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Abstract

Comparative Opinion Quintuple Extraction
(COQE) aims to identify comparative opinion
sentences in product reviews, extract compar-
ative opinion elements in the sentences, and
then incorporate them into quintuples. Existing
methods decompose the COQE task into multi-
ple primary subtasks and then solve them in a
pipeline manner. However, these approaches ig-
nore the intrinsic connection between subtasks
and the error propagation among stages. This
paper proposes a unified generative model, Uni-
COQE, to solve the COQE task in one shot. We
design a generative template where all the com-
parative tuples are concatenated as the target
output sequence. However, the multiple tuples
are inherently not an ordered sequence but an
unordered set. The pre-defined order will force
the generative model to learn a false order bias
and hinge the model’s training. To alleviate this
bias, we introduce a new “predict-and-assign”
training paradigm that models the golden tuples
as a set. Specifically, we utilize a set-matching
strategy to find the optimal order of tuples. The
experimental results on multiple benchmarks
show that our unified generative model signifi-
cantly outperforms the SOTA method, and ab-
lation experiments prove the effectiveness of
the set-matching strategy.

1 Introduction

As an essential branch of opinion mining, compara-
tive opinion mining aims to explore the information
of comparisons in product reviews. Jindal and Liu
(2006b) first proposed the concept of comparative
opinion mining and introduces two primary sub-
tasks: Comparative Sentence Identification (CSI)
and Comparative Element Extraction (CEE). The
former aims to identify whether a given sentence
is a comparative sentence, while the latter aims to
extract all the comparative elements in a given com-
parative sentence. Panchenko et al. (2019) further
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Compara�ve Opinion Quintuple Extrac�on (COQE)

Canon’s op�cs and ba�ery are more reliable than those of Sony and Nikon.

Subjects:{Canon}

Objects:{Sony, Nikon}

Aspects:{op�cs, ba�ery}

Opinions: {more reliable}

Preference: {BETTER}

t1=(Canon, Sony, op�cs, more reliable, BETTER)

t2=(Canon, Sony, ba�ery, more reliable, BETTER)

t3=(Canon, Nikon, op�cs, more reliable, BETTER) 

t4=(Canon, Nikon, ba�ery , more reliable, BETTER)

Figure 1: An example of the Comparative Opinion Quin-
tuple Extraction (COQE) task. Given a product review
sentence, COQE aims to identify whether it is a com-
parative sentence, extract all the comparative elements
(if existing), and incorporate them into quintuples.

proposed the Comparative Preference Classifica-
tion (CPC) task, which seeks to predict the compar-
ative preference (BETTER, WORSE, or NONE) of
a provided comparative sentence.

In order to integrate various subtasks of com-
parative opinion mining, Liu et al. (2021) first pro-
posed the Comparative Opinion Quintuple Extrac-
tion (COQE) task (shown in Fig. 1). COQE aims
to identify comparative opinion sentences in prod-
uct reviews and extract five comparative opinion
elements in the sentences, i.e., comparative sub-
ject (sub), comparative object (obj), comparative
aspect (ca), comparative opinion (co) and compar-
ative preferences (cp), and then incorporate them
into a quintuple (sub, obj, ca, co, cp). Liu et al.
(2021) adopted a multi-stage model, decomposing
the COQE task into primary sub-tasks (CSI, CEE,
and CPC formerly mentioned), and then solving
them one by one in a pipeline manner. However,
the pipeline model ignores the internal connection
between multiple subtasks of comparative opinion
mining, and the error propagation between each
stage heavily strains the model’s performance.

To this end, we employ a generative extraction
model called UniCOQE for the first time on the
COQE task. We utilize T5 (Raffel et al., 2020) as
the backbone and propose a generative template to
adapt to the COQE task, identifying comparative
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sentences and extracting all quintuples once and
for all.

In the generation paradigm, we concatenate all
the golden comparative tuples together as the target
output sequence of the model. However, multiple
tuples are essentially not an ordered sequence but
an unordered set. If a pre-defined order is imposed,
it will introduce an order bias, forcing the gener-
ative model to learn the bias, which hinders the
model’s training. Taking Fig. 1 as an example,
there are four target tuples: t1, t2, t3, and t4. Theo-
retically, A4

4 = 24 types of permutations of target
tuples are all correct. During training, the model
would get “confused”: Why t1; t2; t3; t4 is correct
but t4; t3; t2; t1 is unacceptable?

