendent on the model. However, the regularization
term ℓduality in dual supervised learning is both
model and data-dependent. During the pre-training

process, each training sample contributes to the
regularization term. In addition, the probability dis-
tribution of SLU contributes to the regularization
of the NLG model.

Slot-masked Strategy The slots use the
beginning-inside-outside (BIO) data annotation
standard (Athiwaratkun et al., 2020) in the SLU
task. For example, the utterance “just to make sure,
you are looking for an inexpensive hotel” is labeled
as “O O O O O O O O O B-hotel-pricerange O”.
We find that most slot labels in SLU are non-value
slot “O”. According to the statistics, the number of
non-value slot labels (“O”) is more than ten times
that of the valued slots (e.g. “B-hotel-pricerange”).
And the valued slot (not the “O” slot) contains criti-
cal semantic information and has great significance.
Therefore, a slot-masked strategy is designed to
select the vital slots detected by SLU. When calcu-
lating the loss value, the model only considers the
valued slots, which makes it better focused on the
key slots detected by SLU.

4.4 Fine-tuning Stage
We fine-tune DSPM-NLG on limited amounts of
domain-specific labels for adaptation. The fine-
tuning procedure follows standard supervised learn-
ing of NLG in few-shot sittings. The loss value of
NLG is computed as follows:

min
θx→y

(E [lNLG (f (x; θx→y) , y)]) . (14)

It is worth mentioning that dual supervised learn-
ing is not applied in the fine-tuning stage, which
avoids the error transfer between SLU and NLG.

5 Experimental Setup

Dataset Comparative experiments are conducted
on the publicly available datasets for NLG, namely,
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Model Restaurant Laptop Hotel TV Attraction Train Taxi

BLEU ERR BLEU ERR BLEU ERR BLEU ERR BLEU ERR BLEU ERR BLEU ERR

SC-LSTM 15.90 48.02 21.98 80.48 31.30 31.54 22.39 64.62 7.76 367.12 6.08 189.88 11.61 61.45
GPT-2 29.48 13.47 27.43 11.26 35.75 11.54 28.47 9.44 16.11 21.10 13.72 19.26 16.27 9.52
SC-GPT 34.08 6.08 28.67 7.32 38.35 6.03 31.25 5.31 20.81 11.92 18.60 7.98 20.13 4.22

JM-NLG-sm 36.42 5.45 29.33 4.83 35.98 4.71 29.12 5.44 21.03 11.76 19.23 6.56 19.21 4.63
JM-NLG 37.53 4.76 29.30 4.49 37.04 4.62 30.15 4.93 21.31 11.04 19.38 6.51 20.02 3.92
DSPM-NLG-sm 38.72 3.76 29.76 4.31 36.46 4.56 30.23 4.87 21.82 11.21 19.74 6.44 20.32 3.26
DSPM-NLG 37.90 3.34 30.33 3.93 37.13 4.67 30.07 4.45 22.31 10.32 20.36 6.32 20.83 3.13

Table 1: Experimental results of our models and baseline models. The experimental results with the highest value is
bolded. The “JM-NLG” adopts a multi-task learning method to jointly model NLG and SLU in the pre-training.
The subscript “-sm” means without the slot-masked strategy.

FEWSHOTWOZ (Peng et al., 2020) and FEW-
SHOTSGD (Xu et al., 2021), respectively. The
two datasets include seven domains and sixteen
domains, respectively 2. Compared with the other
existing datasets, they have several favorable prop-
erties for few-shot learning: more domain, fewer
training instances, and lower training overlap. For
the FEWSHOTWOZ, each domain has 50 training
instances, and the average number of test instances
is 472.857. The overlap percentage is 8.82%. Since
SLU has been introduced in the model, labels re-
quired for the SLU tasks are added to the standard
NLG dataset in the pre-training stage. We obtain
labeled data of the SLU according to the dialogue
acts by the matching method.

