
Findings of the Association for Computational Linguistics: ACL 2023, pages 11647–11654
July 9-14, 2023 ©2023 Association for Computational Linguistics

An Exploratory Study on Model Compression for Text-to-SQL

Shuo Sun1, Yuze Gao,1 Yuchen Zhang1,2, Jian Su1, Bin Chen1

Yingzhan Lin3, Shuqi Sun3

1Institute for Infocomm Research (I2R), A*STAR, Singapore
2CNRS@CREATE LTD, Singapore

3Baidu Inc., China
1{Sun_Shuo,Gao_Yuze,Zhang_Yuchen,sujian,bchen}@i2r.a-star.edu.sg,

2{linyingzhan01,sunshuqi01}@baidu.com

Abstract

Text-to-SQL translates user queries into SQL
statements that can retrieve relevant answers
from relational databases. Recent approaches
to Text-to-SQL rely on pre-trained language
models that are computationally expensive
and technically challenging to deploy in real-
world applications that require real-time or
on-device processing capabilities. In this pa-
per, we perform a focused study on the feasi-
bility of applying recent model compression
techniques to sketch-based and sequence-to-
sequence Text-to-SQL models. Our results
reveal that sketch-based Text-to-SQL mod-
els generally have higher inference efficiency
and respond better to model compression than
sequence-to-sequence models, making them
ideal for real-world deployments, especially
in use cases with simple SQL statements.

1 Introduction

Text-to-SQL is an important task that has been
gaining the attention of researchers over the years.
Formally, given a query q and a relational database
D, the goal of Text-to-SQL is to build a model f
such that s = f(q,D | θ) where θ is a vector of
model parameters and s is a predicted SQL state-
ment which we can use to retrieve the answer to q
from D.

Text-to-SQL has many potential applications
that can improve our standard of living. For exam-
ple, medical chatbots can convert user queries into
SQL statements and then use them to retrieve rel-
evant information from medical knowledge bases.
Industry can leverage Text-to-SQL tools to help
employees shorten the time needed to write com-
plex SQL queries, thereby improving overall work
productivity.

The recent emergence of complex Text-to-SQL
datasets containing complicated SQL and cross-
table setup has driven researchers to develop huge
models that encode various complex relationships

between table schema and query with large pre-
trained language models such as BERT (Devlin
et al., 2019) and T5 (Raffel et al., 2020). These
models are usually sequence-to-sequence mod-
els that generate SQL statements sequentially or
sketch-based models that use classifiers to fill in
the slots of SQL templates.

However, despite achieving state-of-the-art per-
formances on benchmark datasets, such models are
usually both memory and computationally expen-
sive, making it technically challenging to deploy
them in memory-constrained real-world applica-
tions that require low inference latency. Therefore,
to deploy state-of-the-art Text-to-SQL models in
real-world production environments, we must dras-
tically improve the inference time and reduce the
number of parameters in these models.

We turn to the field of model compression
(Cheng et al., 2017) for solutions that can speed
up inference without significantly hurting model
performance. Formally, the goal of model com-
pression is to reduce f to a smaller model f ′ such
that s′ = f ′(q,D | θ′). Ideally, we want s′ to be
the same as s and dim(θ′) to be much smaller than
dim(θ).

In this paper, we thoroughly examine the feasibil-
ity of using model compression techniques to build
faster and more accurate Text-to-SQL models that
we can successfully deploy in the real world. For
this, we carefully apply a few model compression
methods to representative sequence-to-sequence or
sketch-based Text-to-SQL models on three datasets:
WikiSQL, Spider, and TableQA. The main findings
of this paper are: (i) sketch-based models gener-
ally respond well to model compression techniques,
while sequence-to-sequence models show mixed
results, (ii) we observe better speed improvements
in Sketch-based models as their slot-filling com-
ponents are much faster than the decoding compo-
nents of sequence-to-sequence models. (iii) model
compression techniques work poorly on state-of-

11647



the-art Text-to-SQL models built on pre-trained
encoder-decoder language models such as T5.