In order to alleviate this order bias problem, we
introduce a “predict-and-assign” training paradigm
to the generative model. During the training phase,
we first let the model autoregressively predict com-
parative tuples in the given sentence. Subsequently,
we model the golden tuples as a set and use the
Hungarian algorithm (Kuhn, 1955) to match the
set of golden tuples with the predicted sequence to
find the optimal order of golden tuples.

Finally, we validate the performance of our ap-
proach on three COQE benchmarks. Experimental
results show that our model significantly outper-
forms SOTA methods, and the effectiveness of the
set-matching strategy is demonstrated through ab-
lation experiments.

The contributions of this paper can be summa-
rized as follows:

• We propose a generative comparative opinion
quintuple extraction model to solve the error
propagation problem of previous multi-stage
models.

• We introduce the “predict-and-assign” train-
ing paradigm based on a set-matching strategy
to alleviate the order bias of the generative
model during training.

• Our model significantly outperforms previ-
ous SOTA models, and ablation experiments
verify the effectiveness of the set-matching
strategy.

2 Related Works

As an important subtask of opinion mining, the task
of comparative opinion mining was first proposed
by Jindal and Liu (2006a,b), which aims to identify

comparative sentences in product reviews and ex-
tract all the comparative opinion elements (entities,
features, and comparative keywords). Specifically,
it used class sequential rules(Hu and Liu, 2006) to
identify comparative sentences and label sequential
rules to extract comparative elements.

Some subsequent studies concentrated on the
comparative sentence identification (CSI) task.
Huang et al. (2008) used diverse features (e.g., key-
words and sequential patterns) to recognize compar-
ative sentences. Park and Blake (2012) exploited
semantic and grammatical features to explore the
task of identifying comparative sentences in sci-
entific texts. Liu et al. (2013) recognized com-
parative sentences on Chinese documents based
on keywords, sentence templates, and dependency
analysis.

On the comparative element extraction (CEE)
task, Hou and Li (2008) used semantic role label-
ing (SRL) to analyze the structure of comparative
sentences and trains a conditional random field
(CRF) to extract comparative features. Some stud-
ies (Song et al., 2009; Huang et al., 2010; Wang
et al., 2015a) also used CRF as the extraction model.
Kessler and Kuhn (2013) further explored the ap-
plication of existing SRL methods to comparative
element extraction. Arora et al. (2017) proposed ap-
plying deep learning methods to comparative opin-
ion mining, mainly using an LSTM-CRF frame-
work to extract comparative elements.

Considering the early comparative opinion min-
ing tasks did not include the author’s comparative
preference, Ganapathibhotla and Liu (2008) pro-
posed the Comparative Preference Classification
(CPC) task for the first time, aiming to predict
which entity is preferred given a comparative sen-
tence and its comparative elements. It utilized a
keyword-based approach to identify comparative
preferences. Panchenko et al. (2019) used a pre-
trained encoder to encode sentences and classified
sentences’ comparative preference based on XG-
Boost (Chen and Guestrin, 2016). Ma et al. (2020)
employed a graph attention network to model the
syntactic parsing information of comparative sen-
tences to better predict comparative preferences.
Nevertheless, the premise of the CPC task is that
the two entities to be compared are annotated in ad-
vance, which is challenging to apply in real-world
scenarios.

Liu et al. (2021) first introduced the task of
comparative opinion quintuple extraction (COQE),
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 (Canon, Nikon, op�cs, more reliable, be�er) (Canon, Sony, ba�ery, more reliable, ber�er)

 (Canon, Sony, ba�ery, more reliable, be�er) (Canon, Nikon, op�cs, more reliable, ber�er)

Canon’s op�cs and ba�ery are more reliable than those of Sony and Nikon.