Automatic Metrics In this paper, we continue
previous evaluation metrics to evaluate the quality
of the generated responses, including BLEU scores
and slot error rate (ERR) (Wen et al., 2015). BLEU
score is used to evaluate the fluency and naturalness
of the generated response. And ERR is used to
evaluate whether the generated response contains
semantic information in the dialogue act. ERR =
(m_slot + r_slot)/k, where k is the number of
slots in a dialogue act, m_slot and r_slot denote
the number of missing slots and redundant slots in
the given realization, respectively.

Human Evaluation We conduct human eval-
uations of different models. We randomly select
100 responses generated by each model for human
evaluation in the restaurant domain. Three workers
are invited to independently rate the responses gen-
erated by each model according to the rules (Peng
et al., 2020). The works are required to judge each
response from 1(bad) to 3(good) in terms of infor-
mativeness and naturalness. Finally, we adopt the
average score marked by the three volunteers as the
final score of each response.

2See Appendix A for more details of two datasets.

Model information Naturalness

SC-GPT 2.57 2.42
DSPM-NLG 2.64 2.49

Human 2.93 2.81

Table 2: Human evaluation on FEWSHOTWOZ.

Baseline Models To verify the effectiveness of
the proposed model, several classic NLG models
are compared.

SC-LSTM: Wen et al. (2015) design a semantic
controlled LSTM cell with a reading gate to guide
the response generation. The model is a canonical
NLG model and achieves good performance on
domain-specific.

GPT-2: The pre-trained GPT-2 (Radford et al.,
2019) is directly fine-tuned on the domain-specific
labeled data.

SC-GPT (strong baseline): Peng et al. (2020)
regard the structured dialogue act as a sequence
of tokens and feed the sequence to the generation
model. We apply the obtained annotated data to
SC-GPT as a strong baseline system.

6 Results and Analysis

We compare our model with previous state-of-the-
art models. The overall results of NLG experiments
on the FEWSHOTWOZ dataset are shown in Ta-
ble 1. Although the strong baseline model has
achieved solid results, our model outperforms pre-
vious state-of-the-art performance in most domains.
For the FEWSHOTWOZ dataset, compared with
the SC-GPT baseline, DSPM-NLG has a 3.82% ab-
solute improvement in the BLEU score and a 2.76%
absolute reduction in the ERR in the restaurant do-
main. As shown in Table 2, the DSPM-NLG model
also achieves better performance in human evalu-
ation indicators. The experimental results express
the same trend with automatic evaluation indica-
tors. The results of DSPM-NLG in BLEU on the
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Model Restaurants Hotels Flights Calendar Banks Weather Buses Services

GPT-2 08.98 08.84 12.18 05.27 06.09 10.52 07.77 09.79
DSPM-NLG 15.31 14.64 17.03 09.15 08.58 12.97 12.33 15.72

Model Ridesharing Media Movies Music Rentalcars Homes Events Travel

GPT-2 03.75 03.17 10.05 05.79 06.79 13.87 09.17 02.08
DSPM-NLG 09.13 07.16 09.86 09.36 09.14 14.54 13.23 11.07

Table 3: The results in BLEU on the FEWSHOTSGD dataset. And the DSPM-NLG model was pre-trained using
only the MultiWOZ dataset.

FEWSHOTSGD are shown in Table 3. The results
demonstrate that DSPM-NLG reaches stable per-
formance and brings practical values to real-world
applications. More importantly, we would like to
explore the reason for the improved performance of
DSPM-NLG 3. Therefore, extensive ablation exper-
iments are conducted to analyze the effectiveness
of the proposed model.

6.1 Ablation Study

We provide integrated analysis results on the crit-
ical components of DSPM-NLG to gain detailed
insights:

Effect of jointly modeling NLG and SLU.
From the result, JM-NLG performs better than SC-
GPT in some domains. In the pre-training stage,
JM-NLG adopts a multi-task learning network that
jointly trains two tasks. The loss function of JM-
NLG not only learns the implicit correlations be-
tween tasks but also provides additional supervi-
sion signals, which constrains the joint model better
to generate the slot-value pairs of the dialogue act.
However, the model only takes advantage of the
implicit association between the two tasks. Thus,
the improvement of JM-NLG is slight.

