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Abstract

Commonsense fact verification, as a chal-
lenging branch of commonsense question-
answering (QA), aims to verify through facts
whether a given commonsense claim is cor-
rect or not. Answering commonsense ques-
tions necessitates a combination of knowledge
from various levels. However, existing stud-
ies primarily rest on grasping either unstruc-
tured evidence or potential reasoning paths
from structured knowledge bases, yet failing
to exploit the benefits of heterogeneous knowl-
edge simultaneously. In light of this, we pro-
pose DECKER, a commonsense fact verifica-
tion model that is capable of bridging hetero-
geneous knowledge by uncovering latent rela-
tionships between structured and unstructured
knowledge. Experimental results on two com-
monsense fact verification benchmark datasets,
CSQA2.0 and CREAK demonstrate the effec-
tiveness of our DECKER and further analy-
sis verifies its capability to seize more pre-
cious information through reasoning. The offi-
cial implementation of DECKER is available at
https://github.com/Anni-Zou/Decker.

1 Introduction

Commonsense question answering is an essential
task in question answering (QA), which requires
models to answer questions that entail rich world
knowledge and everyday information. The major
challenge of commonsense QA is that it not only
requires rich background knowledge about how
the world works, but also demands the ability to
conduct effective reasoning over knowledge of var-
ious types and levels (Hudson and Manning, 2018).
Recently, there emerges a challenging branch of
commonsense QA: commonsense fact verification,
which aims to verify through facts whether a given
commonsense claim is correct or not (Onoe et al.,
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Figure 1: An example from CSQA2.0 (Talmor et al.,
2022). Given the question, we perform a double check
between the heterogeneous knowledge (i.e., KG and
facts) and aim to derive the answer by seizing the valued
information through reasoning.

2021; Talmor et al., 2022). Different from previous
multiple-choice settings which contain candidate
answers (Talmor et al., 2019), commonsense fact
verification solely derives from the question itself
and implements reasoning on top of it (Figure 1).
Therefore, it poses a novel issue of how to effec-
tively seize the useful and valuable knowledge to
deal with commonsense fact verification.

One of the typical methods is to make direct
use of knowledge implicitly encoded in pre-trained
language models (PLMs) (Devlin et al., 2019; Liu
et al., 2019; He et al., 2021), which have proved to
be useable knowledge bases (Petroni et al., 2019;
Bosselut et al., 2019). The knowledge in PLMs is
gained during the pre-training stage through mining
large-scale collection of unstructured text corpora.
Nevertheless, the sore spot lies in that it is natural
for human brains to project our prior world knowl-
edge onto the answers facing the commonsense
questions (Lin et al., 2019; Choi, 2022), whereas
it is tough for PLMs to learn commonsense knowl-
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edge that is implicitly stated in plain texts from
corpora (Gunning, 2018).

To strengthen PLMs to perform commonsense
QA, there is a surging trend of methods equipping
language models with different levels of external
knowledge, encompassing structured knowledge
such as knowledge graphs (KG) (Lin et al., 2019;
Yan et al., 2021; Yasunaga et al., 2021; Zhang et al.,
2022b) and unstructured knowledge such as text
corpus (Lin et al., 2021; Yu et al., 2022). While
the KG-based methods yield remarkable perfor-
mances on commonsense QA recently, they are
more suitable and adaptive for multiple-choice set-
tings because they lay emphasis on discovering
connected patterns between the question and can-
didate answers. For example, to answer a ques-
tion crabs live in what sort of environment? with
candidate answers saltwater, galapagos and fish
market, the KG-based methods manage to capture
the path crab–sea–saltwater in KG, leading to a
correct prediction. Nonetheless, they encounter a
bottleneck when dealing with commonsense fact
verification. Figure 1 shows an example: when
asked whether july always happens in the summer
around the worlds, the KG-based methods have a
tendency to detect a strong link between july and
summer, which may persuade the model to deliver
the wrong prediction.