T5-Decoder

T5-Encoder

… …

… …

; ; ;

; ; ;

Golden Tuples:

Predicted Tuples:

Predict and Assign

BOS ( Canon
……

be�er ) ; ( Canon …… be�er ) ;
……

, Sony

Figure 2: An overview of the UniCOQE framework. We utilize T5 as the backbone of our generative model and
employ a “predict-and-assign” training paradigm to alleviate the order bias of the vallina generative model. During
training, we temporarily turn off the model’s gradient and let the model autoregressively predict the tuples. Then
we model the golden tuples as a set and use the Hungarian algorithm to match the set of golden tuples with the
predicted sequence to assign the optimal order of golden tuples.

which aims to extract quintuples (comparative sub-
ject, comparative object, comparative aspect, com-
parative opinion, comparative preference). Specif-
ically, it utilized a multi-stage model based on
BERT (Devlin et al., 2019) performing CSI, CEE,
and CPC tasks at each stage. Although this method
serialized multiple subtasks of comparative opinion
mining in a pipeline manner, the error propagation
across multiple stages undermined the model’s per-
formance.

In addition to subtasks such as CSI, CEE,
CPC, and COQE, some research directions are
also closely related to comparative opinion min-
ing. Comparative question answering system (Al-
hamzeh et al., 2021; Chekalina et al., 2021) allows
the machines to automatically answer the compara-
tive question “Is X better than Y with respect to Z?’.
Opinion tuple extraction (Jian et al., 2016; Peng
et al., 2020) and quadruple (Cai et al., 2021) extrac-
tion in traditional aspect-based sentiment analysis
aim to extract fine-grained opinion information in
the text.

Several studies have also explored the use of set-
matching strategies for generative models. In the
keyphrase extraction task, Ye et al. (2021) concate-
nate all the keyphrases as target outputs of Trans-
former (Vaswani et al., 2017) without predefining
an order. In the event argument extraction task, Ma
et al. (2022) introduces a scheme for optimal span

assignments of BART (Lewis et al., 2020). These
studies demonstrate the effectiveness of set match-
ing strategies in generative models, highlighting
their potential for improving the performance of
generative LMs.

3 Methodology

This section introduces the UniCOQE framework
in detail (as shown in 2). In this framework, we
model the COQE task as a natural language gener-
ation task. We use the generative pre-trained lan-
guage model T5 (Raffel et al., 2020) as the back-
bone model and adopt a generation template to
directly identify comparative sentences and output
the comparative quintuples therein in an end-to-end
manner. To further alleviate the order bias prob-
lem of the generative models, we introduce the

“predict-and-assign” training paradigm.

3.1 Task Formulation

We first formulate the COQE task as follows: Given
a product review sentence X =

{
x1, ..., xn

}
con-

taining n tokens, COQE aims to identify whether
it is a comparative sentence and (if so) extract all
comparative quintuples in it:

SX =
{
tup1, ..., tupk

}

=
{
(sub1, obj1, ca1, co1, cp1), ...,

(subk, objk, cak, cok, cpk)
} (1)
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where k is the number of comparative quin-
tuples extracted from comparative sentence X .
tup = (sub, obj, ca, co, cp) is an extracted quin-
tuple, where sub is the subject entity, obj
is the object entity, ca is the aspect being
compared, co is the opinion of the author
reflecting a comparative preference. cp ∈
{WORSE, EQUAL, BETTER, DIFFERENT} is
the comparative preference of the author.

3.2 COQE with Generative Paradigm

In this section, we introduce the generative
paradigms for the COQE task. We design a T5
generation template for end-to-end extraction of
quintuples. Examples are as follows:

Input: Canon’s optics and battery are more reli-
able than those of Sony and Nikon.
Target:
(Canon, Sony, optics, more reliable, BETTER);
(Canon, Sony, battery, more reliable, BETTER);
(Canon, Nikon, optics, more reliable, BETTER);
(Canon, Nikon, battery, more reliable, BETTER)

Input: Canon’s optics and battery are so great.
Target: (unknown, unknown, unknown, un-
known, unknown)

In the generative paradigm, k golden quintuples
are concatenated with “ ; ” as the target sequence
of the model. If a comparison element does not
exist, it is padded with the word “unknown”. If the
target sequence is“(unknown, unknown, unknown,
unknown, unknown)”, the corresponding input sen-
tence X is then considered a non-comparative sen-
tence. We call this approach the Vallina generative
paradigm.

