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Abstract

Incorporating contrastive learning objectives
in sentence representation learning (SRL) has
yielded significant improvements on many
sentence-level NLP tasks. However, it is
not well understood why contrastive learning
works for learning sentence-level semantics.
In this paper, we aim to help guide future de-
signs of sentence representation learning meth-
ods by taking a closer look at contrastive SRL
through the lens of isotropy, contextualization
and learning dynamics. We interpret its suc-
cesses through the geometry of the representa-
tion shifts and show that contrastive learning
brings isotropy, and drives high intra-sentence
similarity: when in the same sentence, tokens
converge to similar positions in the semantic
space. We also find that what we formalize
as "spurious contextualization" is mitigated
for semantically meaningful tokens, while aug-
mented for functional ones. We find that the
embedding space is directed towards the origin
during training, with more areas now better de-
fined. We ablate these findings by observing
the learning dynamics with different training
temperatures, batch sizes and pooling methods.

1 Introduction

Since vanilla pre-trained language models do not
perform well on sentence-level semantic tasks, Sen-
tence Representation Learning (SRL) aims to fine-
tune pre-trained models to capture semantic infor-
mation (Reimers and Gurevych, 2019; Li et al.,
2020; Gao et al., 2021). Recently, it has gradually
become de facto to incorporate contrastive learning
objectives in sentence representation learning (Yan
et al., 2021; Giorgi et al., 2021; Gao et al., 2021;
Wu et al., 2022).

Representations of pre-trained contextualized
language models (Peters et al., 2018; Devlin et al.,
2019; Liu et al., 2019) have long been identified
not to be isotropic, i.e., they are not uniformly dis-
tributed in all directions but instead occupying a
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Figure 1: Expanded semantic space produced by con-
trastive learning (CL), visualized with UMAP. At the
beginning of training, all embeddings occupied a narrow
cone. After 200 steps of fine-tuning with a contrastive
loss, they spread out to define a larger semantic space.

narrow cone in the semantic space (Ethayarajh,
2019). This property is also referred to as the
representation degeneration problem (Gao et al.,
2019), limiting the expressiveness of the learned
models. The quantification of this characteristic
is formalized, and approaches to mitigate this phe-
nomenon are studied in previous research (Mu and
Viswanath, 2018; Gao et al., 2019; Cai et al., 2020).

The concept of learning dynamics focuses on
what happens during the continuous progression
of fine-tuning pre-trained language models. This
has drawn attention in the field (Merchant et al.,
2020; Hao et al., 2020), with some showing that
fine-tuning mitigates the anisotropy of embeddings
(Rajaee and Pilehvar, 2021), to different extent ac-
cording to the downstream tasks. However, it is
argued that the performance gained in fine-tuning
is not due to its enhancement of isotropy in the em-
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bedding space (Rajaee and Pilehvar, 2021). More-
over, little research is conducted on isotropy of
sentence embedding models, especially contrastive
learning-based sentence representations.

Vanilla Transformer models are known to un-
derperform on sentence-level semantic tasks even
compared to static embedding models like Glove
(Pennington et al., 2014; Reimers and Gurevych,
2019), whether using the [cls] token or averag-
ing word embeddings in the output layer. Since
Reimers and Gurevych (2019) proposed SBERT, it
has become the most popular Transformers-based
framework in sentence representation tasks. The
state-of-the-art is further improved by integrating
contrastive learning objectives (Yan et al., 2021;
Gao et al., 2021; Wu et al., 2022). The other line of
works concern post-processing of embeddings in
vanilla language models (Li et al., 2020; Su et al.,
2021; Huang et al., 2021) to attain better sentence
representations.

Learning dynamics in fine-tuning was previously
investigated, revealing isotropy shifts in the process
(Rajaee and Pilehvar, 2021; Gao et al., 2021), but
few studies have systematically investigated rele-
vant pattern shifts in sentence representation mod-
els, and none has drawn connections between these
metrics and the performance gains on sentence-
level semantic tasks. While some implicitly stud-
ied this problem by experimenting on NLI datasets
(Rajaee and Pilehvar, 2021; Merchant et al., 2020;
Hao et al., 2020), we argue that a more extensive
study on the geometry change during fine-tuning
SOTA sentence embedding models with contrastive
objectives is neccessary.

In this work, we demystify the mechanism of
why contrastive fine-tuning works for sentence rep-
resentation learning.1 Our main findings and con-
tributions are as follows:

• Through measuring isotropy and
contextualization-related metrics, we
uncover a previously unknown pattern:
contrative learning leads to extremely high
intra-sentence similarity. Tokens converge to
similar positions when given the signal that
they appear in the same sentence.

• We find that functional tokens fall back to
be the "entourage" of semantic tokens, and
follow wherever they travel in the semantic
space. We argue that the misalignment of the

1Our code is publicly available.

"spurious contextualization change" between
semantic and functional tokens may explain
how CL helps capturing semantics.

• We ablate all findings by analyzing learning
dynamics through the lens of temperature,
batch size, and pooling method, not only to
validate that the findings are not artifacts to
certain configurations, but also to interpret the
best use of these hyperparamaters.

Our study offers fundamental insights into using
contrastive objectives for sentence representation
learning. With these, we aim to shed light on fu-
ture designs of sentence representation learning
methods.