In general, there are two major limitations in pre-
vious studies. On one hand, structured knowledge
abounds with structural information among the enti-
ties but suffers from sparsity and limited coverage.
On the other hand, unstructured knowledge pro-
vides rich and broad context-aware information but
undergoes noisy issues. These two kinds of knowl-
edge can be naturally complementary to each other.
However, most existing works focus on either struc-
tured or unstructured external knowledge but fail
to exploit the benefits of heterogenous knowledge
simultaneously. As the example in Figure 1 shows:
if we rely only on the structured knowledge in KG,
we tend to derive that july and summer are strongly
correlated, with an extremely weak relationship be-
tween summer and winter. Similarly, if we focus
only on the textual facts, we are more inclined to
focus on the fact in grey, as it describes more infor-
mation about summer in july. As a consequence,
uncovering latent relationships among heteroge-
neous knowledge helps bridge the gap and yield
more valuable and useful information.

Motivated by the above ideas, we propose

DECKER, a commonsense fact verifier that bridges
heterogeneous knowledge and performs a double
check based on interactions between structured and
unstructured knowledge. Our proposed DECKER

works in the following steps: (i) firstly, it retrieves
heterogeneous knowledge including a KG sub-
graph and several relevant facts following prior
works (Zhang et al., 2022b; Izacard et al., 2022);
(ii) secondly, it constructs an integral graph with
encoded question and facts and then employs rela-
tional graph convolutional networks (R-GCN) to
reason and filter over the heterogenous knowledge;
(iii) lastly, it adopts a multi-head attention pooling
mechanism to obtain a final refinement of enriched
knowledge representation and combines it with the
question representation for downstream tasks.

Our contributions are summarized as follows:
(i) For the concerned commonsense fact verifica-

tion task, we initialize the research that simultane-
ously takes heterogeneous knowledge into account.

(ii) We propose a novel method in terms of R-
GCN to construct an integral graph that executes a
double check between structured and unstructured
knowledge and better uncovers the latent relation-
ships between them.

(iii) Experimental results on two commonsense
fact verification benchmarks show the effective-
ness of our approach, verifying the necessity and
benefits of heterogeneous knowledge integration.

2 Related Work

2.1 Commonsense QA

Commonsense QA is a long-standing challenge in
natural language processing as it calls for intuitive
reasoning about real-world events and situations
(Davis and Marcus, 2015). As a result, recent years
have witnessed a plethora of research on devel-
oping commonsense QA tasks, including SWAG
(Zellers et al., 2018), Cosmo QA (Huang et al.,
2019), HellaSwag (Zellers et al., 2019), CSQA
(Talmor et al., 2019), SocialIQa (Sap et al., 2019)
and PIQA (Bisk et al., 2020). However, these tasks
primarily attend to multiple-choice settings, so that
there usually exist potential reasoning paths which
explicitly connect the question with candidate an-
swers. This may cause the models to be susceptible
to shortcuts during reasoning (Zhang et al., 2022b).
Therefore, a novel branch of commonsense QA:
commonsense fact verification has emerged to fur-
ther exploit the limits of reasoning models, such
as CREAK (Onoe et al., 2021) and CSQA2.0 (Tal-
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mor et al., 2022). Unlike previous multiple-choice
settings, commonsense fact verification needs the
models to be granted richer background knowledge
and higher reasoning abilities based on the question
alone. Hence, our work dives into commonsense
fact verification and conducts experiments on two
typical benchmarks: CREAK and CSQA2.0.

2.2 Knowledge-enhanced Methods for
Commonsense QA

Despite the impressive performance of PLMs on
many commonsense QA tasks, they struggle to
capture sufficient external world knowledge about
concepts, relations and commonsense (Zhu et al.,
2022). Therefore, it is of crucial importance to in-
troduce external knowledge for commonsense QA.
Currently, there are two major lines of research
based on the property of knowledge: structured
knowledge (i.e., knowledge graphs) and unstruc-
tured knowledge (i.e., text corpus).