Still, a problem exists with the Vallina generative
paradigm: The k target tuples are essentially an
unordered set, rather than an ordered sequence. The
training of the generative model is fundamentally
based on the cross-entropy loss, depending heavily
on the order of the target text sequence. In multi-
tuple scenarios, artificially predefining an order
can introduce a false order bias during training,
undermining the model’s performance.

3.3 Improving Generative COQE with
Predict-and-Assign Paradigm

To address the order bias problem, we introduce
a “predict-and-assign” training paradigm. The
paradigm incorporates two steps: predicting step
and assigning step.

3.3.1 Predicting Stage
For the input sentence X =

{
x1, ..., xn

}
, during

the training phase, we temporarily turn off the gra-
dient backpropagation of the model and send X
into the T5-encoder to get the latent representation
of the sentence :

henc = Encoder(X) (2)

We then used T5-decoder to predict all the com-
parative quintuples autoregressively. At the cth
moment of the decoder, henc and the previous out-
put tokens: t1:c−1 are utilized as the input into the
decoder:

hdecc = Decoder(henc, t1:c−1) (3)

The conditional probability of token tc is defined
as follows:

P (tc|t1:c−1, X) = Softmax(hdecc W + b) (4)

where W ∈ Rdh×|V|, b ∈ R|V|. V here refers to
the vocabulary size of T5. Then the final predicted
sequence of tuples is:

Tpred = t1:m = {t1, ..., tm} (5)

where m is the length of the predicted sequence.
We split Tpred with the semicolon symbol “ ; ” to
get a set of comparative quintuple predicted by the
model: Qpred = {tuppred1 , ..., tuppredl }.

3.3.2 Assigning Stage
Given two tuples: p and g, we define the similarity
score between p and g as follows:

sim(p, g) =
1

n

n∑

k=1

IoU
(
p(k), g(k)

)
(6)

where n is the number of elements in tuples. In
our case, n = 5 constantly for we have five ele-
ments(i.e., sub, obj, ca, co, and cp) in the compara-
tive quintuples. IoU here refers to the “intersection
over union” of the two token sequences, and k
refers to the index of the element (e.g., k = 3 for
ca). Therefore, IoU(p(k), g(k)) calculates the IoU
score of the k-th element of both tuples. We eventu-
ally take the average IoU score of all five elements
as the similarity score of two tuples. For example,
in Fig. 3, we have tuple p1 = (Canon, Nikon, sen-
sors, less stable, WORSE), and g2 = (Canon, Sony,
sensors, less stable, WORSE), the element-wise
IoU scores are 1, 0, 1, 1, and 1, respectively. So the
similarity score between p1 and g2 is 0.8.
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Predict-and-Assign Paradigm

Input: Canon’s batteries are more reliable than those of Sony, but Canon’s sensors are less 
stable than those of Sony and Nikon.

p1=(Canon, Nikon, sensors, less stable, WORSE)

p2=(Canon, Sony, batteries, more reliable, BETTER)

p3=(Canon, Sony, sensors, less stable, WORSE)

Predicted Quintuples: 

g1=(Canon, Sony, batteries, more reliable, BETTER)

g2=(Canon, Sony, sensors, less stable, WORSE)

g3=(Canon, Nikon, sensors, less stable, WORSE)

Golden Quintuples: 321 g;g;gQgold 

Cost Matrix:  

p1

p2

p3

C
g1       g2      g3

0.80 0.20 0.00 

0.60 0.00 0.20 

0.00 0.60 0.80 
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p1

p2

p3

g1

g2

g3

321 ;; pppQpred 

̂ = 213 ;; ggg

Assignment

Re-Arranged   goldQ (Canon, Nikon, sensors, less stable, WORSE);

(Canon, Sony, batteries, more reliable, BETTER);

(Canon, Sony, sensors, less stable, WORSE)

= 

Figure 3: An example of the predict-and-assign paradigm.

We then define the assignment cost between p
and q:

cost(p, g) = 1− sim(p, g) (7)

For the ground-truth tuple set Qgold =

{tupgold1 , ..., tupgoldK }, we aim to find a permuta-
tion π̂ of Qgold, so that π̂(Qgold) is the most similar
sequence to the tuples predicted by the model in
predicting stage (Section.3.3.1). This is essentially
an assignment (a.k.a binary matching) problem.