Effect of the dual supervised pre-trained
model. The experimental results show that, com-
pared with the baseline models, DSPM-NLG-sm
significantly improves both BLEU and ERR in
most domains. The main reason is the dual super-
vised learning framework models the explicit joint
probabilistic correlation between SLU and DST. In
the pre-trained stage, the pre-trained model is con-
tinuously trained on large-scale dialogue-acts, re-
sponses, and slots annotated datasets, which helps
the dual supervised learning framework learn the
duality between SLU and NLG. And the objec-
tive function can be better optimized with large
amounts of data. The result reveals the dual struc-
ture strengthens the supervised learning process.

3The parameter settings of the DSPM-NLG model are
recorded in Appendix B.

Effect of the slot-masked strategy. To further
verify the effectiveness of the designed slot-masked
strategy, a statistical analysis is performed on the
pre-training dataset in the SLU task. We find that
the number of non-value slot labels (“O”) is more
than ten times that of the valued slots. Although
the loss function of SLU assigns a small loss value
to the “O”-labeled slots, when the number of “O”
slots is large, it may have a negative impact on
the model. The slot-masked strategy can mask the
“O”-labeled slots and select valued slot informa-
tion. Therefore, the performance of JM-NLG and
DSPM-NLG is further improved. In multi-task
learning, the loss value of SLU has a significant
impact on the model performance. Therefore, JM-
NLG achieves a good performance. And we expect
to get a considerable enhancement over DSPM-
NLG. However, experimental results show that the
performance improvement of DSPM-NLG is lim-
ited. To explain it, we think the dual regularization
term is related to the loss value of SLU, and the
value of the hyperparameter λ in the regulariza-
tion term is generally small. Although the strategy
is reasonable and feasible, the impact of the slot-
masked strategy on DSPM-NLG is not significant.

6.2 In-depth Analysis

The generalizability and semantical controllabil-
ity learned by the pre-trained model is critical to
the performance of the model in the fine-tuning
stage for few-shot learning. Next, experiments are
conducted to analyze the generalization and seman-
tically controlling abilities learned by DSPM-NLG.

Generalizeability (1) We analyze the perfor-
mance of DSPM-NLG in different training data
sizes. (2) We analyze the performance of differ-
ent models on the seen dialogue acts and unseen
dialogue acts in the restaurant domain.

To explore the performance of DSPM-NLG with
different training data sizes, we conduct experi-
ments with varying percentages of training data.
20%, 40%, 60%, 80%, and 100% of the training
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Figure 4: The experimental results of our models and
baseline models under different training data sizes.

Model Seen Unseen

BLEU ERR BLEU ERR

SC-LSTM 23.05 40.82 12.83 51.98
GPT-2 30.43 3.26 27.92 17.36
SC-GPT 37.18 2.38 32.42 6.17

DSPM-NLG: 39.68 1.34 34.20 4.53

Table 4: The experimental results of our models and
baseline models on the seen dialogue acts and unseen
dialogue acts.

data are randomly selected from the restaurant do-
main. The experimental results are shown in Fig-
ure 4. Overall, the performance of these models
improves in BLEU score and ERR as the size of
training data increases. DMSP-NLG performs con-
sistently better than SC-GPT and JM-NLG under
different training data sizes. Our model achieves a
significant improvement in 60% data size, which
exceeds the performance of SC-GPT in 100% data
size. In 100% data size, DSPM-NLG has a maxi-
mum slope compared to other models. It can be in-
ferred that DSPM-NLG provides more large space
for improvement when more numbers of domain
labels are used for fine-tuning. The result reflects
that our model has a stronger generalization ability
than the baseline model.

In the restaurant domain, we split the test set
into two subsets seen dialogue acts (DAs) and un-
seen dialogue acts. The dialogue acts that appear
in the training set are called seen DAs ; otherwise,
it is marked as unseen DAs. The performance of
the unseen DAs can well reflect the generalization
ability of the model. The performance of different
models is compared on the seen DAs and unseen
DAs, as shown in Table 4. On the two subsets,
DSPM-NLG yields higher BLEU and lower ERR.
It performs consistently better than SC-GPT and
JM-NLG. What’s more, the improvement of the
model is more obvious in the unseen subset. Exper-
iments demonstrate that DSPM-NLG has a strong
generalization ability.