2 Isotropy and Contextualization
Analysis of Contrastive-based Sentence
Embedding models

2.1 Preliminary
Anisotropy of token embeddings produced by pre-
trained language models has drawn attention in
the field, and been validated both theoretically and
empirically (Gao et al., 2019; Ethayarajh, 2019;
Cai et al., 2020; Timkey and van Schijndel, 2021).

For an anisotropic model, the embeddings it en-
codes have a high expected value of pair-wise co-
sine similarity: Eu,v∈Scos(u, v) >> 0, where u
and v are contextualized representations of tokens
randomly sampled from corpus S.

A contrastive learning objective to fine-tune a
PLM on datasets that consist of sentence/document
pairs is defined as follows:

ℓi = − log
esim(ei,e

+
i )/τ

∑N
j=1 e

sim(ei,e
+
j )/τ

, (1)

where ei and e+i denote embeddings of a sen-
tence/document pair, whose cosine similarity is to
be maximized, while all e+j in a same training batch
when j ̸= i is to be pushed further from ei.

The central question posed in this paper revolves
around the mechanism involved in the contrastive
learning process that diminishes anisotropy, lead-
ing to an isotropic model. If anisotropy is neu-
tralized, we would observe a new mathematical
expectation of cosine similarity, represented by
Eu,v∈Scos(u, v) ≈ 0. However, the precise pro-
cess and the underlying mechanism that facilitate
this transition remain the key questions we aim to
address.
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Therefore, metrics such as self-similarity of
same tokens in different contexts, and intra-
sentence similarity of different tokens in the same
context, are pertinent. More importantly, we could
further trace the contextualization shift that brings
mitigated anistropy to word type, i.e., are func-
tional words and semantic words less/more con-
textualized after contrastive learning? We show
that, this finding could potentially attribute to the
performance gain on sentence-level semantic tasks
brought by contrastive fine-tuning.

2.2 Metrics

We adopt the metrics defined in Ethayarajh (2019),
who studied the extent to which word represen-
tations in pre-trained ELMo, BERT, and GPT-2
are contextualized, taking into consideration their
anisotropy baselines. We reimplement the com-
putation on self-similarity, intra-sentence similar-
ity, and anisotropy baselines. We then break the
similarity measures down into dimension level to
inspect whether certain rogue dimensions (Timkey
and van Schijndel, 2021) dominate these metrics
and therefore making the similarity measures only
artifacts of a small set of dimensions.

Self Similarity: Self similarity measures the
similarity among different contextualized repre-
sentations of a token across different contexts.
Higher self-similarity indicates less contextualiza-
tion. Given a token x, we denote the set of token
embeddings of x contextualized by different con-
texts in corpus S as SX⃗ . Self similarity is then
defined as the empirical mean of pair-wise cosine
similarity of contextualized embeddings of token x
in all these contexts:

selfsim(x) ≜ Eu,v∈SX⃗
[ ¯cos(u, v)] (2)

Intra-sentence Similarity: By contrast, intra-
sentence similarity measures the similarity across
tokens in the same context.

Given a sentence s with n tokens xi∈{1,2,...,n},
we first attain sentence representation s⃗ by mean-
pooling, i.e., averaging all token embeddings x⃗i.
Intra-sentence similarity is then defined as the aver-
age cosine similarity between token representations
x⃗i and the sentence representation s⃗.

s⃗ ≜ 1

n

∑

xi∈s
x⃗i

intrasim(s) ≜ 1

n

∑

n

cos(x⃗i, s⃗)

(3)

Intra-sentence similarity provides a quantitative
measure of the extent to which tokens in the same
sentence are similar, allowing us later to derive
insights on: whether token representations would
converge in the semantic space only because they
appear in a same sentence.

Anisotropy Baselines: While self and intra-
sentence similarity are computed given the restric-
tions of respectively 1) same word in different con-
texts 2) different words in the same context, these
values are not reflective of the general distribution
across different words and different contexts.

In line with Ethayarajh (2019), we adjust the
above two metrics by substracting the anisotropy
baseline of a model from them, i.e., average cosine
similarity between randomly sampled tokens from
different contexts as defined in preliminary.

Dimension-level Inspection of the Metrics Due
to the fact that cosine similarity is highly sensi-
tive to outlier dimensions, we inspect whether the
outcomes of the above measurements are only ar-
tifacts of these dimensions, i.e. rogue dimensions
(Timkey and van Schijndel, 2021).

Formally, the cosine similarity of two embed-
dings is defined as: cos(u, v) = u·v

∥u∥∥v∥ , where
u and v are two embeddings to measure against.
Since the term u · v is just a sum of the element-
wise dot product of the ith dimension of the em-
beddings, it is convenient to inspect the contribu-
tion each dimension makes to the global similarity:
cos(u, v) =

∑d
i=1

uivi
∥u∥∥v∥ .

Given a set S that consists of n randomly sam-
pled representations, the expected contribution of
the ith dimension in a model to a similarity metric
could be approximated as:

cosi = Eu,v∈S
uivi

∥u∥ ∥v∥ , (4)

By breaking the global metrics down to dimen-
sion level, whether the output of a metric is a global
property of all embeddings in the language model
or is only dominated by a set of rogue dimensions
D could be inspected by whether

∑
i∈D cosi >>

∥D∥
d Eu,v∈Scos(u, v), with d being the dimension-

ality of word embeddings.
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Nonetheless, we could mathematically derive
that, dominating dimensions dominate corpus-level
similarity metric computations mostly because of
their high average distances to the origin at the cor-
responding dimensions. However, if the values in
these dimensions do not have high variation, then
eliminating the top ∥D∥ of these dimensions from
the embeddings would not significantly bring se-
mantic shifts to the original representations and
therefore would not affect the corresponding rela-
tive similarity relationship between sentence pairs.