Formally, to find an optimal order of ground-
truth tuples Qgold, we search for a permutation π̂
that minimizes the total assignment cost:

π̂ = arg min
π∈Π(K)

Cmatch

(
π∗(Qpred), π(Qgold)

)
(8)

where K is the number of tuples in Qgold. Π(K)
is the space of permutations of K tuples in Qgold.
π∗(Qpred) is the predicted sequence of tuples in
Formula (5). This process of finding the optimal
assignment can be solved efficiently by Hungarian
algorithm (Kuhn, 1955). Cmatch(π

∗, π̂) is the total
pair-wise matching cost between permutation π∗

and permutation π̂. The assignment cost can be
defined as follows:

Cmatch

(
π∗(Qpred), π(Qgold)

)

=
s∑

i=1

cost
(
π∗(Qpred)i, π(Qgold)i

) (9)

where s = min(|Qpred|, |Qgold|) is the mini-
mum number of tuples between Qpred and Qgold.

Car-COQE Ele-COQE Camera-COQE
#Subject 1520 950 1649
#Object 2121 1980 1316
#Aspect 1917 1602 1368

#Opinion 2171 2089 2163
#Preference 2695 2289 2442

#Comparative 1747 1800 1705
#Non-Comparative 1800 1800 1599

#Multi-Comparisons 550 361 500
#Comparisons Per Sent 1.5 1.3 1.4

Table 1: Statistics of three COQE datasets.

π∗(Qpred)i and π(Qgold)i refer to the ith tuple in
π∗(Qpred) and π(Qgold) respectively.

After assigning the new order of the golden tu-
ples, we take the new order as the training target of
the model and re-open the gradient backpropaga-
tion to restart training.

4 Experiments

4.1 Datasets
We conduct experiments on three COQE datasets
released by Liu et al. (2021): Camera-COQE, Car-
COQE, and Ele-COQE:

• Camera-COQE contains English product re-
views in the camera domain. This dataset is
based on Kessler and Kuhn (2014), complet-
ing the annotations of comparative opinions
(co) and comparative preferences (cp).

• Car-COQE contains Chinese product re-
views in the automobile domain. This
dataset is based on the Car dataset in the
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Camera-COQE Car-COQE Ele-COQE
Models CSI COQE CSI COQE CSI COQE
Multi-StageCSR-CRF 65.38 3.46 86.90 5.19 88.30 4.07
JointCRF 82.14 4.88 89.85 8.65 85.97 4.71
Multi-StageLSTM 87.14 9.05 92.68 10.28 96.25 14.90
Multi-StageBERT 93.04 13.36 97.39 29.75 98.31 30.73
UniCOQE 95.21 31.95 98.28 36.55 98.41 35.46

Table 2: Results of different approaches for CSI and COQE under the Exact Match metric.

COAE2012/2013 (Tan et al., 2013), supple-
mented with annotations of comparative opin-
ions (co) and comparison preferences (cp).

• Ele-COQE similarly derives from the
electronic product review dataset in
COAE2012/2013 (Tan et al., 2013), which
contains Chinese comparative product
reviews of electronic products.

The statistics of the three datasets are demon-
strated in Table 1. Each dataset contains both non-
comparative and comparative sentences. #Com-
parative indicates the number of comparative
sentences, and #Non-Comparative refers to the
number of non-comparative sentences. #Multi-
Comparisons is the number of comparative sen-
tences containing multiple comparisons.

4.2 Experimental Setup
We employ T5 as the backbone model. We uti-
lize T5 for the English dataset and Multilingual T5
(mT5) (Xue et al., 2021) for the Chinese datasets.
We did not choose the Chinese T5 model because
there are multiple non-Chinese characters (i.e.,
product names and versions) in the Car-COQE and
Ele-COQE. We employ T5-base and mT5-base pro-
vided by Huggingface1 library for experiments. For
T5 and mT5, we set the batch size to 24 and 10,
respectively. The learning rates of both models are
set to 3e-4. We train T5 for 60 epochs and mt5 for
30 epoches.