The first research line strives to capitalize on
distinct forms of knowledge graphs (KG), such as
Freebase (Bollacker et al., 2008), Wikidata (Vran-
dečić and Krötzsch, 2014), ConceptNet (Speer
et al., 2017), ASCENT (Nguyen et al., 2021) and
ASER (Zhang et al., 2022a). Commonsense knowl-
edge is thus explicitly delivered in a triplet form
with relationships between entities. An initial
thread of works endeavors to discover potential rea-
soning paths between the question and candidate
answers under multiple-choice settings, which have
shown remarkable advances in structured reason-
ing and question answering. For example, KagNet
(Lin et al., 2019) utilizes a hierarchical path-based
attention mechanism and graph convolutional net-
works to cope with relational reasoning. MHGRN
(Feng et al., 2020) modifies from graph neural net-
works to make it adaptable for multi-hop reasoning
while HGN (Yan et al., 2021) conducts edge gener-
ation and reweighting to find suitable paths more
efficiently. JointLK (Sun et al., 2022) performs
joint reasoning between LM and GNN and uses the
dynamic KGs pruning mechanism to seek effective
reasoning. Furthermore, other research optimizes
by enhancing the interaction between raw texts of
questions and KG to achieve better performance
and robustness. QA-GNN (Yasunaga et al., 2021)
designs a relevance scoring to make the interaction
more effective, whereas GreaseLM (Zhang et al.,
2022b) leverages multiple layers of modality in-
teraction operations to achieve deeper interaction.

Nevertheless, the scope of commonsense knowl-
edge is infinite, far beyond a knowledge graph de-
fined by a particular pattern.

The second research line attempts to make use
of unstructured knowledge with either prompting
methods (Lal et al., 2022; Qiao et al., 2023) or in-
formation retrieval techniques (Lewis et al., 2020a).
Maieutic prompting (Jung et al., 2022) infers a
tree of explanations through abductive and recur-
sive prompting from generations of large language
models (LLMs), which incurs high inference costs
due to paywalls imposed by LLMs providers. Dr-
Fact (Lin et al., 2021) retrieves the related facts
step by step through an iterative process of differ-
entiable operations and further enhances the model
with an external ranker. Talmor et al. (2020) em-
ploys regenerated data to train the model to reliably
perform systematic reasoning. RACo (Yu et al.,
2022) utilizes a retriever-reader architecture as the
backbone and retrieves documents from a large-
scale mixed commonsense corpus. Xu et al. (2021)
extracts descriptions of related concepts as addi-
tional input to PLMs. However, these works mainly
focus on homogeneous knowledge and reason on
top of it, ignoring the need to fuse multiple forms
of knowledge. Unlike previous works, our model
is dedicated to intuitively modeling the relations
between heterogeneous knowledge, bridging the
gap between them, and filtering the more treasured
knowledge by exploiting their complementary na-
ture, in an inference-cost-free pattern.

Besides, there are some works taking heteroge-
neous knowledge into account to deal with com-
monsense reasoning. For instance, Lin et al. (2017)
mines various types of knowledge (including event
narrative knowledge, entity semantic knowledge
and sentiment coherent knowledge) and encodes
them as inference rules with costs to tackle com-
monsense machine comprehension. Nevertheless,
this work is principally based on semantic or senti-
ment analysis at the sentence level, seeking knowl-
edge enrichment at various levels of granularity.
Our approach, however, is more concerned with
extending external sources of knowledge and creat-
ing connections between heterogeneous knowledge
from distinct sources so that they may mutually fil-
ter each other.

3 Methodology

This section presents the details of our proposed
approach. Figure 2 gives an overview of its archi-
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Figure 2: Overview of our approach, which consists of three components: Knowledge Retrieval Module (left),
Double Check Module (middle), and Knowledge Fusion Module (right). Given an input question, KG retriever and
fact retriever extract relevant local KG and facts (Knowledge Retrieval Module); then heterogeneous knowledge
including entities in KG and facts are enhanced (Double Check Module); finally, heterogeneous knowledge is
merged to deduce the final answer prediction (Knowledge Fusion Module).

tecture. Our approach, DECKER, consists of three
major modules: (i) Knowledge Retrieval Module
which retrieves heterogeneous knowledge based
on the input question; (ii) Double Check Module
which merges information from structured and un-
structured knowledge and makes a double check be-
tween them; (iii) Knowledge Fusion Module which
combines heterogeneous knowledge together to ob-
tain a final representation.