Therefore, we will also need to inspect whether
there is a misalignment between the existence of
the rogue dimensions, and their actual impact on
informativity (Timkey and van Schijndel, 2021).
Given a f(t, k) that maps a token t to its represen-
tation, with top k rogue dimensions eliminated, we
could compare the correlation between similarity
measures yielded by the original representatations
and those with top-k rogue dimensions removed.
Formally, given:

cosoriginal(O) = cosx,y∈O(f(x, 0), f(y, 0)) (5)

cospost(O) = cosx,y∈O(f(x, k), f(y, k)), (6)

we compute: r = Corr[cosoriginal, cospost],
which is an indicator of the "authenticity" of the rep-
resentations left without these rogue dimensions.

With the corresponding dimension-level inspec-
tions of the three metrics, we could take a step
further to investigate whether fine-tuning a vanilla
language model to sentence embedding tasks with
the contrastive objective mitigates the dominance
of rogue dimensions.

2.3 Models
We analyze two models that achieve SOTA perfor-
mances on sentence embedding tasks and semantic
search tasks, all-mpnet-base-v2 2 and all-MiniLM-
L6-v2. 3 They have both been fine-tuned with a
contrastive loss on 1B+ document pairs, with the
goal of predicting the right match to a document
di given its ground-true match d+i and the rest of
the in-batch d+j as natural negative examples. The
prediction is conducted again reversely with d+i ,
di and other in-batch dj . The loss is averaged for
these two components for every batch. The rep-
resentation of each document d is by default the
mean-pooled embedding of each token.

2https://huggingface.co/sentence-transformers/all-mpnet-
base-v2

3https://huggingface.co/sentence-transformers/all-
MiniLM-L6-v2

We compare the results to their vanilla ver-
sions, mpnet-base (Song et al., 2020) and MiniLM4

(Wang et al., 2020) to get a closer look to the initial
state of their corresponding pre-trained counter-
parts, and how the metrics change after fine-tuning
on the goal of getting better sentence and document-
level representations.

2.4 Data
We use STS-B (Cer et al., 2017), which comprises
a selection of datasets from the original SemEval
datasets between 2012 and 2017. We attain the
dataset through Hugging Face Datasets5. Notably,
the models that we are looking at were not exposed
to these datasets during their training. Therefore,
the pattern to be found is not reflective of any over-
fitting bias to their training process.

We use the test set and only use sentence 1 of
each sentence pair to prevent the potential doubling
effect on self-similarity measure, i.e., providing
tokens with one more sentence where they are in
the similar contexts. Following the description,
1359 sentences are selected as inputs.

2.5 Result
We show that after fine-tuning with contrastive loss,
the anisotropy is almost eliminated in the output
layer of both models, and is mitigated in the middle
layers to different levels. This empirically validates
the theoretical promise of uniformity brought by
contrastive learning (Wang and Isola, 2020; Gao
et al., 2021) in the context of sentence representa-
tion learning (Figure 2).
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Figure 2: Anisotropy baseline of models

Complementing the enhanced isotropy, the aver-
age L2 norm of the randomly sampled token rep-
resentations is also measured, showing a similar

4https://huggingface.co/nreimers/MiniLM-L6-H384-
uncased. Notably, we use a 6-layer version.

5https://huggingface.co/datasets/stsb_multi_mt
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drastic shift in mostly the output layer of both mod-
els. Geometrically, the embeddings of tokens are
pushed toward the origin in the output layer of a
model, compressing the dense regions in the se-
mantic space toward the origin, making the embed-
ding space more defined with concrete examples of
words (see also Figure 1), instead of leaving many
poorly-defined areas (Li et al., 2020). This prop-
erty potentially contributes to models’ performance
gains on sentence embedding tasks.
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Figure 3: Avg. L2 norm of embeddings

Figure 4 and Figure 5 present respectively the
self similarity and intra-sentence similarity of mod-
els adjusted (subtracted) by their anisotropy base-
lines (Unadjusted measures in Appendix C).

As for the adjusted self similarity, we can see that
the fine-tuned models generally show higher self
similarities across contexts (meaning tokens are
less contextualized after fine-tuning) in all layers,
except for the output layer of the fine-tuned mpnet.
However, in general there does not exist a large
difference on this metric (See why in Section 3).
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Figure 4: Adjusted self similarity of tokens: each self
similarity is adjusted by the anisotropy of the corre-
sponding model

We observe that intra-sentence similarity dra-
matically goes up in the output layer after con-
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Figure 5: Adjusted intra-sentence similarity of to-
kens: each intra-sentence similarity is adjusted by the
anisotropy of the corresponding model

trastive fine-tuning. In the output layer of fine-
tuned mpnet, the intra-sentence similarity reaches
0.834 (adjusted), meaning that tokens are 83.4%
similar to one another if they appear in a same
sentence. Since this pattern does not exist in the
vanilla pre-trained models, the pattern is a unique
behavior that accompanies the performance gain
brought by contrastive learning. We argue that
given contrastive examples and the goal of distin-
guishing between similar and non-similar in each
batch, the model learns to provide more intense
cross-attention among elements inside an input,
and thus could better assign each example (sen-
tence/document) to a unique position in the seman-
tic space. With mean-pooling and positive pairs,
the model learns to decide important tokens in a
document di, in order to align with its paired doc-
ument d+i , and other secondary tokens are likely
to imitate the embeddings of these important to-
kens because they need to provide an average em-
bedding together to match with their counterpart
(In Appendix G we conduct an ablation study with
other pooling methods). Further, with limited space
in the now compressed space, inputs have now
learned to converge to one another to squeeze to
a point while keeping its semantic relationship to
other examples. Therefore, we reason that, the
unique behavior of this "trained intra-sentence sim-
ilarity" is highly relevant to the models’ enhanced
performance on sentence-level semantic tasks.