We hope our findings can empower practitioners
to make more informed decisions when selecting
Text-to-SQL models and compressing them appro-
priately for real-world deployments.

2 Methodology

2.1 Datasets

Name Lang Difficulty #Questions

WikiSQL En Simple 80,654

Spider En Complex 9,693

TableQA Zh Simple 64,891

Table 1: Statistics of Text-to-SQL datasets

We conduct model compression experiments on
several datasets as shown in Table 1:
WikiSQL (Zhong et al., 2017) was extracted from
24,241 Wikipedia tables, with questions manually
paraphrased by human annotators.
Spider (Yu et al., 2018) is a complex dataset con-
taining 9,693 question-SQL pairs. The accompany-
ing schemas are annotated by college students, with
over 200 databases covering 138 different domains.
TableQA (Sun et al., 2020) is a Chinese text-to-
SQL dataset containing 64,891 question-SQL pairs
over 6000 tables extracted from online documents
such as financial reports or spreadsheets.
Difficulty of datasets WikiSQL and TableQA
are considered simple datasets because they only
contain SQL queries covering the SELECT and
WHERE clauses, and each database has only one
single table. Contrarily, Spider contains large sam-
ples of complex SQL instances that connect multi-
ple tables with primary and foreign keys with more
advanced clauses such as nested queries, JOIN ON,
and ORDER/GROUP BY.

2.2 Baseline Models

Recent deep neural Text-to-SQL models can be
broadly classified under two categories: sequence-
to-sequence models and sketch-based (also known
as slot-filling) models.

2.2.1 Sequence-to-sequence models
Sequence-to-sequence models are generally made
up of an encoder component that converts user
query inputs together with database information

into a hidden vector and a decoder component that
generates SQL statements based on the output hid-
den vectors from the encoder.
BRIDGE (Lin et al., 2020) encodes input ques-
tions and table schema with BERT and LSTM and
generates SQL predictions with a pointer-generator
decoder (See et al., 2017) supported by a schema-
consistency driven search space pruning strategy.
RAT-SQL (Wang et al., 2020a) also encodes in-
put instances with BERT but generates SQL as an
abstract syntax tree (AST) with a tree-structured de-
coder (Yin and Neubig, 2017). It also incorporates
a relation-aware self-attention mechanism that fur-
ther improves schema-linking, schema-encoding,
and representation of the encoder.
PICARD (Scholak et al., 2021) is a state-of-the-
art algorithm that directly fine-tunes a pre-trained
encoder-decoder language model T5 (Raffel et al.,
2020) on Text-to-SQL data, and then constrain the
decoder to output valid SQL by integrating an incre-
mental parsing strategy to the beam search process.

2.2.2 Sketch-based model
Sketch-based methods also encode user inputs into
vectors but only need to fill in slots in SQL sketches
rather than generating full SQL statements. Each
SQL sketch is a template SQL statement with place-
holder slots and the goal of sketch-based models is
to predict the best item to go into each slot.
NL2SQL-RULE (Guo and Gao, 2019) is a stan-
dard sketch-based model which uses BERT and
LSTM to encode input query and database informa-
tion and predict outputs in slots of SQL sketches.

2.3 Compression Techniques

We follow Sun et al. (2021) and experiment with
the following model compression techniques in this
study:
Layer Pruning (Sajjad et al., 2022) is a simple
yet effective strategy that discards a certain number
of layers from transformer-based language mod-
els before fine-tuning the pruned models on down-
stream tasks. We apply the top-layer pruning strat-
egy which deletes the top N encoder or decoder
layers before the start of any training.
Knowledge Distillation (Hinton et al., 2015) is a
method that compresses deep neural network mod-
els by distilling useful knowledge from a larger
model (teacher) to a smaller model (student). We
follow Jiao et al. (2020) and distill smaller lan-
guage models from larger ones such as BERT-large,
before fine-tuning Text-to-SQL models on those