Controllability (1) We compare the generated

Model Wrong Redundant Omissive

SC-GPT 4.65 4.65 10.85
DSPM-NLG 3.10 2.32 3.10

Table 5: The statistics of generated responses for three
types of errors in conveying dialogue acts.

responses of different models. (2) We analyze the
performance of different models on the ERR.

As shown in Figure 5, we select a couple of cases
from the FEWSHOTWOZ test set to specifically an-
alyze the difference in generated response between
our method and baseline models. We find that these
NLG models have three types of errors in convey-
ing dialogue acts: Wrong slot-value pairs, Redun-
dant slot-value pairs, and Omissive slot-value pairs.
In the first two cases, SC-GPT generates wrong
slot-value pairs and redundant slot-value pairs, re-
spectively. The appearance of the word “restau-
rant” in the dataset is relatively high. The SC-GPT
baseline learns more about the data feature in the
dataset than the semantic structure feature of dia-
logue acts. Consequently, in the baseline model,
“cafes” is mislabeled as “restaurants”, and
“accessories”,“pricerange” are redundant.
DSPM-NLG correctly conveys the semantic infor-
mation of the dialogue act. This further indicates
that DSPM-NLG is capable of constraining the
NLG task with the semantic information detected
by SLU so that our model can convey more ac-
curate dialogue acts. In the fourth case, the base-
line model misses a slot-value pair. For the slot
“goodformeal”,“address” , our model accu-
rately generates it. We think the main reason may
be that the key slot information detected by SLU
can supervise the generated response, whether it
contains slot-value pairs of the dialogue act. And
the slot-masked strategy can accurately select the
key slot information detected by SLU to restrict
the slots that need to be generated. The above re-
sults indicate the correctness of exploring the dual
correlation between SLU and NLG.

To further quantitatively analyze three types of
errors (Wrong, Redundant, Omissive) in conveying
dialogue acts of the NLG model, we counted the
percentage of three types of errors in the restaurant
domain for SC-GPT and DSPM-NLG. The results
are shown in Table 5. We found that SC-GPT is
prone to omissive important slot-value pairs con-
tained in dialogue acts. In particular, when the num-
ber of slot-value pairs in a dialogue act is greater
than 4, omissive slot-value pairs of errors are more
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Inform_no_match (food = cafes; area = presidio heights)Input DA

Reference

SC-GPT

DSPM-NLG

there are 0 cafes that are cafes near presidio heights.

there are 0 restaurants in the presidio heights area.  ||| 

there are 0 cafes in the presidio heights area.

Input DA

Reference

SC-GPT

DSPM-NLG

Recommend (name = caerus 63; type = television; accessories = remote control and european warranty; audio = nicam stereo; 

ecorating = a+)

the caerus 63 features nicam stereo , a+ eco rating and comes with remote control and european warranty . it is a nice television.

the caerus 63 television, with remote control and european warranty and nicam stereo audio, a+ ecorating, and a remote control 

and european warranty price range of $80.  ||| 

 the caerus 63 television, with a+ ecorating and nicam stereo audio, a remote control and european warranty.

Input DA

Reference

SC-GPT

DSPM-NLG

Inform ( name = thep phanom thai restaurant; address = 400 waller street; phone = 4154312526; postcode = 94117)

thep phanom thai restaurant s address is 400 waller street , its phone number is 4154312526 , and the postcode is 94117.

thep phanom thai restaurant is located at 400 waller street , postcode is 94117 , and the phone number is 4154312526.

thep phanom thai restaurant 's phone number is 4154312526 and the postcode is 94117. |||  

Generated ResponseModel

 [food = cafes]

 [price range = $80], [accessories =remote control and european warranty]

[address = 400 waller street]

Inform (name = angkor borei restaurant; goodformeal = dinner; area=bernal heights; pricerange = cheap)Input DA

Reference

SC-GPT

DSPM-NLG

angkor borei restaurant is good dinner choice for your cheap range in bernal heights.

angkor borei restaurant is a nice restaurant that serves cheap food in the bernal heights area. |||  

angkor borei restaurant is a nice restaurant that serves cheap food and good for dinner in the bernal heights area.