Complementing the global properties found
above, we present in Table 1 the dimension-level
inspection on the measures. The analysis is con-
ducted on self similarity. In line with previous work
(Timkey and van Schijndel, 2021), there exists a
significantly unequal contribution among dimen-
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Model Top 1 Top 2 Top 3
mpnetvanilla .548 .723 .741
mpnetfine-tuned .005 .010 .014
minilmvanilla .081 .129 .163
minilmfine-tuned .008 .014 .020

10% 20 % 50%
mpnetvanilla 1 1 1
mpnetfine-tuned 28 64 209
minilmvanilla 2 5 31
minilmfine-tuned 19 40 121

Table 1: Dimension-wise inspection on vanilla and
contrastive learning-based fine-tuned sentence represen-
tation models (last/output layer only). The upper part of
the table presents the contribution percentage of the top
1 to 3 dominating dimensions. The lower part provides
the number of top dimensions needed to account for
{10,20,50}% of similarity metric computation.

sions. This inequality is most pronounced in the
vanilla mpnet, with the top 1 dimension (out of the
total 768) contributing to almost 55% of the similar-
ity computation. After contrastive fine-tuning, this
phenomena is largely removed, with dominating
dimensions greatly "flattened" (Gao et al., 2021).
For the fine-tuned mpnet, it now requires 209 (out
of 768, 27.2%) dimensions to contribute to 50% of
the metric computation, and for fine-tuned minilm,
this number is 121 (out of 384, 31.5%).

In Appendix F, we present the informativity anal-
ysis by removing top-k dominating dimensions, we
see a reallocation of information after contrastive
fine-tuning and a misalignment between dominance
toward similarity computation and informativity.

3 Connecting to Frequency Bias

The imbalance of word frequency has long been
identified to be relevant to the anisotropy of trained
embeddings (Gao et al., 2019). This has been also
empirically observed in pre-trained Transformers
like BERT (Li et al., 2020). Li et al. (2020) draw
connection between frequency bias and the unideal
performance of pre-trained language models on
STS tasks, through deriving individual words as
connections of contexts, concluding that rare words
fail to play the role of connecting context embed-
dings. Rajaee and Pilehvar (2021) show that when
fine-tuning pre-trained language models under the
setting of Siamese architecture on STS-b datasets,
the frequency bias is largely removed, with less
significant frequency-based distribution of embed-

dings. However, it is also pointed out that these
trained models are still highly anisotropic, which as
we showed in Section 2.5, does not hold in the con-
text of contrastive training, which, with sufficient
data, has theoretical promise toward uniformity
(Wang and Isola, 2020; Gao et al., 2021).

Therefore, it is of interest to see the correspond-
ing behaviors of frequency bias shifts in the context
of contrastive learning, and more importantly, how
this correlates with our surprising finding on intra-
sentence similarity.

3.1 How Self Similarities Change for
Frequent Words?

Since word frequency has produced many problem-
atic biases for pre-trained Transformer models, we
would like to know whether contrastive learning
eases these patterns. Thus, how the self-similarity
measurement manifests for frequent words after
the models are fine-tuned with the contrastive ob-
jective? Are they more/less contextualized now?

Validity of Measuring Self-Similarity Change
We first define Self-Similarity Change and prove
that this measurement is not prone to stochasticity
in the training process.

The top 400 frequent tokens are first extracted
from the constructed STS-b subset. Then, we
measure the avg. self-similarity before and af-
ter fine-tuning for each word, adjusted for their
anisotropy baseline. Formally, we define Self-
Similarity Change (SSC) of a token as:

ssc = (ssf − anif )− (ssv − aniv), (7)

where ssf , ssv, anif and aniv stand for self-
similarity and anisotropy baseline of fine-tuned and
vanilla models respectively.

To validate that this measurement is not a prod-
uct of stochasticity occurs in training but a common
phenomenon that comes with contrastive learning,
we compute the Self-Similarity Change for every
token using both mpnet (vanilla & fine-tuned) and
MiniLM (vanilla & fine-tuned). If the statistics
produced by both models show high correlation,
then there exists a pattern that would affect how
self-similarity changes for different tokens during
contrastive fine-tuning. Otherwise, the changes are
a product of randomness.

We iterate n = 1 to 400 to compute the Pearson
correlation of SSCs of the top n tokens produced
by both mpnet and MiniLM and find the position
where these statistics correlate the most, which is:
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argmax
n

(corr(sscmpnet[: n], sscMiniLM [: n])).