11648



distilled models. For WikiSQL and Spider, we ex-
periment with the distilled English language mod-
els from MiniLM1 (Wang et al., 2020b), while for
TableQA, we use the Chinese TinyBERT models2.
Token Pruning For PICARD model, We also ap-
ply token pruning (Goyal et al., 2020; Kim et al.,
2022), which is a different pruning strategy that
gradually removes redundant token encodings from
the outputs of each encoder layer before feeding
the reduced number of tokens to the next encoder
layer. We follow Goyal et al. (2020) and implement
an attention scoring mechanisms which weights
the significance of each token by the sum of atten-
tion weights it gets from other tokens. The tokens
with the lowest significance scores (based on pre-
determined thresholds) for each encoder layer are
dropped.

2.4 Evaluation Metrics

We evaluate our experiment results using Exact set
match (ESM) (Yu et al., 2018). ESM decomposes
every pair of predicted and gold SQL queries into
sets clauses and then computes the percentage of
exact set matches over all pairs (Zhong et al., 2020).

3 Experiment Setup

In most cases, we follow the recommended config-
urations in corresponding papers. We may adjust
the batch sizes and learning rates slightly to fit the
experiments on our hardware. We train our mod-
els on servers with either NVIDIA GV100 GPU
(32GB) or RTX A6000 (45GB) but calculate in-
ference speeds by running models on only CPUs
with batch size set to one, which better mimics the
situations in the real world. For all datasets, we
use their dev sets as the test sets and create new
train-dev sets in the ratio of 4 to 1 from the original
train set. We early stop our models based on the
ESM scores on dev sets and report average test set
ESM scores over 5 different runs. Other than PI-
CARD, we use BERT-large for all English datasets
and RoBERTa-Zh (Cui et al., 2020) for TableQA.

3.1 Results and Recommendations

3.1.1 Simple datasets
WikiSQL As shown in Figure 1, both layer prun-
ing and knowledge distillation work pretty well for

1https://github.com/microsoft/unilm/tree/
master/minilm

2https://github.com/huawei-noah/
Pretrained-Language-Model/tree/master/TinyBERT

2 4 6 8 10 12 14 16 18 20 22 24
0.8

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

Number of Layers

E
xa

ct
Se

tM
at

ch

BRIDGE - LP 1024HS
NL2SQL-RULE - LP 1024HS
BRIDGE - MiniLM 6L 384HS
BRIDGE - MiniLM 6L 768HS

Figure 1: Compression Results on WikiSQL

WikiSQL. For example, we can remove 50% of the
encoder layers from BRIDGE, while only taking
a penalty of only 0.82% drop in Exact Set match
(ESM). When only keeping the bottom 6 encoder
layers, NL2SQL-RULE can still perform at 0.834
ESM, a 3.65% drop from the original unpruned
model. For knowledge distillation, we fine-tuned
BRIDGE on two versions of MiniLM (Wang et al.,
2020b): L6xH768 and L6xH384. Results show
that BRIDGE trained on the MiniLM language
models performs slightly worse than the layer prun-
ing method with similar number of layers. How-
ever, this is acceptable given the hidden sizes of the
MiniLM models are 384 and 768, which are smaller
than the hidden size of 1024 for BERT-large.

2 4 6 8 10 12 14 16 18 20 22 24
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Number of Layers

E
xa

ct
Se

tM
at

ch

RATSQL - LP 1024HS
NL2SQL-RULE - LP 1024HS

NL2SQL-RULE - TinyBERT 4L 384HS
NL2SQL-RULE - TinyBERT 6L 768HS

RATSQL - TinyBERT 6L 768HS
RATSQL- TinyBERT 4L 384HS

Figure 2: Compression Results on TableQA

TableQA We notice several differences in results
between WikiSQL and TableQA. First, the perfor-
mances of RATSQL on TableQA are significantly
lower than those of NL2SQL-RULE. For example,
unpruned NL2SQL-RULE achieves an ESM of 0.8
but unpruned RATSQL only achieves 0.69 despite
our best efforts. Second, we observe more signif-
icant drops in performances when applying layer
pruning and knowledge distillation to RATSQL
than NL2SQL-RULE. For example, we observe
only a 3.63% drop in ESM dropping the first 16