3.1 Knowledge Retrieval Module

KG Retriever Given a knowledge graph G and
an input question q, the goal of the KG Retriever is
to retrieve a question-related sub-graph Gq

sub from
G. Following previous works (Lin et al., 2019;
Yasunaga et al., 2021; Zhang et al., 2022b), we first
execute entity linking to G to extract an initial set
of nodes Vinit. We then obtain the set of retrieved
entities Vsub by adding any bridge entities that are
in a 2-hop path between any two linked entities in
Vinit. Eventually, the retrieved subgraph Gsub is
formed by retrieving all the edges that join any two
nodes in Vsub.

Fact Retriever Given a large corpus of texts con-
taining K facts and an input question q, the ob-
jective of the fact retriever is to retrieve the top-k
facts relevant to q. Following Contriever (Izacard
et al., 2022) which is an information retrieval model
pre-trained using the MoCo contrastive loss (He
et al., 2020) and unsupervised data only, we em-

ploy a dual-encoder architecture where the question
and facts are encoded independently by a BERT
base uncased model (Huang et al., 2013; Karpukhin
et al., 2020). For each question and fact, we apply
average pooling over the outputs of the last layer
to obtain its corresponding representation. Then
a relevance score between a question and a fact is
obtained by computing the dot product between
their corresponding representations.

More precisely, given a question q and a fact
fi ∈ {f1, f2, . . . , fK}, we encode each of them in-
dependently using the same model. The relevance
score r(q, fi) between a question q and a fact fi is
the dot product of their resulting representations:

r(q, fi) = ⟨Eθ(q), Eθ(fi)⟩ , (1)

where ⟨, ⟩ denotes the dot product operation and
Eθ denotes the model parameterized by θ.

After obtaining the corresponding relevance
scores, we select k facts F =

{
f1
q , f

2
q , . . . , f

k
q

}
,

whose relevance scores r(q, f) are top-k highest
among all K facts for each question q.

3.2 Double Check Module

Language Encoding Given a question q and a
set of retrieved facts F =

{
f1
q , f

2
q , . . . , f

k
q

}
, we

deliver their corresponding sets of tokens Q ={
q1, q2, . . . , qt

}
and f i

q =
{
t1i , t

2
i , . . . , t

oi
i

}
into a

PLM, where t and oi are the lengths of the question
and fact sequence f i

q, respectively. We obtain their

11894



���������������������������������������

������������������������������������
��������������
����	����������
���������������������������������

������������������
��
�������������
������������������������������������

���������	�����������������	����
��������������������������������
������������������������������

 ������

����

�����

���

...

�����

��������
�������
����

���


�����

Figure 3: An example of the constructed integral graph.

representations independently by extracting [CLS]
inserted at the beginning:

qenc = Encoder
({

q1, q2, . . . , qt
})

∈ Rd,

f i
enc = Encoder

({
t1i , t

2
i , . . . , t

oi
i

})
∈ Rd,

Fenc =
{
f1
enc, f

2
enc, . . . , f

k
enc

}
∈ Rk×d,

(2)

where d denotes the hidden size defined by PLM.

Graph Construction Figure 3 gives an exam-
ple of the constructed graph, which is dubbed
as integral graph. Given a question q, a sub-
graph Gq

sub extracted from KG and several retrieved
facts F =

{
f1
q , f

2
q , . . . , f

k
q

}
, we construct an in-

tegral graph denoted as G = (V, E ,R). Here
V = Vq ∪ Vc ∪ Vf is the set of entity nodes, where
Vq, Vc and Vf denote the question node (orange in
Figure 3), concept nodes (green in Figure 3) and
fact nodes (purple in Figure 3), respectively; E is
the set of edges that connect nodes in V; R is a set
of relations representing the type of edges in E . In
the integral graph, we define four types of edges1:
• concept-to-fact edges: (nc, rc2f , nf );
• concept-to-concept edges: (nc, rc2c, nc);
• question-to-fact edges: (nq, rq2f , nf );
• question-to-concept edges: (nq, rq2c, nc),

where nq ∈ Vq, nc ∈ Vc, nf ∈ Vf and
{rc2f , rc2c, rq2f , rq2c} ⊆ R.