4.3 Evaluation Metrics
Following the setting of Liu et al. (2021), for the
comparative sentence identification (CSI) task, We
report the Accuracy metric. For the COQE task, we
consider three matching strategies: Exact Match,
Proportional Match, and Binary Match. These
three metrics measure the F1 scores to varying de-
grees on the predicted tuples by the models.

1https://github.com/huggingface/transformers

Specifically, for the three metrics, we define
#correcte, #correctp, #correctb as follows:

#correcte =

{
0, ∃(gk ̸= pk)
1, otherwise

(10)

#correctp =

{
0, ∃(gk ̸= pk = ∅)∑

k len(gk∩pk)∑
k len(pk)

, otherwise

(11)

#correctb =

{
0, ∃(gk ∩ pk = ∅)
1, otherwise

(12)

where gk is the kth element of a golden comparison
quintuple, and pk is the kth element of a predicted
comparison quintuple. len(·) represents the length
of the comparison element.

4.4 Baseline Models
We take the following baseline models for compar-
ison :

Multi-StageCSR-CRF (Jindal and Liu, 2006a)
uses an SVM based on CSR features to identify
comparative sentences and uses a CRF to extract
comparative elements.

JointCRF (Wang et al., 2015b) uses CRF to
jointly extract comparative sentences and compara-
tive elements.

Multi-StageLSTM (Liu et al., 2021) utilizes an
LSTM as a text encoder. The method decomposes
the COQE task into three subtasks: comparative
sentence identification, comparative element ex-
traction, and comparative preference classification,
and solves these subtasks successively in a pipeline
manner.

Multi-StageBERT (Liu et al., 2021) is a variant of
Multi-StageLSTM, specifically, replacing the text
encoder with BERT.

4.5 Main Results
In Table.2, we report the performance of all five
methods on the two tasks of CSI and COQE on
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Dataset Model Exact Proportional Binary

Camera-COQE Vallina Gen 28.88 39.95 41.88
UniCOQE 31.95 42.39 44.44

Car-COQE Vallina Gen 34.85 48.27 50.42
UniCOQE 36.55 51.60 53.80

Ele-COQE Vallina Gen 35.08 50.86 53.40
UniCOQE 35.46 51.47 54.05

Table 3: Ablation study of the set-matching strategy.

Dataset Model Exact Proportional Binary

Camera-COQE (mt) Vallina Gen 31.38 38.11 39.03
UniCOQE 35.25 41.70 42.65

Car-COQE (mt) Vallina Gen 29.58 40.05 42.10
UniCOQE 31.32 43.80 45.85

Ele-COQE (mt) Vallina Gen 25.37 39.91 42.54
UniCOQE 27.07 41.94 44.23

Table 4: Results under multi-tuple scenarios. “mt” indicates we use the multi-tuple data in the test set for evaluation.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of Epochs
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Number of Exchanged Multi-Tuples during Training

Car-COQE
Ele-COQE

Camera-COQE

Figure 4: Number of exchanged multi-tuples during
training.

the three datasets: Camera-COQE, Car-COQE, and
Ele-COQE. For CSI, we report the Accuracy metric.
All indicators are in the case of Exact Match.

Experimental results show that the UniCOQE
model achieves the best performance on all three
datasets on both the CSI task and the COQE
task. The two CRF-based methods generally yield
the lowest performance on both tasks. Multi-
StageLSTM achieves relatively better performance.
On the CSI task, Multi-StageBERT has already
achieved rather satisfactory results of Accuracy:
93.04, 97.39, and 98.31 on three datasets. How-
ever, it is notable that our UniCOQE model still
outperforms Multi-StageBERT by 2.17, 0.89, 0.10
percent.

On the COQE task, the UniCOQE model

achieves 18.59, 6.80, and 4.73 percent of improve-
ment on the Camera-COQE Car-COQE and Ele-
COQE datasets, respectively. It is worth noting that
the advantage of our UniCOQE model over other
models is more evident on the English dataset than
on the Chinese datasets. One possible explanation
is that mT5, a multilingual version of the T5, in-
volves the pre-training of multiple languages and
has a more expansive vocabulary list, which would
weaken the model’s performance on monolingual
datasets.

