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Abstract

We propose EAR, a query Expansion And
Reranking approach for improving passage re-
trieval, with the application to open-domain
question answering. EAR first applies a query
expansion model to generate a diverse set of
queries, and then uses a query reranker to se-
lect the ones that could lead to better retrieval
results. Motivated by the observation that the
best query expansion often is not picked by
greedy decoding, EAR trains its reranker to
predict the rank orders of the gold passages
when issuing the expanded queries to a given
retriever. By connecting better the query ex-
pansion model and retriever, EAR significantly
enhances a traditional sparse retrieval method,
BM25. Empirically, EAR improves top-5/20
accuracy by 3-8 and 5-10 points in in-domain
and out-of-domain settings, respectively, when
compared to a vanilla query expansion model,
GAR, and a dense retrieval model, DPR.1

1 Introduction

Open-domain question answering (QA) (Chen and
Yih, 2020), a task of answering a wide range of fac-
toid questions of diversified domains, is often used
to benchmark machine intelligence (Kwiatkowski
et al., 2019) and has a direct application to ful-
filling user’s information need (Voorhees et al.,
1999). To provide faithful answers with prove-
nance, and to easily update knowledge from new
documents, passage retrieval, which finds relevant
text chunks to given questions, is critical to the
success of a QA system. Retrieval in early open-
domain QA systems (Chen et al., 2017) is typi-
cally based on term-matching methods, such as
BM25 (Robertson et al., 2009) or TF-IDF (Salton
et al., 1975). Such methods are sometimes called
sparse retrievers, as they represent documents and
queries with high-dimensional sparse vectors, and
can efficiently match keywords with an inverted

1Source code: https://github.com/voidism/EAR.

index and find relevant passages. Despite their sim-
plicity, sparse retrievers are limited by their inabil-
ity to perform semantic matching for relevant pas-
sages that have low lexical overlap with the query.
Lately, dense retrievers (Karpukhin et al., 2020),
which represent documents and queries with dense,
continuous semantic vectors, have been adopted by
modern QA systems. Dense retrievers usually out-
perform their sparse counterparts, especially when
there exists enough in-domain training data.

However, dense retrievers have certain weak-
nesses compared to sparse ones, including: 1) be-
ing computationally expensive in training and in-
ference, 2) potential information loss when com-
pressing long passages into fixed-dimensional vec-
tors (Luan et al., 2021), which makes it hard
to match rare entities exactly (Sciavolino et al.,
2021), and 3) difficulty in generalizing to new do-
mains (Reddy et al., 2021). As a result, dense re-
trievers and sparse ones are usually complementary
to each other and can be combined to boost perfor-
mance. Recent studies on query expansion, such
as GAR (Mao et al., 2021a), have attempted to im-
prove sparse retrievers by adding relevant contexts
to the query using pre-trained language models
(PLMs), which has been shown effective in closing
the gap between sparse and dense retrievers.

In this paper, we introduce a novel query
Expansion And Reranking approach, EAR, which
enhances generative query expansion with query
reranking. EAR first generates a diverse set of ex-
panded queries with query expansion models, and
then trains a query reranker to estimate the quality
of these queries by directly predicting the rank or-
der of a gold passage, when issuing these queries
to a given retriever, such as BM25. At inference
time, EAR selects the most promising query expan-
sion as predicted by the query reranker and issues
it to the same retriever to find relevant documents.
EAR is motivated by a simple observation—while
the greedy decoding output of a query expansion
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Figure 1: (a) Standard BM25 pipeline (b) Generation-Augmented Retrieval (GAR) with BM25 (c) Our proposed
Expand and Rerank (EAR) pipeline.

Model Top-1 Top-5 Top-20 Top-100

1) BM25 22.1 43.8 62.9 78.3
2) DPR 43.0 66.4 78.5 85.0
3) GAR (greedy) 37.0 60.8 73.9 84.7
4) GAR (beam=10) 38.6 61.6 75.2 84.8
5) GAR best query 68.8 81.9 88.1 92.0
6) GAR concat 39.5 60.3 72.7 83.6

Table 1: The potential top-k retrieval accuracy that can
be achieved by query reranking on Natural Questions.
GAR uses greedy-decoded/beam-searched queries; GAR
best query randomly samples 50 queries and picks the or-
acle one with the best retrieval scores; GAR concat sim-
ply concatenates all 50 queries as a single long query.

model, such as GAR, could be suboptimal, some
randomly sampled query expansions achieve su-
perior performance with BM25 (see Section 2.2).
EAR better connects the query expansion model
and the underlying retrieval method, and thus can
select a more suitable query.

We empirically evaluated EAR in both in-domain
and cross-domain settings. Our in-domain experi-
mental results on Natural Questions and TriviaQA
show that EAR significantly improves the top-5/20
accuracy by 3-8 points. For the cross-domain set-
ting, while the query expansion model suffers from
substantial performance degradation when applied
to new domains, EAR seems to be more domain-
agnostic, and can still find useful queries from a
diverse set of query expansions, which leads to a
significant improvement over GAR and DPR by
5-10 points for top-5/20 accuracy.
Our contributions can be summarized as follows:

• We proposed EAR to select the best query
from a diverse set of query expansions, by
predicting which query can achieve the best
BM25 result. This improves the connection of
query expansion models and BM25, resulting
in enhanced performance that surpasses DPR.

• EAR not only performs well on in-domain
data, but also shows strong generalization abil-

ities on out-of-domain data, outperforming
GAR and DPR by a large margin.

• End-to-end evaluation with a generative
reader demonstrates the benefits of EAR in
improving the exact match score.

• Lastly, we show that the improvements pro-
vided by EAR and passage reranking are com-
plementary, allowing for effective aggregation
of performance gains from both methods.