For question-to-concept and question-to-fact
edges which are bidirectional, we connect the
question node with all the other nodes in the in-
tegral graph with regard to enhancing the infor-
mation flow between the question and its related
heterogeneous knowledge. For concept-to-concept

1We ignore fact-to-fact edges due to the reason that if a
fact-to-fact edge is added when the two facts link to the same
concept node, a performance drop will be observed on the
CREAK dev set (89.5% -> 87.3%).

edges which are directional, we keep the struc-
tured knowledge extracted from KG and do not
distinguish the multiple relations inside the sub-
graph, as our approach mainly concentrates on ef-
fective reasoning over heterogeneous knowledge.
For concept-to-fact edges, we use string matching
and add a bidirectional edge (nc, rc2f , nf ) between
nc ∈ Vc and nf ∈ Vf with rc2f ∈ R if the concept
nc can be captured in the fact nf . For instance,
there should exist an edge between the concept
soup and the fact soup is primarily a liquid food.
In this way, the noisy and peripheral information
is filtered whereas the relevant and precious knowl-
edge is intensified.

Afterward, we initialize the node embeddings
in the integral graph G. For the concept nodes,
we follow the method of prior work (Feng et al.,
2020; Zhang et al., 2022b) and employ pre-trained
KG embeddings for the matching nodes, which is
introduced in Section 4.2. Then the pre-trained
embeddings go through a linear transformation to
align the dimension:

Cemb =
{
c1, c2, . . . , cm

}
∈ Rm×dc ,

Cgraph = CembWc + bc ∈ Rm×d,
(3)

where m denotes the number of concept nodes in
the sub-graph, dc denotes the hidden size of pre-
trained KG embeddings, Wc ∈ Rdc×d and bc ∈
Rd are trainable transformation matrices and bias
vectors respectively.

For the question nodes and fact nodes, we in-
ject the corresponding encoded results from PLM
in Equation 2. Consequently, we obtain the ini-
tial node embeddings N (0) ∈ R(1+k+m)×d for the
integral graph:

N (0) =
[
qenc

(0);Fenc
(0); Cgraph(0)

]
. (4)

Graph Reasoning As our integral graph G is a
multi-relational graph where distinct edge types
serve as varied information exchange between dis-
parate knowledge, the message-passing process
from a source node to a target node should be aware
of its relationship, i.e., relation type of the edge. For
example, the concept-to-fact edges help to imple-
ment a double check and filtering between concepts
and facts whereas the concept-to-concept edges as-
sist in discovering the structured information. To
this end, we adopt relational graph convolutional
network (R-GCN) (Schlichtkrull et al., 2018) to
perform reasoning on the integral graph.
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In each layer of R-GCN, the current node repre-
sentations N (l) are fed into the layer to perform a
round of information propagation between nodes
in the graph and yield novel representations:

N (l+1) = R-GCN
(
N (l)

)
. (5)

More precisely, the R-GCN computes node rep-
resentations h(l+1)

i ∈ N (l+1) for each node ni ∈ V
by accumulating and inducing features from neigh-
bors via message passing:

h
(l+1)
i = σ


∑

r∈R

∑

j∈Nr
i

1

ci,r
W (l)

r h
(l)
j +W

(l)
0 h

(l)
i


 ,

(6)
where R is the set of relations, which corresponds
to four edge types in our integral graph. N r

i de-
notes the set of neighbors of node ni, which are
connected to ni under relation r, and ci,r is a nor-
malization constant. W (l)

r and W
(l)
0 are trainable

parameter matrices of layer l. σ is an activated
function, which in our implementation is GELU
(Hendrycks and Gimpel, 2016).