11649

https://github.com/microsoft/unilm/tree/master/minilm
https://github.com/microsoft/unilm/tree/master/minilm
https://github.com/huawei-noah/Pretrained-Language-Model/tree/master/TinyBERT
https://github.com/huawei-noah/Pretrained-Language-Model/tree/master/TinyBERT


encoder layers of NL2SQL-RULE but notice an
18.8% drop in the performance of RATSQL with
the same configurations. Last but not least, mod-
els trained on distilled language models perform
slightly worse than the layer pruned models due
to their smaller hidden sizes except for NL2SQL-
RULE on TinyBERT with 6 layers and 768, which
achieves an ESM of 0.80, even higher than that of
the unpruned NL2SQL-RULE.
Recommendation: We recommend using slot-
filling models when building applications that only
deal with simple queries. These models not only
perform comparably or even better than sequence-
to-sequence models, but also respond better to re-
cent model compression techniques.

3.2 Complex dataset

2 4 6 8 10 12 14 16 18 20 22 24
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of Layers

E
xa

ct
Se

tM
at

ch

Encoder LP
Decoder LP

Encoder+Decoder LP
RATSQL LP

Figure 3: Compression Results on Spider

Spider As PICARD was trained on a 3 billion
parameters pre-trained language model with an en-
coder and a decoder of similar size, we show three
sets of results by applying layer pruning on 1) the
encoder, 2) the decoder, and 3) both the encoder
and decoder.

As seen in Figure 3, the layer pruning strategy
does not work as well on PICARD. At around six
layers, PICARD loses around 49.9% and 40.3%
of its original performance for encoder-only and
decoder-only pruning settings respectively. For
the encoder+decoder pruning strategy, we observe
similar levels of performance when discarding the
same number of transformer layers as the other
two configurations. For example, dropping 3 layers
each from the encoder and decoder gets us 0.641
ESM, compared to 0.624 when dropping 6 decoder
layers and 0.648 when dropping 6 encoder layers.
On the other hand, RATSQL demonstrates better
compression results on Spider, maintaining 92.6%
of original performance while keeping on six en-
coder layers, contrary to the results on TableQA.

Token pruning We follow the implementation of
Goyal et al. (2020) and apply token pruning to PI-
CARD. We plot the ESM performance of a token-
pruned model against the number of retained to-
kens in Figure 4. As seen in the plots, although we
can remove an average of 286 tokens from the top
six encoder layers, we are only able to discard an
average of 41 tokens from the bottom six layers.
For example, we see a sharp drop in ESM per-
formance by just pruning around 40 tokens from
the 3rd encoder layer. Similarly, we also observe
steady drop in ESM performance when pruning
more than 100 tokens from encoder layers 15 and
18. Our final model achieves an ESM of 0.527
(26.3% drop in performance) while only seeing a
5.2% improvement in inference speed when apply-
ing token pruning to the encoder of T5. As we
cannot significantly prune the number of tokens in
each encoder layer without severely hurting model
performance, we conclude token pruning is also
not effective on the PICARD model.
Recommendation: Our results suggest that both
layer and token pruning are not effective on PI-
CARD and we would get better compression per-
formances on sequence-to-sequence models like
RATSQL, which has a much bigger encoder than
decoder in terms of model size.