4.6 Influence of the Set-Matching Strategy
In Table.3, we show the impact of the set-matching
strategy over the generative model. The experi-
mental results show that compared with the Val-
lina generative model, the set-matching strategy
has improved the model’s performance on Camera-
COQE, Car-COQE, and Ele-COQE datasets under
all three metrics. It reveals that the set-matching
strategy indeed finds a better order of tuples, help-
ing the model better learn the data distribution.

4.7 Multi-Tuple Scenarios Results
To measure the model’s effectiveness on the multi-
tuple data, we only use the multi-tuple data in the
test set for evaluation. We demonstrate the multi-
tuple scenario results in Table.4. The experimental
results show that the set-matching strategy has con-
siderably improved the model’s performance on
multi-tuple data. Taking the Exact match metric
as an example, compared to the Valiina generative
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Example.1 @ 1st epoch	

Example.2 @ 15th epoch	

Input:   The main reason I chose this model over both the SD 550 and the SD 450 , even though the

           550 had a higher megapixel CCD , was that it has more of these features .

Default Target: (550, this model, megapixel CCD, higher, be�er) ; (this model, SD 550, features,

                      over, be�er) ; (this model, SD 450, features, over, be�er)

Re-ordered Target:  (this model, SD 550, features, over, be�er) ; (this model, SD 450, features, over,

be�er) ; (550, this model, megapixel CCD, higher, be�er)

Cross Entropy Loss: 1.435

Cross Entropy Loss: 0.598

Input:  Frankly , it 's just as capable as the D200 EXCEPT for the lower frame rate .

Default Target:  (it, D200, NONE, as capable, equal) ; (it, D200, frame rate, lower, worse)

Re-ordered Target:  (it, D200, frame rate, lower, worse) ; (it, D200, NONE, as capable, equal)

Cross Entropy Loss:  2.244

Cross Entropy Loss:  0.032

Figure 5: Case study of the set-matching strategy.

paradigm, UniCOQE obtains 3.87, 1.74, and 1.70
percent of improvements on the Camera-COQE,
Car-COQE, and Ele-COQE, respectively.

4.8 Exchanges of Multi-Tuples
Fig. 4 exhibits the number of exchanges of multi-
tuples during the training process of UniCOQE.
During the first ten epochs, the number of tuple
exchanges keeps on increasing. Around the 11th
epoch, all three datasets reach their peak, and the
number becomes stabilized. The number of tuple
exchanges on Camera and Car is both stabilized at
around 140. In contrast, the Electronic dataset is
stabilized at around 60, for the Electronic domain
has fewer multi-tuple data.

4.9 Case Study
In Fig. 5, we illustrate the effect of the tuple-
matching strategy on T5’s training procedure. Tak-
ing Example.1 as an instance, we can observe that
at the very beginning of the model’s training (epoch
1), if we follow the default “golden” sequence or-
der, the calculated cross-entropy loss will be 1.453.
However, if we assign a new tuple order accord-
ing to our set-matching strategy, the new loss will
become 0.598. The phenomenon is more evident
as the training epoch increases. As demonstrated
in Example 2, at epoch 15, the default tuple order
would end up with a loss of 2.244, whereas the
loss of the newly assigned order is much smaller:
0.032.

5 Conclusion

In this paper, we investigate the task of compar-
ative opinion quintuple extraction. To overcome

the error propagation problem of previous pipeline
models, we propose an extraction model based on
the generative paradigm. We further introduce a
set-matching strategy based on the Hungarian algo-
rithm to alleviate the order bias of the generative
model during training. The experimental results
show that our model significantly outperforms the
SOTA models, and we verify the effectiveness of
the set-matching strategy through in-depth experi-
ments.

6 Limitations and Future Works

We summarize the limitations of our work as fol-
lows:

• We only validate the effectiveness of the set-
matching strategy for generative models on
the COQE task.

• We observe that the scale of the COQE
datasets is quite small and has caused the
model’s overfitting problem.

In the future, we will conduct further research
from the following perspectives:

• Explore further application of the set-
matching strategy in multiple research direc-
tions, such as information extraction, senti-
ment analysis, etc.

• Utilize unsupervised data to better help the
models mine comparative opinion informa-
tion.

• Design data augmentation methods to relieve
the data sparsity problem.
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