2 Background

2.1 Generation-Augmented Retrieval
Generation-Augmented Retrieval (GAR) (Mao
et al., 2021a) aims to enhance sparse retrievers by
query expansion with text generation from PLMs.
Given the initial query, GAR generates relevant con-
texts including the answer, answer sentence, and ti-
tle of answer passages, and then concatenates them
to the initial query before performing retrieval with
BM25. GAR achieves decent performance close
to that of DPR while using the lightweight BM25
retriever. However, a limitation is that GAR is not
aware of the existence of BM25, potentially gener-
ating suboptimal queries for retrieval. Additionally,
GAR is only trained on in-domain data, limiting
their ability to transfer to out-of-domain data.

2.2 Preliminary Experiments
Let us first take a look at some preliminary ex-
perimental results to better understand the mo-
tivation of this paper. In Table 1, we present
the top-k retrieval results on Natural Ques-
tions (Kwiatkowski et al., 2019) for BM25, DPR,
and GAR (greedy/beam search) in rows 1-4. To
investigate the potential of GAR, we randomly sam-
pled 50 query expansions from GAR, ran BM25
separately for these queries, and chose the best one
by looking at the BM25 results, which requires
ground truth labels. The resulting scores are shown
in row 5 (GAR best query).
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From the results, we see that GAR best query
can lead to a significant improvement of up to 20
points compared to DPR. Since we do not have
access to labels for selecting the best query in real-
ity, a naive solution is to concatenate all 50 query
expansions together as a single, long query, which
will definitely include high-quality expansions if
they exist. However, as shown in row 6, the per-
formance of GAR concat is even worse than that
of GAR alone with greedy decoding outputs. This
indicates that the single long query may include too
much distracting information, negatively impacting
the performance of the BM25 retriever.

From these preliminary results, we reach two
conclusions: 1) GAR does have the ability to gen-
erate very useful query expansions; 2) however,
the useful query expansions may not always be in-
cluded in the GAR greedy decoding outputs. It is
non-trivial to extract these useful query expansions
from GAR. Motivated by these findings, we lever-
age a query reranker to estimate if a query will be
beneficial to BM25 retrieval results, so as to unlock
the potential of GAR and sparse retrievers.

3 Proposed Method

We illustrate our proposed method, EAR, in Fig-
ure 1, along with a comparison with the BM25
and GAR pipelines. Given the original query
q, EAR first generates a set of query expansions
E = {e1, e2, ..., en} using random sampling. We
believe that among these n queries, some may
achieve very good retrieval performance. Thus,
we train a reranker model M to re-score all the
queries. Here we propose two kinds of rerankers: 1)
retrieval-independent (RI) reranker, and 2) retrieval-
dependent (RD) reranker. Both rerankers can es-
timate the quality of a query expansion without
using information from answer annotations.

3.1 Retrieval-Independent (RI) Reranker

The inputs to the RI reranker are quite simple:
(q, ei), which consists of the original query q and
one of the query expansions ei. When training
this reranker, we first obtain the minimum answer
passage ranking among all retrieved passages for
each query, when issued to a BM25 retriever. We
denote this minimum answer passage ranking as
R = {r1, r2, ..., rn}, which corresponds to each of
the expanded queries {(q, e1), (q, e2), ..., (q, en)}.

To clarify the concept, let us consider an example
with two query expansions, e1 and e2. Say the ex-

panded query (q, e1) retrieves the answer passage
as the top result (first position), we assign r1 = 1.
Similarly, we assign r2 = 15 if the expanded query
(q, e2) retrieves the answer passage in the 15th po-
sition. In this case, we conclude that e1 is a better
query expansion than e2 since its corresponding
ranking value, r1, is lower than r2.
ri can be seen as the score that can be obtained

by the query of (q, ei), with smaller ri correspond-
ing to better quality of (q, ei). We now train a
scoring model to estimate the rank ri for given in-
puts (q, ei). However, considering that the scoring
model will be used as a reranker, we only need to
ensure the model’s relative accuracy of estimating
ri, rather than its absolute value. Thus, we em-
ploy a “contrastive” loss rather than a “regression”
loss, which is inspired by the contrastive method in
summarization re-scoring (Liu and Liu, 2021).

For all pairs of query expansions (ei, ej) such
that ri < rj (which means ei is a better expansion
than ej), the ranking loss is calculated as follows:

LRank =
∑

i,j∈[1,n]
ri<rj

max(0,M(q, ei)−M(q, ej)+(rj−ri)·α)

Here, M is a model that estimates the rank ri for
a given query expansion ei. Instead of predicting
the absolute rank of ri, the model M is trained to
predict the difference between ri and rj for each
pair of expansion (ei, ej).

The ranking loss LRank forces the model to es-
timate a lower rank for ei and a higher rank for
ej , such that the difference between M(q, ei) and
M(q, ej) is greater than the threshold (rj − ri) ·α,
where α is a scalar. If some of the expansions do
not retrieve the answer passages within the top-k
results (e.g. within the top-100 results), we assign
a constant value, MAX_RANK, to these expansions.

3.2 Retrieval-Dependent (RD) Reranker
The input to the RI Reranker only contains the orig-
inal query q and the expansion ei, which may not be
sufficient to distinguish good expansions from bad
expansions. For example, in Figure 1 (c), for the
original query Where do they grow hops in the US?,
it is easy to tell that Central and South America is
a bad expansion because the US is not in Central
and South America. However, for these two ex-
pansions: 1) Colorado, Arizona 2) Oregon, Idaho,
Washington, it is very hard to tell which one is bet-
ter without any external knowledge. To alleviate
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this problem, we propose the Retrieval-Dependent
(RD) Reranker, which is able to see the top-1 pas-
sages D = {d1, d2, ..., dn} retrieved by each query
expansion. 2 The inputs of RD reranker will con-
tain the original query q, the query expansions ei,
and the top-1 passage di. We train RD reranker
with the same ranking loss LRank, but replace the
model with M(q, ei, di).