3.3 Discussion

The main difference between recent sequence-to-
sequence and sketch-based models is related to
how we generate the SQL statements. Compared
to the lightweight slot-filling classifiers in sketch-
based models, recent sequence-to-sequence model
decoders rely heavily on grammar-guided decoding
processes which requires navigating through a huge
search space and requires an even longer inference
time than the encoders. For example, 76.62% and
87.14% of the inference time are spent in the de-
coding step for BRIDGE and RATSQL, while most
of the inference time in NL2SQL-RULE is spent
on the encoder. Considering the speed, compres-
sion effectiveness, and performance, sketch-based
models would be better choices if we get similar
performances on benchmark datasets.

4 Conclusion

This paper investigates whether we can use model
compression to improve the inference efficiency of
recent Text-to-SQL models that rely heavily on
large pre-trained language models. Our results

11650



Figure 4: ESM score against number of retained tokens
for PICARD on spider dataset

show that on simple Text-to-SQL datasets, we can
deploy simple strategies such as layer pruning to
obtain a 5-6x speedup without significantly hurting
model performances. We also observe that sketch-
based models generally respond better to model
compression than sequence-to-sequence models.
However, we are not able to effectively compress
PICARD on the spider dataset and we would tackle
this problem as a future work.

Limitations

There are several limitations to this paper. First,
due to time and space constraints, we are unable to
experiment with other interesting model compres-
sion techniques such as neural architecture search
and quantization. We also have to select only a
small subset of baseline Text-to-SQL models to
represent the performances on each of the datasets.
We are also aware of the existence of RYANSQL
(Choi et al., 2021), a sketch-based model for the
Spider dataset. However, we are not able to repro-
duce the baseline results to the best of our efforts

and have to exclude them from our analysis. There-
fore, it is important to be aware of these potential
limitations and biases when using our results for
real-world deployments.

Acknowledgments

This research is partially supported by the pro-
gramme DesCartes funded by the National Re-
search Foundation, Prime Minister’s Office, Singa-
pore under its Campus for Research Excellence and
Technological Enterprise (CREATE) programme.

References
Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. 2017.

A survey of model compression and acceleration for
deep neural networks. arXiv e-prints, pages arXiv–
1710.

DongHyun Choi, Myeong Cheol Shin, EungGyun Kim,
and Dong Ryeol Shin. 2021. RYANSQL: Recur-
sively applying sketch-based slot fillings for complex
text-to-SQL in cross-domain databases. Computa-
tional Linguistics, 47(2):309–332.

Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, Shijin
Wang, and Guoping Hu. 2020. Revisiting pre-trained
models for Chinese natural language processing. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2020, pages 657–668, Online. As-
sociation for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Saurabh Goyal, Anamitra Roy Choudhury, Saurabh
Raje, Venkatesan Chakaravarthy, Yogish Sabharwal,
and Ashish Verma. 2020. Power-bert: Accelerating
bert inference via progressive word-vector elimina-
tion. In International Conference on Machine Learn-
ing, pages 3690–3699. PMLR.

Tong Guo and Huilin Gao. 2019. Content enhanced
bert-based text-to-sql generation. arXiv preprint
arXiv:1910.07179.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao
Chen, Linlin Li, Fang Wang, and Qun Liu. 2020.
Tinybert: Distilling bert for natural language under-
standing. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2020, pages 4163–4174.

11651

https://doi.org/10.1162/coli_a_00403
https://doi.org/10.1162/coli_a_00403
https://doi.org/10.1162/coli_a_00403
https://doi.org/10.18653/v1/2020.findings-emnlp.58
https://doi.org/10.18653/v1/2020.findings-emnlp.58
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.48550/ARXIV.1503.02531


Sehoon Kim, Sheng Shen, David Thorsley, Amir Gho-
lami, Woosuk Kwon, Joseph Hassoun, and Kurt
Keutzer. 2022. Learned token pruning for transform-
ers. In Proceedings of the 28th ACM SIGKDD Con-
ference on Knowledge Discovery and Data Mining,
KDD ’22, page 784–794, New York, NY, USA. As-
sociation for Computing Machinery.