Finally, we access the graph output through an
L-layer R-GCN:

N (L) =
[
qenc

(L);Fenc
(L); Cgraph(L)

]
. (7)

3.3 Knowledge Fusion Module
Multi-head Attention Pooling Since the ac-
quired heterogeneous knowledge is leveraged to
help answer the question, further interaction be-
tween the question and the knowledge is needed to
refine the double-checked knowledge. Following
the idea of Zhang et al. (2022b), we introduce a
multi-head attention pooling mechanism (MHA) to
ulteriorly gather the question-related information:

Attn(Q,K, V ) = softmax

(
QKT

√
dk

)
V,

headt = Attn
(
HqW

Q
t , HkW

K
t , HkW

V
t

)
,

MHA(Hq, Hk) = [head1, . . . , headN ]WO,

(8)

where WQ
t ∈ Rd×dq , WK

t ∈ Rd×dk , W V
t ∈

Rd×dv , WO ∈ Rhdv×d are trainable parameter
matrices, h is the number of attention heads. dq,
dk, dv denote the hidden sizes of the query vector,
key vector and value vector, respectively.

Specifically, we employ the initial question em-
bedding from PLM as the query and feed it into

MHA together with the graph-encoded representa-
tions of facts and concepts 2. We thus derive the
pooled knowledge representation:

Ka = MHA
(
qenc,

[
F (L)
enc ; C(L)

graph

])
∈ Rd. (9)

Answer Prediction In the end, we concatenate
the initial question embeddings qenc, the pooled
knowledge representation Ka and the enriched
question representation q

(L)
enc and deliver it into a

predictor to get a final answer prediction:

l = MLP
(
[qenc;Ka; q

(L)
enc]

)
∈ R, (10)

where the predictor is a two-layer MLP with a tanh
activation of size (3d, d, nlabel), nlabel denotes
the number of labels, which equals to 2 in our
commonsense fact verification setting. The model
is optimized using the cross entropy loss.

4 Experiments

4.1 Datasets
We conduct the experiments on two commonsense
fact verification datasets: CommonsenseQA2.0
(Talmor et al., 2022) and CREAK (Onoe et al.,
2021). The metric for evaluation is accuracy (acc).

CommonsenseQA2.0 is a commonsense rea-
soning dataset collected through gamification. It
includes 14,343 assertions about everyday com-
monsense knowledge. We use the original train /
dev / test splits from Talmor et al. (2022).

CREAK is a dataset for commonsense reason-
ing about entity knowledge. It is made up of 13,000
English assertions encompassing 2,700 entities that
are either true or false, in addition to a small con-
trast set. Each assertion is generated by a crowd-
worker based on a Wikipedia entity, which can be
named entities, common nouns and abstract con-
cepts. We perform our experiments using the train
/ dev / test / contrast splits from Onoe et al. (2021).

4.2 Experimental Setup
Retrieval Corpus We leverage the English
Wikipedia dump as the retrieval corpus. For pre-
processing Wikipedia pages, we utilize the same
method as described in Karpukhin et al. (2020);
Lewis et al. (2020b). We divide each Wikipedia
page into separate 100-word paragraphs, amount-
ing to 21,015,324 facts in the end.

2We use the initial question embedding from PLM be-
cause it can capture the original information about the ques-
tion. To verify this, the query in MHA is replaced with the
post-RGCN representation and a slight performance drop is
observed (89.5% -> 89.2%) on the CREAK dev set.
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Model #Total Single-task CREAK CSQA2.0
Params. Training Test Contra Test

Human (Onoe et al., 2021) - 92.2 -
GreaseLM (Zhang et al., 2022b) ∼359M ✓ 77.5 - -
UNICORN (Lourie et al., 2021) ∼770M ✗ 79.5 - 54.9
T5-3B (Raffel et al., 2022) ∼ 3B ✗ 85.1 70.0 60.2
RACo (Yu et al., 2022) ≥ 3B ✗ 88.6 74.4 61.8

DECKER (Ours) ∼449M ✓ 88.4 79.2 68.1

Table 1: Experimental results on the CREAK and CSQA2.0 datasets. The evaluation metric is accuracy (acc).

