
Findings of the Association for Computational Linguistics: ACL 2023, pages 11647–11654
July 9-14, 2023 ©2023 Association for Computational Linguistics

An Exploratory Study on Model Compression for Text-to-SQL

Shuo Sun1, Yuze Gao,1 Yuchen Zhang1,2, Jian Su1, Bin Chen1

Yingzhan Lin3, Shuqi Sun3

1Institute for Infocomm Research (I2R), A*STAR, Singapore
2CNRS@CREATE LTD, Singapore

3Baidu Inc., China
1{Sun_Shuo,Gao_Yuze,Zhang_Yuchen,sujian,bchen}@i2r.a-star.edu.sg,

2{linyingzhan01,sunshuqi01}@baidu.com

Abstract

Text-to-SQL translates user queries into SQL
statements that can retrieve relevant answers
from relational databases. Recent approaches
to Text-to-SQL rely on pre-trained language
models that are computationally expensive
and technically challenging to deploy in real-
world applications that require real-time or
on-device processing capabilities. In this pa-
per, we perform a focused study on the feasi-
bility of applying recent model compression
techniques to sketch-based and sequence-to-
sequence Text-to-SQL models. Our results
reveal that sketch-based Text-to-SQL mod-
els generally have higher inference efficiency
and respond better to model compression than
sequence-to-sequence models, making them
ideal for real-world deployments, especially
in use cases with simple SQL statements.

1 Introduction

Text-to-SQL is an important task that has been
gaining the attention of researchers over the years.
Formally, given a query q and a relational database
D, the goal of Text-to-SQL is to build a model f
such that s = f(q,D | θ) where θ is a vector of
model parameters and s is a predicted SQL state-
ment which we can use to retrieve the answer to q
from D.

Text-to-SQL has many potential applications
that can improve our standard of living. For exam-
ple, medical chatbots can convert user queries into
SQL statements and then use them to retrieve rel-
evant information from medical knowledge bases.
Industry can leverage Text-to-SQL tools to help
employees shorten the time needed to write com-
plex SQL queries, thereby improving overall work
productivity.

The recent emergence of complex Text-to-SQL
datasets containing complicated SQL and cross-
table setup has driven researchers to develop huge
models that encode various complex relationships

between table schema and query with large pre-
trained language models such as BERT (Devlin
et al., 2019) and T5 (Raffel et al., 2020). These
models are usually sequence-to-sequence mod-
els that generate SQL statements sequentially or
sketch-based models that use classifiers to fill in
the slots of SQL templates.

However, despite achieving state-of-the-art per-
formances on benchmark datasets, such models are
usually both memory and computationally expen-
sive, making it technically challenging to deploy
them in memory-constrained real-world applica-
tions that require low inference latency. Therefore,
to deploy state-of-the-art Text-to-SQL models in
real-world production environments, we must dras-
tically improve the inference time and reduce the
number of parameters in these models.

We turn to the field of model compression
(Cheng et al., 2017) for solutions that can speed
up inference without significantly hurting model
performance. Formally, the goal of model com-
pression is to reduce f to a smaller model f ′ such
that s′ = f ′(q,D | θ′). Ideally, we want s′ to be
the same as s and dim(θ′) to be much smaller than
dim(θ).

In this paper, we thoroughly examine the feasibil-
ity of using model compression techniques to build
faster and more accurate Text-to-SQL models that
we can successfully deploy in the real world. For
this, we carefully apply a few model compression
methods to representative sequence-to-sequence or
sketch-based Text-to-SQL models on three datasets:
WikiSQL, Spider, and TableQA. The main findings
of this paper are: (i) sketch-based models gener-
ally respond well to model compression techniques,
while sequence-to-sequence models show mixed
results, (ii) we observe better speed improvements
in Sketch-based models as their slot-filling com-
ponents are much faster than the decoding compo-
nents of sequence-to-sequence models. (iii) model
compression techniques work poorly on state-of-
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the-art Text-to-SQL models built on pre-trained
encoder-decoder language models such as T5.

We hope our findings can empower practitioners
to make more informed decisions when selecting
Text-to-SQL models and compressing them appro-
priately for real-world deployments.

2 Methodology

2.1 Datasets

Name Lang Difficulty #Questions

WikiSQL En Simple 80,654

Spider En Complex 9,693

TableQA Zh Simple 64,891

Table 1: Statistics of Text-to-SQL datasets

We conduct model compression experiments on
several datasets as shown in Table 1:
WikiSQL (Zhong et al., 2017) was extracted from
24,241 Wikipedia tables, with questions manually
paraphrased by human annotators.
Spider (Yu et al., 2018) is a complex dataset con-
taining 9,693 question-SQL pairs. The accompany-
ing schemas are annotated by college students, with
over 200 databases covering 138 different domains.
TableQA (Sun et al., 2020) is a Chinese text-to-
SQL dataset containing 64,891 question-SQL pairs
over 6000 tables extracted from online documents
such as financial reports or spreadsheets.
Difficulty of datasets WikiSQL and TableQA
are considered simple datasets because they only
contain SQL queries covering the SELECT and
WHERE clauses, and each database has only one
single table. Contrarily, Spider contains large sam-
ples of complex SQL instances that connect multi-
ple tables with primary and foreign keys with more
advanced clauses such as nested queries, JOIN ON,
and ORDER/GROUP BY.