3.3 Training Examples Construction

To construct training examples, we generate diverse
query expansions, run BM25 retrieval on them, and
train the rerankers based on the results. However,
using the GAR generators directly may not yield
diverse sequences and limit the rerankers’ learning,
since the GAR generators are trained with supervi-
sion and may have already overfit on the training
set, which would lead to almost identical gener-
ation samples. To address this, we propose two
alternatives: 1) Split the training set into K subsets,
train K different GAR generators on (K-1) subsets
and randomly sample from the remaining subset;
and 2) Use a large language model (LLM) such as
T0 (Sanh et al., 2021) to randomly sample query
expansions directly without fine-tuning. Both op-
tions performed equally well in our experiments
and will be further discussed in Section 6.1.

4 Experiments

4.1 Data

For in-domain experiments, we use two public
datasets for training and evaluation: Natural Ques-
tions (NQ) (Kwiatkowski et al., 2019) and Triv-
iaQA (Joshi et al., 2017). For out-of-domain
(cross-dataset) experiments, we directly evaluate
our in-domain models on three additional public
datasets without using their training sets: WebQues-
tions (WebQ) (Berant et al., 2013), CuratedTREC
(TREC) (Baudiš and Šedivỳ, 2015), and Enti-
tyQuestions (EntityQs) (Sciavolino et al., 2021).
(See dataset statistics in Appendix A.) All experi-
ments are performed with Wikipedia passages used
in DPR (Karpukhin et al., 2020), consisting of 21M
100-word passages from the English Wikipedia
dump of Dec. 20, 2018 (Lee et al., 2019).

2For RD reranker, we need additional computational costs
to retrieve the top-1 passage. However, this process can be ef-
ficiently parallelized for all queries using a lightweight BM25
retriever, so the required time is not excessive. We will discuss
the latency of EAR further in Section 7.

4.2 Setup

Model For sparse retrieval, we use Pyserini (Lin
et al., 2021) for BM25 with its default parame-
ters. For query rerankers, we use the DeBERTa
V3 base (He et al., 2021) model from Hugging-
face Transformers (Wolf et al., 2020). For RI
reranker, the input format is: [CLS] <question>
? <expansion> [SEP]; for RD reranker, the input
format is [CLS] <question> ? <expansion>
[SEP] <top-1 retrieved passage> [SEP].
Training details can be found in Appendix B.

Context Generator At training time, we use T0-
3B (Sanh et al., 2021) to randomly sample 50 query
expansions per question, as we mentioned in Sec-
tion 3.3. We add a short prompt, To answer this
question, we need to know, to the end of the origi-
nal question, and let T0-3B complete the sentence.
During inference, we still use the GAR generators
to randomly sample 50 query expansions per ques-
tion on the testing set, since the examples are not
seen during GAR training and the generations are
diverse enough. To speed up the inference process,
we de-duplicate the query expansions that appear
more than once. The average number of query ex-
pansions we use is 25 for Natural Questions and 34
for TriviaQA, respectively.

4.3 Baselines

We compare EAR with 1) DPR (Karpukhin et al.,
2020): a standard BERT-based dense retriever; 2)
BM25 (Robertson et al., 2009): a standard sparse
retriever based on term matching; 3) GAR (Mao
et al., 2021a): generation-augmented retrieval with
BM25; 4) Liu et al. (2022): a concurrent work that
uses a GAR-like generative model to perform beam
search decoding, followed by filtering to obtain
multiple expanded queries for performing multiple
retrievals with BM25, and then fusion of the re-
sults; and 5) SEAL (Bevilacqua et al., 2022): an au-
toregressive search engine, proposing constrained
decoding with the FM-index data structure that en-
ables autoregressive models to retrieve passages.

4.4 Result: In-Domain Dataset

We first train and evaluate EAR on NQ and Trivi-
aQA. In Table 2, we see that both EAR-RI and EAR-
RD improve the performance of GAR significantly.
EAR-RI improves the top-5/20/100 accuracy of
GAR by 1-2 points, while EAR-RD improves the
top-5 accuracy of GAR by 6-8 points, and the top-
20 accuracy by 3-5 points on both datasets. More-
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Model Natural Questions TriviaQA

Top-5 Top-20 Top-100 Top-5 Top-20 Top-100

Dense Retrieval

DPR 68.3 80.1 86.1 72.7 80.2 84.8

Lexical Retrieval

BM25 43.8 62.9 78.3 67.7 77.3 83.9
GAR 60.8 73.9 84.7 71.8 79.5 85.3
SEAL 61.3 76.2 86.3 - - -
Liu et al. (2022) 63.9 76.8 86.7 72.3 80.1 85.8

EAR-RI 63.2 76.4 85.9 73.4 80.8 85.9
EAR-RD 69.3 78.6 86.5 77.6 82.1 86.4

GAR best query 81.9 88.1 92.0 85.0 88.1 90.1

Fusion (Dense + Lexical) Retrieval

BM25 + DPR 69.7 81.2 88.2 71.5 79.7 85.0
GAR + DPR 72.3 83.1 88.9 75.7 82.2 86.3
Liu et al. (2022) + DPR 72.7 83.0 89.1 76.1 82.5 86.4

EAR-RI + DPR 71.1 82.5 89.1 76.4 83.0 87.0
EAR-RD + DPR 74.2 83.1 89.3 79.0 83.7 87.3

Table 2: Top-k retrieval accuracy (%) on the NQ and TriviaQA test sets. Numbers for prior work are cited from Liu
et al. (2022).

over, EAR-RD is significantly better than DPR ex-
cept for the top-20 accuracy on NQ. These results
show that it is possible for BM25 to beat dense
retrieval with the help of an optimized process to
generate high-quality query expansions. Additional
qualitative studies in Appendix E provide further
insight into how EAR works. We also report the
results of the best query from GAR, which presents
the potential performance upper bound that could
be achieved by query reranking. It suggests that
there is still room for EAR to improve if mecha-
nisms for more effective query selection are devel-
oped. At the bottom of Table 2, we present the
fusion retrieval results of combining EAR and DPR.
EAR-RD+DPR outperforms the fusion results of
BM25/GAR/Liu et al. (2022), showing the comple-
mentarity between EAR-RD and DPR.