Knowledge Graph We use ConceptNet (Speer
et al., 2017), a general-domain knowledge graph, as
our structured knowledge source G. It has 799,273
nodes and 2,487,810 edges in total. Node embed-
dings are initialized using the entity embeddings
prepared by Feng et al. (2020), which consists of
four steps: (1) it first converts knowledge triples
in the KG into sentences using pre-defined tem-
plates for each relation; (2) it then feeds these sen-
tences into PLM to compute embeddings for each
sentence; (3) after that, it extracts all token rep-
resentations of the entity’s mention spans in these
sentences; (4) it finally mean pools over these repre-
sentations and projects this pooled representation.

Implementation Details Our model is imple-
mented using Pytorch and based on the Trans-
formers Library (Wolf et al., 2020). We fine-
tune DeBERTa-V3-Large as the backbone pre-
trained language model for DECKER, and the hyper-
parameter setting generally follows DeBERTa (He
et al., 2021). We set the layer number of the R-
GCN as 3, with a dropout rate of 0.1 applied to
each layer. The number of retrieved facts is set to
5 due to the trade-off for computation resources.
The maximum input sequence length is 256. The
initial learning rate is selected in {5e-6, 8e-6, 9e-6,
1e-5} with a warm-up rate of 0.1. The batch size
is selected in {8, 16}. We run up to 20 epochs and
select the model that achieves the best result on the
development dataset.

4.3 Main Results
Table 1 presents the detailed results on two com-
monsense fact verification benchmarks: CREAK
and CSQA 2.0. We compare our model with sev-
eral baseline methods, which represent distinct
knowledge-enhanced methods. UNICORN (Lourie
et al., 2021) is instilled with external common-
sense knowledge during the pre-training stage.
GreaseLM (Zhang et al., 2022b) integrates struc-
tured knowledge into models during the fine-tuning

Model Accuracy

DECKER 89.5
Knowledge Retrieval

w/o facts 87.8(↓ 1.7)
w/o knowledge graph 87.9(↓ 1.6)
w/o both 86.1(↓ 3.4)

Graph Construction
w/o question node 89.3(↓ 0.2)
w/o edge type 87.6(↓ 1.9)
w/o concept-to-fact edges 88.1(↓ 1.4)
w/o question-to-fact edges 88.8(↓ 0.7)
w/o concept-to-concept edges 88.3(↓ 1.2)
w/o question-to-concept edges 89.1(↓ 0.4)

Table 2: Ablation study of our model for components in
Knowledge Retrieval and Graph Construction modules
on the CREAK development set.

stage. RACo (Yu et al., 2022) incorporates unstruc-
tured knowledge by constructing a commonsense
corpus on which its retriever is trained 3. Besides,
we also compare our model with strong PLMs such
as T5-3B (Raffel et al., 2022).

The results indicate that our model DECKER out-
performs the strong baseline methods and achieves
comparable results on the test set of CREAK. Be-
sides, our model surpasses the current state-of-the-
art model RACo on the contrast set of CREAK.
Moreover, we observe that our model is lightweight
and competitive without a considerable number of
parameters and mixed data from multiple tasks dur-
ing training, thus showing the strength and superi-
ority of our model in various dimensions.

5 Analysis

5.1 Ablation Study

We conduct a series of ablation studies under the
same set of hyperparameters to determine the con-
tributions of key components in our model. Results

3RACo consists of two BERT-base models and T5-3B. The
magnitude of the total parameter number depends largely on
the latter, hence the sign of ≥ (greater than equal) is employed
in Table 1.
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Figure 4: An example showing how our model works to achieve the correct answer, in which our baseline fails.
Texts in purple denote facts and texts in green denote concepts.

Model CSQA2.0 CREAK

DeBERTalarge 67.9 86.1
DECKER 70.2(↑ 2.3) 89.5(↑ 3.4)

Table 3: Results on the CSQA2.0 and CREAK develop-
ment sets. The evaluation metric is accuracy (acc).