2.2 Baseline Models

Recent deep neural Text-to-SQL models can be
broadly classified under two categories: sequence-
to-sequence models and sketch-based (also known
as slot-filling) models.

2.2.1 Sequence-to-sequence models
Sequence-to-sequence models are generally made
up of an encoder component that converts user
query inputs together with database information

into a hidden vector and a decoder component that
generates SQL statements based on the output hid-
den vectors from the encoder.
BRIDGE (Lin et al., 2020) encodes input ques-
tions and table schema with BERT and LSTM and
generates SQL predictions with a pointer-generator
decoder (See et al., 2017) supported by a schema-
consistency driven search space pruning strategy.
RAT-SQL (Wang et al., 2020a) also encodes in-
put instances with BERT but generates SQL as an
abstract syntax tree (AST) with a tree-structured de-
coder (Yin and Neubig, 2017). It also incorporates
a relation-aware self-attention mechanism that fur-
ther improves schema-linking, schema-encoding,
and representation of the encoder.
PICARD (Scholak et al., 2021) is a state-of-the-
art algorithm that directly fine-tunes a pre-trained
encoder-decoder language model T5 (Raffel et al.,
2020) on Text-to-SQL data, and then constrain the
decoder to output valid SQL by integrating an incre-
mental parsing strategy to the beam search process.

2.2.2 Sketch-based model
Sketch-based methods also encode user inputs into
vectors but only need to fill in slots in SQL sketches
rather than generating full SQL statements. Each
SQL sketch is a template SQL statement with place-
holder slots and the goal of sketch-based models is
to predict the best item to go into each slot.
NL2SQL-RULE (Guo and Gao, 2019) is a stan-
dard sketch-based model which uses BERT and
LSTM to encode input query and database informa-
tion and predict outputs in slots of SQL sketches.

2.3 Compression Techniques

We follow Sun et al. (2021) and experiment with
the following model compression techniques in this
study:
Layer Pruning (Sajjad et al., 2022) is a simple
yet effective strategy that discards a certain number
of layers from transformer-based language mod-
els before fine-tuning the pruned models on down-
stream tasks. We apply the top-layer pruning strat-
egy which deletes the top N encoder or decoder
layers before the start of any training.
Knowledge Distillation (Hinton et al., 2015) is a
method that compresses deep neural network mod-
els by distilling useful knowledge from a larger
model (teacher) to a smaller model (student). We
follow Jiao et al. (2020) and distill smaller lan-
guage models from larger ones such as BERT-large,
before fine-tuning Text-to-SQL models on those
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distilled models. For WikiSQL and Spider, we ex-
periment with the distilled English language mod-
els from MiniLM1 (Wang et al., 2020b), while for
TableQA, we use the Chinese TinyBERT models2.
Token Pruning For PICARD model, We also ap-
ply token pruning (Goyal et al., 2020; Kim et al.,
2022), which is a different pruning strategy that
gradually removes redundant token encodings from
the outputs of each encoder layer before feeding
the reduced number of tokens to the next encoder
layer. We follow Goyal et al. (2020) and implement
an attention scoring mechanisms which weights
the significance of each token by the sum of atten-
tion weights it gets from other tokens. The tokens
with the lowest significance scores (based on pre-
determined thresholds) for each encoder layer are
dropped.

2.4 Evaluation Metrics

We evaluate our experiment results using Exact set
match (ESM) (Yu et al., 2018). ESM decomposes
every pair of predicted and gold SQL queries into
sets clauses and then computes the percentage of
exact set matches over all pairs (Zhong et al., 2020).

3 Experiment Setup

In most cases, we follow the recommended config-
urations in corresponding papers. We may adjust
the batch sizes and learning rates slightly to fit the
experiments on our hardware. We train our mod-
els on servers with either NVIDIA GV100 GPU
(32GB) or RTX A6000 (45GB) but calculate in-
ference speeds by running models on only CPUs
with batch size set to one, which better mimics the
situations in the real world. For all datasets, we
use their dev sets as the test sets and create new
train-dev sets in the ratio of 4 to 1 from the original
train set. We early stop our models based on the
ESM scores on dev sets and report average test set
ESM scores over 5 different runs. Other than PI-
CARD, we use BERT-large for all English datasets
and RoBERTa-Zh (Cui et al., 2020) for TableQA.