Xi Victoria Lin, Richard Socher, and Caiming Xiong.
2020. Bridging textual and tabular data for cross-
domain text-to-SQL semantic parsing. In Findings
of the Association for Computational Linguistics:
EMNLP 2020, pages 4870–4888, Online. Association
for Computational Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, Peter J Liu, et al. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21(140):1–67.

Hassan Sajjad, Fahim Dalvi, Nadir Durrani, and Preslav
Nakov. 2022. On the effect of dropping layers of pre-
trained transformer models. Comput. Speech Lang.,
77(C).

Torsten Scholak, Nathan Schucher, and Dzmitry Bah-
danau. 2021. PICARD: Parsing incrementally for
constrained auto-regressive decoding from language
models. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 9895–9901, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1073–
1083, Vancouver, Canada. Association for Computa-
tional Linguistics.

Ningyuan Sun, Xuefeng Yang, and Yunfeng Liu. 2020.
Tableqa: a large-scale chinese text-to-sql dataset
for table-aware sql generation. arXiv preprint
arXiv:2006.06434.

Shuo Sun, Ahmed El-Kishky, Vishrav Chaudhary,
James Cross, Lucia Specia, and Francisco Guzmán.
2021. Classification-based quality estimation: Small
and efficient models for real-world applications. In
Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, pages
5865–5875, Online and Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr
Polozov, and Matthew Richardson. 2020a. Rat-sql:
Relation-aware schema encoding and linking for text-
to-sql parsers. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 7567–7578.

Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan
Yang, and Ming Zhou. 2020b. Minilm: Deep self-
attention distillation for task-agnostic compression
of pre-trained transformers. Advances in Neural In-
formation Processing Systems, 33:5776–5788.

Pengcheng Yin and Graham Neubig. 2017. A syntactic
neural model for general-purpose code generation.
In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 440–450, Vancouver, Canada.
Association for Computational Linguistics.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, Zilin Zhang, and Dragomir
Radev. 2018. Spider: A large-scale human-labeled
dataset for complex and cross-domain semantic pars-
ing and text-to-SQL task. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 3911–3921, Brussels, Bel-
gium. Association for Computational Linguistics.

Ruiqi Zhong, Tao Yu, and Dan Klein. 2020. Semantic
evaluation for text-to-SQL with distilled test suites.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 396–411, Online. Association for Computa-
tional Linguistics.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2sql: Generating structured queries
from natural language using reinforcement learning.
CoRR, abs/1709.00103.

11652

https://doi.org/10.1145/3534678.3539260
https://doi.org/10.1145/3534678.3539260
https://doi.org/10.18653/v1/2020.findings-emnlp.438
https://doi.org/10.18653/v1/2020.findings-emnlp.438
https://doi.org/10.1016/j.csl.2022.101429
https://doi.org/10.1016/j.csl.2022.101429
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/2021.emnlp-main.474
https://doi.org/10.18653/v1/2021.emnlp-main.474
https://doi.org/10.18653/v1/P17-1041
https://doi.org/10.18653/v1/P17-1041
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/2020.emnlp-main.29
https://doi.org/10.18653/v1/2020.emnlp-main.29


ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

After the conclusion

�3 A2. Did you discuss any potential risks of your work?
In the limitations section

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
In the abstract

�3 A4. Have you used AI writing assistants when working on this paper?
Grammarly

B � Did you use or create scientific artifacts?
Not applicable. Left blank.

� B1. Did you cite the creators of artifacts you used?
Not applicable. Left blank.

� B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
Not applicable. Left blank.

� B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
Not applicable. Left blank.

� B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
Not applicable. Left blank.

� B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Not applicable. Left blank.

� B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
Not applicable. Left blank.

C �3 Did you run computational experiments?
section 3

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
section 3

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

11653

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/


�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
section 3

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
section 3

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
section 3

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
Not applicable. Left blank.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
Not applicable. Left blank.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
Not applicable. Left blank.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
Not applicable. Left blank.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
Not applicable. Left blank.

11654