Model Interaction Accuracy

DeBERTaLARGE ✓ 86.1
w/ max pooling ✗ 87.5
w/ mean pooling ✗ 86.7
w/ attention pooling ✓ 88.9
w/ MHA pooling ✓ 89.5

Table 4: Results of different pooling methods on the
CREAK development set, MHA pooling denotes multi-
head attention pooling for short.

in Table 2 demonstrate that the combination of het-
erogeneous knowledge and the components in our
DECKER are both non-trivial. Results in Table 3
indicate that our DECKER outperforms the baseline
by a large margin.

Knowledge Retrieval To investigate the effec-
tiveness of knowledge combination, we discard the
knowledge graph, facts and both. The resulting
performances drop to 87.8%, 87.9%, and 86.1%
respectively, which reveals the necessity of fusing
knowledge with different granularity.

Graph Construction One of the crucial compo-
nents of our model is graph construction, where
the integral graph contains three types of nodes
and four types of edges. We ablate the question
node and remove all the edges connected with it.
The results show that the removal hurts the perfor-
mance. Furthermore, we dive into the edge analysis.
We first treat all edges as the same type instead of
four types, which witnesses a significant drop in
performance. Our intuition is that effective reason-
ing among heterogenous knowledge should attend
to edge types because they symbolize the distinct
emphases during reasoning. We then erase each
kind of edge respectively. Notably, the absence
of concept-to-fact edges degrades the performance
badly, suggesting the necessity of double-checking
between heterogeneous knowledge.

5.2 Methods of Pooling
During the period of aggregating the graph out-
put, we analyze the influence of different pooling
methods, including max pooling, mean pooling,
attention pooling and multi-head attention pool-
ing. These pooling methods can be divided into
two categories: those involving and those ignor-
ing the interaction with the question. We compare
the models with the same hyper-parameters on the
development set of CREAK. Results in Table 4
demonstrate that the interaction process promotes
the model performance, which may reveal that the
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graph reasoning executes more on the information
flow between different levels of knowledge and the
augmented inquiry about the initial question imple-
ments a final refinement of enriched knowledge. As
shown in Table 4, employing multi-head attention
pooling presents the best performance.

5.3 Interpretability: Case Study

In order to further explore the mechanism and get
more intuitive explanations of our model, we se-
lect a case from CREAK in which the baseline
model fails but our model succeeds. In addition,
we analyze the node attention weights related to
the question induced in MHA mechanism. Fig-
ure 4 shows that our DECKER can well bridge the
reasoning between heterogeneous knowledge, thus
leading to better filtering the noisy material and
maintaining the beneficial information. Concretely,
given the claim whales can breathe underwater,
our model first extracts relevant structured and un-
structured knowledge and then conducts reasoning
over them. After reasoning, our model pays close
attention to the concepts including breathe, whale,
air, surface and the fact whales are air-breathing
mammals who must surface to get the air they need,
as shown in the attention heatmap. We can see
that our model has the capability of manipulating
heterogeneous knowledge to answer the questions.

6 Conclusion

In this work, we propose DECKER, a commonsense
fact verification model that bridges heterogeneous
knowledge and performs a double check based on
the interactions between structured and unstruc-
tured knowledge. Our model not only uncovers
latent relationships between heterogeneous knowl-
edge but also conducts effective and fine-grained
knowledge filtering of the knowledge. Experiments
on two commonsense fact verification benchmarks
(CSQA2.0 and CREAK) demonstrate the effective-
ness of our approach. While most existing works
focus on fusing one specific type of knowledge,
we open up a novel perspective to bridge the gap
between heterogeneous knowledge to gain more
comprehensive and enriched knowledge in an intu-
itive and explicit way.

Limitations

There are three limitations. First, our model re-
quires the retrieval of relevant structured and un-
structured knowledge from different knowledge

sources, which can be time-consuming. Using co-
sine similarity over question and fact embeddings
can be a bottleneck for the model performance. Sec-
ond, our model focuses on rich background knowl-
edge but might ignore some inferential knowledge,
which can be acquired from other sources such as
Atomic. Third, our model might not be applica-
ble to low resources languages where knowledge
graphs are not available.
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� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.
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