4.5 Result: Cross-Dataset Generalization

To better evaluate the robustness of these models
for out-of-domain examples, we train our models
only on NQ or TriviaQA, and then test them on
WebQ, TREC, and EntityQs in a zero-shot man-
ner. The results are shown in Table 3. We observe
that when transferring from NQ or TriviaQA, DPR
experiences a decline in performance compared
to in-domain supervised training on WebQ.3 GAR

performs even worse than DPR on both WebQ and

3The in-domain DPR performs poorly on TREC since it
only has 1,125 training examples.

TREC. However, GAR performs better than DPR
on EntityQs, which is designed to challenge dense
retrieval by including many rare entities. Here we
also present the performance of GAR best query.
We see that although GAR transfers poorly on cross-
domain datasets, it still has the ability to generate
high-quality query expansions by random sampling.
This provides an opportunity for EAR to improve
performance. After adopting EAR, we see that
EAR-RI improves the performance of GAR by 2-4
points for top-5/20 accuracy, and EAR-RD further
boosts the performance of GAR by 5-10 points for
top-5/20 accuracy. Overall, EAR-RD outperforms
DPR except when transferring from TriviaQA to
WebQ.

These results suggest that query reranking is a
general technique that can work well even on out-
of-domain examples, showing that generating rele-
vant contexts (GAR) is largely dependent on the do-
mains, while judging which contexts may be more
beneficial to retriever is a more domain-agnostic
skill.

4.6 Result: End-to-end QA with FiD

To fully understand whether EAR can benefit end-
to-end QA systems, we further evaluate the exact
match scores with Fusion-in-Decoder (FiD) (Izac-
ard and Grave, 2021), a generative reader model
trained from T5-large (Raffel et al., 2020). We
take the FiD models that were pre-trained on
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Model
WebQuestions TREC EntityQuestions

Top-5 Top-20 Top-100 Top-5 Top-20 Top-100 Top-5 Top-20 Top-100

BM25 41.8 62.4 75.5 64.3 80.7 89.9 60.6 70.8 79.2

In-Domain Supervised

DPR† 62.8 74.3 82.2 66.6 81.7 89.9 - - -

Transfer from NQ

DPR† 52.7 68.8 78.3 74.1 85.9 92.1 38.1 49.7 63.2
GAR 50.0 66.0 79.0 70.9 83.9 92.4 59.7 71.0 79.8
EAR-RI 53.7 69.6 81.3 73.5 85.9 92.9 62.7 73.3 81.4
EAR-RD 59.5 70.8 81.3 80.0 88.9 93.7 65.5 74.1 81.5

GAR best query 78.9 85.4 90.3 93.1 95.5 97.1 78.6 85.2 90.9

Transfer from TriviaQA

DPR† 56.8 71.4 81.2 78.8 87.9 93.7 51.2 62.7 74.6
GAR 45.5 61.8 76.7 71.5 84.0 91.5 58.2 68.9 78.7
EAR-RI 49.6 67.1 79.6 74.2 86.2 92.5 62.1 72.0 80.4
EAR-RD 54.5 68.0 79.7 79.8 88.5 93.1 64.9 73.0 80.5

GAR best query 78.4 84.6 89.3 92.5 95.2 96.8 79.1 85.9 91.8

Table 3: Top-k retrieval accuracy on the test sets of three datasets for cross-dataset generalization settings. GAR
best query represents the performance upper bound we can achieve by selecting the best query according to the
labels. Numbers in bold are the best scores for each setting. †Results are provided by Ram et al. (2022).

Model NQ TriviaQA

Top-100 passages as input to FiD

DPR + Extractive 41.5 57.9
RAG 44.5 56.1
DPR + FiD 51.4 67.6
GAR + FiD 50.6 70.0
SEAL + FiD 50.7 -
Liu et al. (2022) + FiD 51.7 70.8

EAR RI + FiD 51.4 71.2
EAR RD + FiD 52.1 71.5

Top-10 passages as input to FiD

GAR + FiD 30.5 48.9
EAR RI + FiD 35.5 56.7
EAR RD + FiD 39.6 60.0

Table 4: End-to-end QA exact-match scores on the test
sets of NQ and TriviaQA. Numbers for prior work are
cited from Liu et al. (2022).

NQ/TriviaQA and directly test on our retrieval re-
sults without further fine-tuning. The exact match
scores using the top-100 retrieved passages as in-
put to FiD is shown at the top of Table 4. We
observe that EAR consistently outperforms previ-
ous work, including DPR, GAR, SEAL, and Liu
et al. (2022), on both NQ and TriviaQA. Although
these gains may appear relatively small, however,
this is primarily due to FiD’s ability to take the
top-100 retrieved passages as input and generate
answers using cross-attention across all passages.
Thus, even with low-ranked answer passages (say

the answer is in the 99th passage), it is still possible
that FiD could produce correct answers.

As there are many methods where relatively
smaller context windows compared to FiD are used,
especially when models are scaled up and cross-
attention becomes much more expensive, improv-
ing retrieval accuracy for smaller k may be bene-
ficial. For example, GPT-3 (Brown et al., 2020)
only has a context window size of 2048, which can
only support 10-20 passages as input. We explore
this setting by selecting only the top-10 retrieved
passages as input to FiD, and show the results at
the bottom of Table 4. EAR achieve significant im-
provement over GAR, roughly 10% in exact match
on both datasets, showing potential benefits for
methods with limited context window size.