 [goodformeal = dinner]

Figure 5: Examples of generated responses from different models on FEWSHOTWOZ. Three different types of
errors correspond to three colors (better viewed in color). The blue text means Wrong. The green text denotes
Redundant. And the red text indicates Omissive.

Model λ = 0 λ = 0.1 λ = 0.01 λ = 0.001

BLEU ERR BLEU ERR BLEU ERR BLEU ERR

DSPM-NLG 34.08 6.08 38.72 3.76 35.73 4.63 34.6 5.75

Table 6: Valid BLEU and ERR with reference to λ.

serious. Compared with the baseline model, three
types of errors of the DSPM-NLG model reduces
“1.55%”, “2.33%”, and “7.75%”, respectively. The
experimental results reflect that our model effec-
tively alleviates three types of errors in conveying
dialogue acts. In particular, for the err of omis-
sive slot-value pairs, the error rate of DSPM-NLG
dropped significantly. The main reason may be that
the joint probability between SLU and NLG con-
strains the model to accurately convey the semantic
information of the dialogue act. In addition, the
slot-masked strategy contributes to the reduction
of wrong slot-value pairs. When these errors are
reduced, ERR is reduced and the BLEU score is
improved. The experimental results demonstrate
that the DSPM-NLG model has a stronger semantic
control ability than the baseline model.

Effects of λ. In the dual supervised learn-
ing framework, the Lagrange parameter λ setting
greatly affects the model. Therefore, a sensitivity
analysis of the λ is conducted. As shown in Table
6, we set λ and report the performance of different
λ. From the result, λ = 0.1 is the optimal value for
obtaining the best performance based on the dataset.
When the value of λ = 0, the training of the model
is the standard supervised learning process. We can

see that, within a relatively large interval of λ, the
performance of dual supervised learning is stronger
than that of standard supervised learning.

7 Conclusion

In this paper, we proposed a novel dual supervised
pre-trained model for NLG. We explore the dual-
ity between SLU and NLG from the perspective
of joint probability in the pre-training stage. The
slot-masked strategy is designed to constrain the
DSPM-NLG model to focus on the slot-value pairs
in dialogue acts. Thus, the proposed model endows
the NLG module with strong semantically control-
ling and generalization abilities. Experiments on
two benchmark datasets show significant improve-
ment over previous state-of-the-art models in both
automatic and human evaluations.
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Limitations

In the pre-training stage, the performance of
DSPM-NLG depends on a large amount of anno-
tated data. Despite the improved result, the anno-
tated data is directly obtained from existing pub-
licly available datasets, which has two main limita-
tions: limited data volume and lack of data diver-
sity. This renders limited scalability performance
when dealing with complex tasks. When the data
volume and diversity of the annotated data are rich
enough, DSPM-NLG can fully learn the joint prob-
ability and mapping between dual tasks. Compared
with the baseline model, the semantic controllabil-
ity and generalization ability of DSPM-NLG will
be improved more significantly.
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A Data Statistics

Statistics FEWSHOTWOZ FEWSHOTSGD

# Domains 7 16
Avg. # Intents 8.14 6.44
Avg. # Slots 16.2 11.3
Avg. # Training Instances 50 35
Avg. # Test Instances 473 5618

Table 7: Data Statistics of two datasets.

B Experiment Setup

Using the Huggingface Transformers public library
(Wolf et al., 2019a), we implement our model on
PyTorch. The GPT-2-Medium model with 24 lay-
ers and 16 attention heads is chosen as the back-
bone, and byte pair encodings (Sennrich et al.,
2015) is used for the tokenization. And the model
uses Adam (Kingma and Ba, 2014) as the opti-
mizer with an initial learning rate of 5e-5, a sched-
uler with a linear warm-up to update and adjust the
learning rate. We set the maximum sequence length
to 80 and the batch size to 8. The GPU used for the
training is NVIDIA Quadro RTX 8000-64G. In the
pre-training stage, we jointly (SLU and NLG) train
GPT-2 until observing no obvious improvement in
validation loss or up to 20 epochs. And we save the
model parameters for the fine-tuning stage.
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