Throughout the iteration, the top 204 frequent
tokens give the highest Pearson correlation, which
reaches a surprisingly high number of 0.857,
validating the universal pattern for similarity shifts
of frequent words. After inspection, we find that
these are tokens that appear more than 9 times in
the 1359 sentences. Notably, even the full set of
400 tokens gives a correlation of over 0.8, again
proving the robustness of this pattern for frequent
words (Refer to Appendix H for the full statistics
of the validation).

3.2 Reaching to the connection

Table 2 provides a glimpse of the top 10 tokens
(among the top 400 frequent tokens) that are now
most more contextualized (with top negative self-
similarity changes) and most less contextualized
(with top positive self-similarity changes).

mpnet minilm
SS (↓) SS (↑) SS (↓) SS (↑)

0 has onion [SEP] hands
1 is piano . fire
2 , unfortunately ; run
3 ’ cow ? house
4 are chair ) japan
5 that potato the hat
6 been read an ukraine
7 while dow - jumping
8 was guitar / coffee
9 with drums a points

Table 2: Top Self-Similarity Changes

After contrastive fine-tuning, tokens that con-
tribute more to the semantics (tokens that have
POS like nouns and adjectives) are now more re-
flective of their real-world limited connotations -
tokens like "onion" and "piano" are not supposed
to be that different in different contexts as they
are in pre-trained models. We formalize this as
"Spurious Contextualization", and establish that
contrastive learning actually mitigates this phe-
nomena for semantically meaningful tokens. We
speculate that these tokens are typically the ones
that provide aligning signals in positive pairs and
contrastive signals in negative pairs.

By contrast, however, the spurious contextual-
ization of stopwords is even augmented after con-
trastive learning. "Has" is just supposed to be "has"
- as our commonsense might argue - instead of hav-

ing n meanings in n sentences. We speculate that,
stopwords fall back to be the "entourage" of a
document after contrastive learning, as they are
likely the ones that do not reverse the semantics
and thus do not provide contrastive signals in the
training. Connecting this to our finding on high
intra-sentence similarity, we observe that given a
sentence/docuemnt-level input, certain semantic
tokens drive the embeddings of all tokens to con-
verge to a position, while functional tokens follow
wherever they travel in the semantic space.

4 Ablation Analysis

In this section, we provide a derivation to interpret
the role of temperature in CL, inspiring the search-
ing method of its optimal range. We also show
that contrastive frameworks are less sensitive to
batch size at optimal temperature for SRL, unlike
in visual representation learning.

4.1 Rethinking Temperature
Given a contrastive learning objective:

ℓi = − log esim(ei,e
+
i

)/τ

esim(ei,e
+
i

)/τ+
∑N

j=1 1{j ̸=i}e
sim(ei,e

+
j

)/τ
,

we first look at its denominator, where the goal is
to minimize the similarity between the anchor ei
and negative pairs ej when j ̸= i:

esim(ei,e
+
j )/τ ∈ (

1

e

1
τ

, e
1
τ ) (8)

Let x be esim(ei,e
+
i ) we get:

esim(ei,e
+
j )/τ = x1/τ , x ∈ (

1

e
, e) (9)

If τ << 1, as long as x < 1, x1/τ shrinks exponen-
tially. While when x > 1, x1/τ explodes exponen-
tially. Therefore, x = 1, or sim(ei, e

+
j ) = 0 when

i ̸= j is an important threshold when negative
pairs are to decide whether or not to further push
away, and this "thrust", is exactly what temperature
provides: In-batch negatives are not motivated to
be too dissimilar under a lower temperature, since
once the similarity reaches below 0, the exponent
1/τ is already doing the job of making them expo-
nentially vanishing in the denominator.

We analyze the upper bound and lower bound
of sim(ei, e

+
j ) under 0, giving us sim(ei, e

+
j ) = 0

and sim(ei, e
+
j ) = −1 for every sim(ei, e

+
j ) in

batch when i ̸= j. For both cases we pair them
with sim(ei, e

+
i ) → 1− since positive pairs are

drawn closer regardless. Therefore,
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ℓupperbound(τ) = − log
esim(ei,e

+
i )/τ

esim(ei,e
+
i )/τ +

n−1∑
e0/τ

= − log
esim(ei,e

+
i )/τ

esim(ei,e
+
i )/τ + (n− 1)

,

(10)
while given sim(ei, e

+
i ) → 1−,

ℓlowerbound(τ) = − log
esim(ei,e

+
i )/τ

esim(ei,e
+
i )/τ +

n−1∑
e−1/τ

= − log
e(sim(ei,e

+
i )+1)/τ

e(sim(ei,e
+
i )+1)/τ + (n− 1)

≈ − log
e2∗sim(ei,e

+
i )/τ

e2∗sim(ei,e
+
i )/τ + (n− 1)

(11)
Therefore, ℓlowerbound(2τ) ≈ ℓupperbound(τ).

We find that temperature affects making embed-
dings isotropic: to push in-batch negatives to the
lower bound, the temperature needs to be twice as
large than to push them to the upper bound. For ex-
ample, if when temperature = 0.05, two sentences
are pushed in training to have −1 cosine similarity,
now given temperature = 0.025, the gradient is
only around enough to push them to have 0 cosine
similarity with each other.

The findings suggest that searching for the op-
timal value of this hyperparameter using a base
of 10, as empirically shown in previous research
(Gao et al., 2021), may not be the most efficient
approach. Instead, we argue that a base of 2 would
be more appropriate, and even to conduct finer-
grained searching when a range of upper bound
temperature that is twice the lower bound tempera-
ture is found to provide adequate performance.