5 Query Reranking vs Passage Reranking

EAR shares similarities with passage reranking
(PR). EAR reranks the queries before retrieving
the passages, while PR reranks the retrieved list
of passages after the retrieval process is com-
pleted. To better understand the relationship be-
tween EAR and PR, we implement a BERT-based
passage reranker, following the method outlined in
Nogueira and Cho (2019), to rerank the retrieval
results of GAR. The implementation details can be
found in Appendix C. From the experiments we
aim to answer three questions: 1) Is EAR better
than PR? 2) Are the contributions of EAR and PR
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Model
Natural Questions TriviaQA

Top-5 Top-20 Top-100 Top-5 Top-20 Top-100

BM25 43.8 62.9 78.3 67.7 77.3 83.9
GAR 60.8 73.9 84.7 71.8 79.5 85.3
GAR + Passage Rerank (k=25/k=32) 68.8 75.7 84.7 77.6 81.0 85.3
GAR + Passage Rerank (k=100) 71.7 80.2 84.7 79.2 83.3 85.3

EAR-RD 69.3 78.6 86.5 77.6 82.1 86.4
EAR-RD + Passage Rerank (k=100) 73.7 82.1 86.5 80.6 84.5 86.4

Table 5: Top-k retrieval accuracy (%) on the Natural Questions and TriviaQA test sets for comparison of query
reranking and passage reranking.

complementary? Can their performance gains be
aggregated if we apply both? 3) What are the extra
advantages of EAR compared to PR?

Is EAR better than PR? We focus on comparing
EAR-RD with PR, as EAR-RI is limited by its input,
being able to see only the short expanded queries.
On the other hand, EAR-RD has access to the top-1
passage retrieved by each query candidate, provid-
ing it with the same level of information as PR. In
Table 5, we first present the performance of PR
when reranking the same number of passages as
the average number of query candidates considered
by EAR (25 for NQ; 32 for TriviaQA), which can
be found in row 3. The result of EAR-RD (shown
in row 5) is better than row 3, indicating that when
considering the same amount of information as in-
puts, EAR-RD outperforms PR. However, when
PR is able to rerank a larger number of passages,
such as the top-100 passages shown in row 4, it
achieves better performance than EAR-RD. This
implies that EAR-RD is more effective when PR
can only access to the same level of information.

Are EAR and PR complementary? We found
that the effects of EAR-RD and PR can be ef-
fectively combined for even better performance.
When applying PR on the retrieval results of EAR-
RD (shown in row 6), we see a significant improve-
ment compared to both row 4 and row 5. This
suggests that the contributions of EAR-RD and
PR are complementary: EAR strengthens first-pass
retrieval by selecting good queries, while PR re-
scores all the retrieved passages and generates an
entirely new order for these passages. The dis-
tinction between these two mechanisms makes im-
provements accumulative and leads to superior re-
sults.

Extra advantages of EAR? An advantage of
EAR is that it improves retrieval results beyond
the top-k passages. In row 4, the top-100 accu-

Model Top-5 Top-20 Top-100

EAR-RI 63.2 76.4 85.9
EAR-RI holdout 63.6 76.3 86.0

EAR-RD 69.3 78.6 86.5
EAR-RD w/ DPR 65.7 78.7 86.3

Table 6: Top-k retrieval accuracy (%) on NQ for compar-
ison of the two different training example construction
methods and for EAR with dense retrievers.

racy cannot be improved by PR as it reranks within
the top-100 passages. In contrast, the improve-
ments provided by EAR are not limited to top-100
passages. As long as EAR selects good query ex-
pansions, it can improve the whole list of retrieved
passages; we can see EAR-RD improves the top-
100 accuracy of GAR from 84.7 to 86.5.

6 Discussions

6.1 Generating Training Examples with GAR

In Section 3.3, we discussed two methods to con-
struct training examples for EAR. In our main
experiments, we used T0-3B to randomly sample
diverse query expansions. An alternative method
was also explored, where we trained K = 5 dif-
ferent GAR models separately on (K − 1) training
subsets, then randomly sampled from the hold-out
sets. The performance of this method, as shown in
Table 6 (EAR-RI holdout), is slightly better than us-
ing T0-3B, but the difference is less than 0.5 points
on Top-5/20/100 accuracy. Therefore, we continue
to use T0-3B to generate training data in our main
experiments as it eliminates the need to train K
different GAR models separately.

6.2 EAR with Dense Retrievers
EAR is specifically optimized to work well with the
BM25 retriever and hence its performance may be
impacted when changing the retriever to DPR. As
shown at the bottom of Table 6, when coupled with
DPR, the top-5 accuracy of EAR-RD decreases,
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Figure 2: Top-k performance curves on NQ for EAR-RI and EAR-RD with a reduced candidate size N .

Model RI RD

EAR N=50 63.16 69.34
EAR N=30 63.02 68.86
EAR N=20 62.96 68.67
EAR N=10 62.60 67.62
EAR N=5 62.44 66.32

GAR baseline (N=1) 60.80

Table 7: Top-5 accuracy on NQ with different N . N
stands for the maximum number of query expansions
considered by the query reranker.

while the top-20/100 accuracy remains relatively
unchanged. This suggests that EAR is heavily re-
liant on the retriever, and thus changing the re-
triever negatively impacts its performance. Making
EAR work with DPR would require retraining with
DPR retrieval results and significantly more com-
pute. We leave this direction for future work.

6.3 Reducing the Query Candidate Size

In our experiments, we generate 50 query expan-
sions per question and then de-duplicate the re-
peated ones. However, we can also limit the maxi-
mum query expansions considered by our reranker
to trade off between efficiency and performance. In
Table 7 we show the top-5 accuracy of lowering the
maximum candidate size N from 50 to 30/20/10/5.
We observe that the performance drops gradually as
N decreases. However, we still see improvement
over GAR even when N = 5, showing that EAR

still works with a small candidate size. We also
show the curves of the top-k accuracy in Figure 2,
where we observe a big gap between DPR (solid
line) and GAR (dotted line with x mark). EAR-RI
gradually eliminates the gap as N increase, while
EAR-RD even matches DPR for k < 50 and out-
performs DPR for k ≥ 50 with a small N = 5.

Model Build
Index

Query
Expand

Query
Rerank

Retri-
eval

Index
Size

Top-5
(NQ)

DPR 3.5hr - - 22.4s 64GB 68.3
+HNSW 8.5hr - - 0.04s 142GB 68.0

BM25 0.5hr - - 0.15s 2.4GB 43.8
GAR 0.5hr 0.58s - 0.56s 2.4GB 60.8

EAR-RI 0.5hr 1.29s 0.04s 0.50s 2.4GB 63.2
EAR-RD 0.5hr 1.29s 0.84s 0.54s 2.4GB 69.3

Table 8: Latency per query for DPR/BM25/GAR/EAR.

7 Computational Cost and Latency

We report the latency of DPR, GAR, and EAR in
Table 8. Inference details can be found in Ap-
pendix D.

Dense Retrieval We first generate DPR docu-
ment embeddings on 4 GPUs for ∼3.5 hours on
21M documents. Standard indexing takes ∼10
minutes with a 64GB index size. Indexing with
the more advanced Hierarchical Navigable Small
World (HNSW) (Malkov and Yashunin, 2018)
takes ∼5 hours and results in a huge index size
of 142GB. For retrieval, standard indexing takes
22.3s per query, while the highly optimized HNSW
can shorten it to 0.04s per query.

Sparse Retrieval For BM25 with Pyserini, index-
ing only takes 0.5 hours, with a very small index
size of 2.4GB. Retrieval for BM25 takes 0.15s per
query. For GAR, it needs an extra 0.58s to generate
the query expansions, and retrieval time is 0.56s.
For EAR, it needs 1.29s to batch sample 50 query
expansions. EAR-RI only takes 0.04s to rerank
queries. EAR-RD needs extra time to retrieve the
top-1 passages for each expansion, which takes an
extra 0.70s, and then run the actual reranking pro-
cess, taking 0.14s, giving a total of 0.84s for query
reranking. For retrieval, the time needed for both
EAR-RI and EAR-RD is similar to GAR.

To conclude, EAR inherits the advantage of
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BM25: fast indexing time and small index size.
This makes it possible to index large collections
of documents in a relatively short amount of time,
which is important for tasks where documents are
frequently added or updated. The main cost for
EAR is the time for sampling query expansions.
However, this can potentially be reduced by speed-
up toolkits that optimize the inference time of trans-
formers, such as FasterTransformer 4 (3.8∼13×
speedup for decoding) or FastSeq (Yan et al., 2021;
7.7× speedup for BART decoding). Moreover, we
can leverage model distillation (Shleifer and Rush,
2020) and quantization (Li et al., 2022) for trans-
formers. We leave these directions for future work.

8 Related Work

Query Expansion and Reformulation Tradi-
tionally, query expansion methods based on pseudo
relevance feedback utilize relevant context with-
out external resources to expand queries (Roc-
chio, 1971; Jaleel et al., 2004; Lv and Zhai, 2010;
Yu et al., 2021). Recent studies attempt to re-
formulate queries using generative models, re-
lying on external resources such as search ses-
sions (Yu et al., 2020) or conversational con-
texts (Lin et al., 2020; Vakulenko et al., 2021), or
involve sample-inefficient reinforcement learning
training (Nogueira and Cho, 2017). More recently,
GAR (Mao et al., 2021a) explored the use PLMs
for query expansion instead of external resources.
A concurrent study (Liu et al., 2022) generates mul-
tiple expansions with beam search and filters and
fuses the results, but EAR is aware of the BM25
retriever and could select more promising query
expansions and run fewer BM25 retrievals.

Retrieval for OpenQA Sparse retrieval with lex-
ical features such as BM25 was first explored
for OpenQA (Chen et al., 2017). Dense retrieval
methods were shown to outperform sparse meth-
ods (Karpukhin et al., 2020; Guu et al., 2020),
while requiring large amounts of annotated data and
much more compute. Although powerful, dense re-
trievers often fall short in the scenarios of 1) requir-
ing lexically exact matching for rare entities (Sci-
avolino et al., 2021) and 2) out-of-domain gener-
alization (Reddy et al., 2021). For 1), Luan et al.
(2021) proposed a sparse-dense hybrid model, and
Chen et al. (2021) trained a dense retriever to imi-
tate a sparse one. For 2), Ram et al. (2022) created

4https://github.com/nvidia/fastertransformer

a pre-training task for dense retrievers to improve
zero-shot retrieval and out-of-domain generaliza-
tion. Another recent line of research explores pas-
sage reranking with PLMs to improve performance
for both sparse and dense methods. Nogueira and
Cho (2019) first explored BERT-based supervised
rerankers for standard retrieval tasks and Mao et al.
(2021b) proposed reranking by reader predictions
without any training. Sachan et al. (2022) attempt
to use an LLM directly as the reranker, but it re-
quires huge amounts of computation at inference
time and underperforms fine-tuned rerankers.

9 Conclusion

We propose EAR, which couples GAR and BM25
together with a query reranker to unlock the po-
tential of sparse retrievers. EAR significantly out-
performs DPR while inheriting the advantage of
BM25: fast indexing time and small index size com-
pared to the compute-heavy DPR. Cross-dataset
evaluation also shows that EAR is very good at gen-
eralizing to out-of-domain examples. Furthermore,
we demonstrate that contributions of EAR and pas-
sage reranking are complementary, and using both
methods together leads to superior results. Overall,
EAR is a promising alternative to existing dense
retrieval models, providing a new way to achieve
high performance with less computing resources.