Our analysis serves as a complementation to
Wang and Liu (2021), who show that a lower tem-
perature tends to punish hard-negative examples
more (especially at the similarity range of (0.5, 1)),
while a higher temperature tends to give all negative
examples gradients to a same magnitude. This pro-
vides more theoretical justification to our approx-
imation, since at the similarity range of (−1, 0),
all negative examples have gradients to the same
magnitude (Wang and Liu, 2021) regardless. We
suggest that this range plays a main role in making
the entire semantic space isotropic.

4.2 Experiment Setup

We use a vanilla mpnet-base (Song et al., 2020) as
the base model, and train it on a concatenation of
SNLI (Bowman et al., 2015) and MNLI datasets
(Williams et al., 2018). In accordance with our
analysis, for the temperature τ subspace we deviate
from the commonly adopted exponential selection
with a base of 10 (e.g., Gao et al. (2021)), but we an-
alyze around the best value found empirically, with
a base of 2, i.e., {0.025, 0.05, 0.1}. We provide
the same analysis on {0.001, 0.01, 0.05, 0.1, 1} in
Appendix D for comparison. To better illustrate
the effect of temperature, we only use entailment
pairs as positive examples, under supervised train-
ing setting. We do not consider using contradiction
as hard negatives to distract our analysis, nor unsu-
pervised settings using data augmentation methods
such as standard dropout. We use all instances of
entailment pairs as training set, yielding a training
set of 314k. We truncate all inputs with a maxi-
mum sequence length of 64 tokens. All models
are trained using a single NVIDIA A100 GPU. We
train the models with different temperatures for a
single epoch with a batch size of 64, yielding 4912
steps each, with 10% as warm-up. We save the
models every 200 steps and use them to encode the
subset of STS-B we have constructed.

4.3 Results
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Figure 6: Anisotropy changes throughout training under
different temperatures

Firstly, we present the centered property we are
measuring, anisotropy. Figure 6 shows the last-
layer anisotropy change throughout steps. The
trend is in line with our hypothesis about temper-
ature being a "thurst". Knowing that the vanilla
model starts from encoding embeddings to be stuck
in a narrow angle, temperature serves as the power
to push them further through forcing negative pairs
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Figure 7: L2-norm under different temperatures

to be different. With a higher temperature, the co-
sine similarity between negative pairs has to be
lower to reach a similar loss. Figure 7 further vali-
dates this through showing that higher temperatures
compress the semantic space in general, pushing
instances to the origin.
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Figure 8: Self similarity under different temperature,
adjusted by anisotropy baseline
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Figure 9: Intra-sentence similarity under different tem-
perature, adjusted by anisotropy baseline

Figure 8 and Figure 9 present the adjusted self
and intra-sentence similarity. Following the closer
look at the contradicted pattern for frequency bias
analyzed in Section 3, the behavior here becomes

self-explainable. We could see that under the tem-
perature of 0.1, the self similarity stays at a lower
level compared to 0.05 in the last steps. This
matches with the opposite result in intra-sentence
similarity. According to our analysis in Section 3,
it is the less meaningful tokens that drag down the
self-similarity, and because they learn to follow
the semantically meaningful tokens wherever their
embeddings go in the semantic space, the corre-
sponding intra-sentence similairty would become
much higher. We speculate that, while a high intra
similarity explains the performance gain of models
trained with contrastive loss on semantic tasks, its
being too intense (as shown when τ = 0.1) might
also account for the performance drop, making
semantic meaningful tokens too dominating com-
pared to auxiliary/functional tokens. Therefore, it
again justifies the importance of selecting a mod-
erate temperature that provides enough gradients,
but not over-intensifying the attention leaning to-
ward dominating tokens.

In Appendix E, we provide the analysis on batch
size, revealing that batch size plays a less signifi-
cant role, if given a relatively optimal temperature.
This is the opposite of what is commonly found in
visual representation learning. Appendix G com-
pares the three commonly used pooling methods,
showing that the found patterns are not just artifacts
of a certain pooling method (mean pooling), but
consistent across pooling methods.

5 Conclusion

In this paper, we demystify the successes of us-
ing contrastive objectives for sentence represen-
tation learning through the lens of isotropy and
learning dynamics. We showed the theoretical
promise of uniformity brought by contrastive learn-
ing through measuring anisotropy, complemented
by showing the flattened domination of top dimen-
sions. We then uncovered a very interesting yet
under-covered pattern: contrastive learning learns
to converge tokens in a same sentence, bringing
extremely high intra-sentence similarity. We then
explained this pattern by connecting it to frequency
bias, and showed that semantically functional to-
kens fall back to be the by products of semantically
meaningful tokens in a sentence, following wher-
ever they travel in the semantic space. Lastly, we
ablate all findings through temperature, batch size
and pooling method, providing a closer look at
these patterns through different angles.
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6 Limitations

This paper only considers analyzing contrastive
learning in the fine-tuning stage, but we note that
with isotropy being a desiderata for pre-trained
language models (Ethayarajh, 2019), recent works
have considered incorporating contrastive objec-
tives in the pre-training stage (Izacard et al., 2022;
Su et al., 2022). We leave analysis on this line of
research for future work.