Limitations

First, as EAR largely relies on GAR generators, the
performance of the method is closely tied to the
quality of the generator used. We have attempted to
use large language models such as T0-3B without
fine-tuning as a replacement for the GAR generator
during testing, but the performance becomes worse.
The main reason is that the quality of query ex-
pansions generated by T0-3B is too diverse, which
makes EAR has a higher chance to select from ter-
rible expansions. In contrast, the output quality of
GAR is more stable. We may need a more complex
mechanism that can exclude terrible query expan-
sion if we want to directly use the query expan-
sions generated by T0-3B during inference. Sec-
ond, EAR has demonstrated a strong generalization
ability to out-of-domain data, but the method may
still face challenges when transferring to other lan-
guages without any supervised QA data, which
GAR and EAR are trained on. Although challeng-
ing, we are still trying to train the EAR system
without supervised QA data.
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Ethics Statement

In this research, we used publicly available datasets
and we did not collect any personal information.
Our method is designed to improve the perfor-
mance of information retrieval systems, which can
have a positive impact on various applications,
such as search engines, QA systems, and other
applications that rely on text retrieval. When de-
ployed, however, our approach also poses the ethi-
cal risk typical of pre-trained language models, for
instance, producing retrieval results that contain
human biases which could potentially exacerbate
discrimination. Therefore, caution should be ex-
ercised before implementing our approach in real-
world situations and thorough audit of training data
and testing of model outputs should be conducted.
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A Dataset Statistics

We show the number of train/dev/test examples in
each dataset in Table 9.

Dataset Train Dev Test

Natural Questions 58,880 8,757 3,610
TriviaQA 60,413 8,837 11,313
WebQuestions - - 2,032
TREC - - 694
EntityQs - - 22,075

Table 9: Number of train/dev/test examples in each
dataset.

B Training Details

For the training set, we use T0-3B 5 to randomly
sample 50 query expansions per query. For the
dev set and test set, we use the three GAR genera-
tors (answer/sentence/title), which are BART-large
seq2seq models (Lewis et al., 2020) to generate
50 query expansions per query. We use the De-
BERTa V3 base model6, which has 86M parame-
ters that are the same as BERT-base (Devlin et al.,
2019), as EAR-RI and EAR-RD rerankers. For
the implementation of rerankers, we reference the
implementation of SimCLS (Liu and Liu, 2021)7,
which also does reranking for sequences. We start
from the code of SimCLS and change the loss func-
tion to our ranking loss LRank. During training,
we use the dev set generated from three GAR gen-
erators to pick the best checkpoints, resulting in
three different reranker models corresponding to
the answer/sentence/title generators.

The ranges we search for our hyperparameters
are shown in Table 10. Each training example in
our dataset contains 50 sequences (generated by
T0-3B). To prevent memory issues of GPU, we
used gradient accumulation to simulate a batch size
of 4 or 8, which effectively consists of 200 or 400
sequences, respectively.

The training time on a single NVIDIA V100
GPU is around 12 hours for EAR-RI and 1 to 2 days
for EAR-RD. The best hyperparameters according
to the dev set are shown in Table 11. However,
in our experiments, the variance between different
hyperparameters is actually quite small.

5https://huggingface.co/bigscience/T0_3B
6https://huggingface.co/microsoft/

deberta-v3-base
7https://github.com/yixinL7/SimCLS

Hyperparams Range

MAX_RANK [101, 250]
Batch size [4, 8]
Learning rate [2e-3, 5e-3]
Epochs (EAR-RI) 2
Epochs (EAR-RD) 3
Max length (EAR-RI) 64
Max length (EAR-RD) 256

Table 10: The range for hyperparameter search. The
definition of MAX_RANK is shown in Section 3.1.

Hyperparams answer sentence title

NQ: EAR-RI

MAX_RANK 101 250 101
Batch size 8 8 4
Learning rate 5e-3 2e-3 2e-3

NQ: EAR-RD

MAX_RANK 101 101 250
Batch size 4 4 8
Learning rate 2e-3 2e-3 2e-3

TriviaQA: EAR-RI

MAX_RANK 101 101 101
Batch size 8 8 8
Learning rate 2e-3 2e-3 2e-3

TriviaQA: EAR-RD

MAX_RANK 101 101 101
Batch size 8 8 8
Learning rate 2e-3 2e-3 2e-3

Table 11: The best hyperparameters for NQ and Trivi-
aQA dev sets.

C Passage Reranking

For the implementation of a BERT-based pas-
sage reranker, we generally follow the setting
of (Nogueira and Cho, 2019) for training. We sepa-
rately fine-tuned two bert-base-uncased models
on the NQ training set and the TriviaQA training
set. Each pre-trained BERT model is fine-tuned for
reranking using cross-entropy loss on the binary
classification head on top of the hidden state corre-
sponding to the [CLS] token. We use the top-10 out-
puts of BM25 ran on the training sets as the training
examples, which contains both positive and neg-
ative examples. We fine-tune the models using 2
GPUs with mixed precision (fp16) with a batch
size of 128 for 3 epochs. AdamW (Loshchilov
and Hutter, 2018) is used for optimization with a
learning rate of 5e-5, linear warmup over the first
10k steps and linear decay afterwards, and a weight
decay of 0.01.
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D Inference Details

For inference of GAR retrieval results, we
follow GAR to retrieve with three queries
generated by three context generators (an-
swer/sentence/title), and then fuse the three re-
trieved passages lists in the order of sentence,
answer, title. In other words, given the three
retrieved lists of passages: (a1, a2, ..., a100),
(s1, s2, ..., s100), (t1, t2, ..., t100), we fuse the re-
sults as (s1, a1, t1, s2, a2, t2, ..., s33, a33, t33, s34).
We skip all the duplicated passages that exist twice
during the fusion process.

For EAR, we use the same pipeline of GAR,
while the only difference is that instead of greedy
decoding, now the three generators of GAR can
do random sampling, and three different query
rerankers (answer/sentence/title) are applied to se-
lect the best queries. After that, the pipeline to
obtain retrieval results is exactly the same as GAR.

To fairly compare the latency of these methods,
we run the 3610 queries in NQ test set one-by-
one without batching (batch size = 1) and com-
pute the average the latency per query, where doc-
ument encoding, query expansion and reranking
are run on NVIDIA RTX A5000 GPUs and index-
ing and retrieval are run on fifty Intel Xeon Gold
5318Y CPUs @ 2.10GHz, for both FAISS (John-
son et al., 2019) (DPR) and Pyserini (Lin et al.,
2021) (BM25).

DPR document indexing We used 4 GPUs to
encode 21M Wikipedia passages in parallel with
mixed precision (fp16), which takes around 3.5
hours.

GAR and EAR For inference of GAR and EAR,
answer/sentence/title generators/rerankers are run
in parallel on three GPUs.

FiD We take the public checkpoints of FiD8,
which are trained from T5-Large (?) with
NQ/TriviaQA, to directly evaluate the end-to-end
QA performance.

E Qualitative Study

In this section, we aim to investigate the differences
between queries generated by GAR and EAR. We
first look at the lengths of the expanded queries for
GAR, EAR-RI, EAR-RD. In general, the lengths of
queries from EAR are slightly shorter than that of
GAR, but the trends are not very obvious. Thus,

8https://github.com/facebookresearch/FiD

Model answer sentence title

Original Query 9.2

GAR 13.3 38.8 32.3
EAR-RI 13.1 36.2 29.3
EAR-RD 13.2 38.2 28.8

Table 12: Lengths of the expanded queries in words for
different methods on NQ test set.

we conduct a qualitative study to see what is the
difference between these queries.

As shown in Table 13, we provide three exam-
ples to demonstrate how our method EAR works.
In the first example, the initial query only includes
two keywords, "Deadpool" and "released," that can
match the answer passage. As a result, the BM25
algorithm is unable to retrieve the correct passage
within the top results until the 77th passage. The
greedy decoding output for GAR also fails to re-
trieve the correct passage, as it includes many ir-
relevant name entities. However, both EAR-RI
and EAR-RD are able to select useful outputs from
GAR, which contain keywords such as “scheduled,”
“2018,” “Leitch,” and “in the United States.” Al-
though none of these keywords contains the real
answer May 18, 2018, these keywords already pro-
vide enough lexical overlap with the answer pas-
sage, allowing BM25 to correctly retrieve the an-
swer passage in the top-1 result.

For the second example, the original query only
contains three keywords “India’s,” “next,” and “star”
that can match the answer passage, so BM25 with
the original query cannot retrieve the correct pas-
sage within the top retrieved results until the 96th
passage. For GAR, the greedy decoding output
for GAR is also not effective, as it is a misleading
answer and only includes one useful keyword “win-
ner” and thus cannot retrieve the correct passage
within the top-100 results. For EAR-RI and EAR-
RD, they are able to select a sentence that, while
not containing the correct answer “Natasha Bharad-
waj” or “Aman Gandotra,” does include useful key-
words such as “winner,” “Superstar,” “Season,” and
“2018.” These keywords provide enough lexical
overlap with the answer passage, allowing EAR-
RI and EAR-RD to correctly retrieve the answer
passage in the top-1 result.

The third example presents a challenging sce-
nario. The initial query only includes two common
keywords, “method” and “writer,” which is diffi-
cult to match the answer passage. While BM25
is able to correctly retrieve the answer at the 92nd
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Model Query [Answer = May 18, 2018] Answer Rank

BM25 When is the next Deadpool movie being released? 77

GAR
When is the next Deadpool movie being released? Miller Brianna Hildebrand Jack >100Kesy Music by Tyler Bates Cinematography Jonathan Sela Edited by Dirk Westervelt...

EAR-RI When is the next Deadpool movie being released? Deadpool 2 is scheduled to be 1
released on May 26, 2018 , with Leitch directing.

EAR-RD When is the next Deadpool movie being released? The film is scheduled to be released 1
on March 7, 2018 , in the United States .

Answer Passage

"Deadpool 2" premiered at Leicester Square in London on May 10, 2018. It was released
in the United States on May 18, 2018 , having been previously scheduled for release

on June 1 of that year. Leitch ś initial cut of the film was around two hours and twelve minutes, ...

Model Query [Answer = Natasha Bharadwaj, Aman Gandotra] Answer Rank

BM25 Who has won India’s next super star? 96

GAR
Who has won India’s next super star? The winner of the competition is 18 year-old >100Mahesh Manjrekar from Mumbai.

EAR-RI Who has won India’s next super star? The winner of the Superstar Season 2018 1
is Siddharth Shukla.

EAR-RD Who has won India’s next super star? The winner of the Superstar Season 2018 1
is Siddharth Shukla.

Answer Passage

India’s Next Superstars (INS) is an Indian talent-search reality TV show, which premiered
on Star Plus and is streamed on Hotstar. Karan Johar and Rohit Shetty are the judges for the show.

Aman Gandotra and Natasha Bharadwaj were declared winners of the 2018 season ...

Model Query [Answer = Anthropomorphism, Pathetic fallacy, Hamartia, Personification] Answer Rank

BM25 Method used by a writer to develop a character? 92

GAR
Method used by a writer to develop a character? Developing a character is a technique >100employed by writers in the creation of a narrative.

EAR-RI
Method used by a writer to develop a character? Developing a character is the primary

>100method employed by writers in the creation of a fictional character.

EAR-RD
Method used by a writer to develop a character? Developing a character is a technique

>100employed by writers in terms of establishing a persona and building a relationship
between the reader and the character.

Answer Passage

The intensive journal method is a psychotherapeutic technique largely developed in 1966 at Drew
University and popularized by Ira Progoff (1921-1998). It consists of a series of writing exercises
using loose leaf notebook paper in a simple ring binder, divided into sections to helping accessing
various areas of the writer’s life. These include a dialogue section for the personification of things,

a "depth dimension" to aid in accessing the subconscious and other places for ....

Table 13: Examples that show the difference between BM25/GAR/EAR-RI/EAR-RD. Words in blue are query expan-
sions generated by GAR. Bold words are useful keywords from the original query. Words highlighted in green are
useful keywords generated by GAR. Answer Rank shows the ranking of the answer passage in the retrieval results.

passage, the generated query expansions are not
helpful and instead are misleading, resulting in
GAR and EAR-RI/EAR-RD all unable to retrieve
the correct passage within the top-100 results due
to the distracting query expansions. This example

illustrates the importance of the GAR generators. If
all of the generated query expansions are not useful,
EAR is unable to improve the results.
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