We further note that the analysis in this work
focuses on theoretical properties occurred during
contrastive SRL (e.g., high intra-sentence similar-
ity), thus only focuses on semantic textual similar-
ity (STS) data as a proof of concept. However, with
the growing attention on contrastive learning, we
argue that the typical STS-B is perhaps no longer
sufficient for revealing the full ability of models
trained with newer contrastive SRL frameworks.
We call for a standard practice that the performance
of contrastive SRL should be assessed on both se-
mantic textual similarity and information retrieval
tasks (e.g., Thakur et al. (2021)). We leave anal-
ysis on information retrieval tasks leveraging our
analysis pipeline for future studies. For example,
how high intra-sentence similarity is related to the
learned attention towards tokens that enable docu-
ment retrieval with better performance.
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semantic tokens, the spurious contextualization is
alleviated to a great extent.

B Expanded semantic space (Eased
Anisotropy)

We provide a visualization of embedding geometry
change in Figure 1.

We first use the vanilla mpnet to encode the STS-
B subset we have constructed. During fine-tuning,
we save the models every 200 steps and use them
to encode the subset, We find that with optimal
hyperparameters, the representations go through
less change after 200 steps. We perform UMAP
dimensionality reduction on embeddings provided
by models up to 1000 step to preserve better global
structure, and visualize only vanilla and 200-step
embeddings.

C Unadjusted measures of Section 2.5
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Figure 10: Unadjusted self similarity of tokens

Figure 10 and Figure 11 display respectively the
unadjusted avg. self similarity and intra-sentence
similarity. These values as we elucidated in pre-
vious sections, however, are likely to be artifact
of anisotropy, and therefore are supposed to be ad-
justed by the anisotropy baseline of each model,
based on the computation on randomly sampled
token pairs.

As shown in main sections, to offset the effect
of each model’s intrinsic non-uniformity, we adjust
them by the degree of anisotropy of each model,
based on pair-wise average similarity among 1000
token representations that we randomly sample
from each of the 1000 sentences (to avoid the sam-
pling to bias toward long sentences).
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Figure 11: Unadjusted intra-sentence similarity of to-
kens

D Temperature Search: why searching to
the order of magnitude by 10 is not
optimal?

We have also run the search range of temperature
in previous research, which is carried out to the
order of magnitude by 10. We compare the metrics
on the models run with these temperatures with the
vanilla mpnet model’s performance.

It is shown that, not all values of temperature
push the metrics from the vanilla baseline toward a
same direction. Therefore, there exists a relatively
optimal range to search, which is empirically im-
plemented in a few works (Yan et al., 2021; Zhang
et al., 2022), but few seems to have discussed why
the range should not be that large, while we show
this through the math analysis in Section 4 and their
contradicted performance on our studied metrics
here.

Specifically, for anisotropy baseline, temperature
being too low even augments the vanilla model’s
unideal behavior, and the same applies for L2-norm,
by that temperature being too low actually pushes
the embeddings even further from the origin.
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Figure 12: Anisotropy changes throughout training un-
der different temperatures
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Figure 13: L2-norm under different temperatures

For the adjusted self similarity and intra-
sentence similarity, the metrics for low tempera-
ture are largely offset by anisotropy, meaning that
for these temperature (especially τ = 0.001), to-
kens are not more similar to itself in different con-
texts, nor to other tokens they share contexts with,
compared to just with a random token in whatever
context.
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Figure 14: Self similarity under different temperatures,
adjusted by anisotropy baseline
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Figure 15: Intra-sentence similarity under different tem-
peratures, adjusted by anisotropy baseline

Gao et al. (2019) and Gao et al. (2021) take a
singular spectrum perspective in understanding reg-

ularization to anisotropy. Gao et al. (2019) propose
a regularization term to the original log-likelihood
loss in training machine translation model to mit-
igate the representation degeneration problem (or
anisotropy). The regularization is proportional to
Sum(WW T ) , where W is the stack of normal-
ized word embeddings. If all elements are posi-
tive, then minimizing Sum(WW T ) is equivalent
to minimizing the upper bound for the largest top
eigenvalue of Sum(WW T ). Therefore, this regu-
larization term shows theoretical promise to flatten
the singular spectrum and make the representation
more uniformly distributed around the origin. Gao
et al. (2021) extend this analysis to show the same
theoretical promise brought by the uniformity loss
proposed by Wang and Isola (2020), by deriving
that uniformity loss is in fact greater or equal to
1

τm2

m∑
i=1

m∑
j=1

hTi hj , which is also equivalent to flat-

tening the spectrum of the similarity matrix. Our re-
sults show that despite the intuition reached by sin-
gular spectrum perspective, the assumption could
probably only hold on a relatively optimal temper-
ature. Thus, the effect of temperature should be
considered using this perspective, which is beyond
the scope of this paper.

E Batch size

Batch size on the other hand, does not produce
impact as significant as temperature. We have run
three models with the optimal τ = 0.05 paired with
a batch size range of {16, 64, 256}.

The metrics yielded by different batch sizes all
stay in small range at the end of the epoch, al-
beit showing different rates and stability of conver-
gence.

0 800 1600 2400 3200 4000 4800
step*batch size/64 (normalized to align with batch size = 64)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

an
iso

tro
py

 b
as

el
in

e

last layer anisotropy baseline across steps
batch size = 16
batch size = 64
batch size = 256

Figure 16: Anisotropy changes throughout training un-
der different batch sizes
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Model k = 1 k = 2 k = 3 k = 5 k = 10 k = 20 k = 50 k = 100 k = 300 k = 700
mpnetvanilla .386 .338 .210 .169 .168 .182 .201 .195 .175 .040
mpnetfine-tuned .999 .998 .996 .994 .990 .983 .960 .922 .783 .229
minilmvanilla .993 .980 .970 .947 .886 .796 .559 .543 .375 /
minilmfine-tuned .998 .846 .836 .830 .817 .805 .768 .690 .285 /

Table 3: r2 between the similarity matrices of sampled token embeddings, before and after removing the same
top-k rogue dimensions from every token embedding.
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Figure 17: L2-norm under different batch sizes

0 800 1600 2400 3200 4000 4800
step*batch size/64 (normalized to align with batch size = 64)

0.32

0.33

0.34

0.35

0.36

0.37

0.38

se
lf 

sim
ila

rit
y 

(a
dj

us
te

d)

last layer avg. self-similarity (adjusted) across steps

batch size = 16
batch size = 64
batch size = 256

Figure 18: Self similarity under different batch sizes,
adjusted by anisotropy baseline

F Informativity

In this section we present the informativity analysis
outlined in Section 2. Specifically, after we iden-
tify how dominant are the top rogue dimensions, to
what degree is semantics affected with these rogue
dimensions removed? Do these dimensions only
have large mean but do not contribute to large vari-
ance? We sample 1k token embeddings to compute
their pair-wise similarity. After removing top-k di-
mensions from every embedding, we compute the
similarity matrix again, and compute the Pearson
Correlation r between flattened lower triangles of
the matrices of the two excluding their diagonals.
We then report the r2 which represents the propor-
tion of variance in the original similarity matrix
explained by the post-processed matrix.
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Figure 19: Intra-sentence similarity under different
batch sizes, adjusted by anisotropy baseline

At a high level, Table 3 shows that dominance
̸= informativity. Specifically, MiniLM presents a
misalignment between dominance toward similar-
ity computation and the actual information stored
in these dimensions. For instance, removing the
top 1 dominant dimension of minilmfinetuned seems
to not affect the embeddings’ relative similarity to
one another at all, preserving an r2 of .998. Also,
recall from Section 2 that contributions of dimen-
sions from minilmvanilla to similarity computation
are relatively flatter than mpnetvanilla, the results
show that along with the even more flattened con-
tributions after fine-tuning, the informativity seems
to have been reallocated. For instance, from remov-
ing k = 100 to k = 300, the explainable variance
goes down from .690 to .285, meaning this range
of dimensions store a lot more information com-
pared with the vanilla version. In general, that
minilmvanilla and minilmfine-tuned take turn to yield
higher r2 with top-k removed demonstrates that
there is generally no strong correlation between
dominance and informativity, but it is rather ran-
dom - especially when the dominance is already
quite evenly distributed in the vanilla model.

G Pooling Method

In line with previous analysis, this section presents
the measurement on different pooling methods. We
follow the same setting in Section 4 to also inves-
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tigate whether the patterns found in Section 2 are
only attributable to mean pooling. We compare
mean pooling with [cls] pooling and max pooling.
Albeit the different performance on the metrics,
contrastive learning in general presents consistent
behaviors across pooling methods, such as eased
anisotropy and enhanced intra-sentence similarity
For anisotropy, we observe that [cls] pooling shows
a slow convergence on producing isotropy. At the
end of the epoch, it is still on a decreasing trend.
By contrast, mean pooling and max pooling demon-
strate a faster convergence, with mean pooling be-
ing most promising on isotropy. Their performance
on L2-norm is also well-aligned, again showing
strong correlation between isotropy and L2-norm in
the training process utilizing contrastive loss. And
this correlation seems agnostic to pooling methods.
The following analysis focuses on their differences:
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Figure 20: Anisotropy changes throughout training un-
der different pooling methods
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Figure 21: L2-norm under different pooling methods

For self similarity, [cls] pooling and mean pool-
ing show a similar performance, which max pool-
ing deviates from.

Max pooling presents an "unacceptably" high
intra-sentence similarity. Although intra-sentence

similarity is a potentially ideal property uniquely
brought by contrastive learning, this metric could
not be over-intensified, as also shown in Section 4,
Appendix D, and Appendix E. There exists an ideal
range for intra-sentence similarity, compatible to a
model’s performance on other metrics.
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Figure 22: Self similarity under different pooling meth-
ods, adjusted by anisotropy baseline
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Figure 23: Intra-sentence similarity under different pool-
ing methods, adjusted by anisotropy baseline

H Self Similarity Change and Correlation
across Models

In Figure 24 we plot the Self Similarity Change
(SSC) across models (mpnet and MiniLM), for the
top 400 frequent tokens of the SST-b subset we
construct.

The Pearson correlation between the two accu-
mulated lists of the first [: n] tokens is also plotted.
The perfect correlation at the beginning is ignored
because the most frequent words at the top are the
[pad], [cls] and [sep] tokens. Excluding these, the
correlation reaches the peak at 204 as mentioned in
the main section, before which the correlation has
been slowly stabilized with more tokens consid-
ered, while starting to drop after. This shows that
the pattern mostly holds for tokens that are above
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Figure 24: Self Similarity Change

certain frequency, which again provides empirical
ground for our analysis on drawing connection of
self and intra-sentence similarity to frequency bias.
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