3.1 Results and Recommendations

3.1.1 Simple datasets
WikiSQL As shown in Figure 1, both layer prun-
ing and knowledge distillation work pretty well for

1https://github.com/microsoft/unilm/tree/
master/minilm

2https://github.com/huawei-noah/
Pretrained-Language-Model/tree/master/TinyBERT
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Figure 1: Compression Results on WikiSQL

WikiSQL. For example, we can remove 50% of the
encoder layers from BRIDGE, while only taking
a penalty of only 0.82% drop in Exact Set match
(ESM). When only keeping the bottom 6 encoder
layers, NL2SQL-RULE can still perform at 0.834
ESM, a 3.65% drop from the original unpruned
model. For knowledge distillation, we fine-tuned
BRIDGE on two versions of MiniLM (Wang et al.,
2020b): L6xH768 and L6xH384. Results show
that BRIDGE trained on the MiniLM language
models performs slightly worse than the layer prun-
ing method with similar number of layers. How-
ever, this is acceptable given the hidden sizes of the
MiniLM models are 384 and 768, which are smaller
than the hidden size of 1024 for BERT-large.
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Figure 2: Compression Results on TableQA

TableQA We notice several differences in results
between WikiSQL and TableQA. First, the perfor-
mances of RATSQL on TableQA are significantly
lower than those of NL2SQL-RULE. For example,
unpruned NL2SQL-RULE achieves an ESM of 0.8
but unpruned RATSQL only achieves 0.69 despite
our best efforts. Second, we observe more signif-
icant drops in performances when applying layer
pruning and knowledge distillation to RATSQL
than NL2SQL-RULE. For example, we observe
only a 3.63% drop in ESM dropping the first 16
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encoder layers of NL2SQL-RULE but notice an
18.8% drop in the performance of RATSQL with
the same configurations. Last but not least, mod-
els trained on distilled language models perform
slightly worse than the layer pruned models due
to their smaller hidden sizes except for NL2SQL-
RULE on TinyBERT with 6 layers and 768, which
achieves an ESM of 0.80, even higher than that of
the unpruned NL2SQL-RULE.
Recommendation: We recommend using slot-
filling models when building applications that only
deal with simple queries. These models not only
perform comparably or even better than sequence-
to-sequence models, but also respond better to re-
cent model compression techniques.

3.2 Complex dataset
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Figure 3: Compression Results on Spider

Spider As PICARD was trained on a 3 billion
parameters pre-trained language model with an en-
coder and a decoder of similar size, we show three
sets of results by applying layer pruning on 1) the
encoder, 2) the decoder, and 3) both the encoder
and decoder.

As seen in Figure 3, the layer pruning strategy
does not work as well on PICARD. At around six
layers, PICARD loses around 49.9% and 40.3%
of its original performance for encoder-only and
decoder-only pruning settings respectively. For
the encoder+decoder pruning strategy, we observe
similar levels of performance when discarding the
same number of transformer layers as the other
two configurations. For example, dropping 3 layers
each from the encoder and decoder gets us 0.641
ESM, compared to 0.624 when dropping 6 decoder
layers and 0.648 when dropping 6 encoder layers.
On the other hand, RATSQL demonstrates better
compression results on Spider, maintaining 92.6%
of original performance while keeping on six en-
coder layers, contrary to the results on TableQA.

Token pruning We follow the implementation of
Goyal et al. (2020) and apply token pruning to PI-
CARD. We plot the ESM performance of a token-
pruned model against the number of retained to-
kens in Figure 4. As seen in the plots, although we
can remove an average of 286 tokens from the top
six encoder layers, we are only able to discard an
average of 41 tokens from the bottom six layers.
For example, we see a sharp drop in ESM per-
formance by just pruning around 40 tokens from
the 3rd encoder layer. Similarly, we also observe
steady drop in ESM performance when pruning
more than 100 tokens from encoder layers 15 and
18. Our final model achieves an ESM of 0.527
(26.3% drop in performance) while only seeing a
5.2% improvement in inference speed when apply-
ing token pruning to the encoder of T5. As we
cannot significantly prune the number of tokens in
each encoder layer without severely hurting model
performance, we conclude token pruning is also
not effective on the PICARD model.
Recommendation: Our results suggest that both
layer and token pruning are not effective on PI-
CARD and we would get better compression per-
formances on sequence-to-sequence models like
RATSQL, which has a much bigger encoder than
decoder in terms of model size.

3.3 Discussion

The main difference between recent sequence-to-
sequence and sketch-based models is related to
how we generate the SQL statements. Compared
to the lightweight slot-filling classifiers in sketch-
based models, recent sequence-to-sequence model
decoders rely heavily on grammar-guided decoding
processes which requires navigating through a huge
search space and requires an even longer inference
time than the encoders. For example, 76.62% and
87.14% of the inference time are spent in the de-
coding step for BRIDGE and RATSQL, while most
of the inference time in NL2SQL-RULE is spent
on the encoder. Considering the speed, compres-
sion effectiveness, and performance, sketch-based
models would be better choices if we get similar
performances on benchmark datasets.

4 Conclusion

This paper investigates whether we can use model
compression to improve the inference efficiency of
recent Text-to-SQL models that rely heavily on
large pre-trained language models. Our results
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Figure 4: ESM score against number of retained tokens
for PICARD on spider dataset

show that on simple Text-to-SQL datasets, we can
deploy simple strategies such as layer pruning to
obtain a 5-6x speedup without significantly hurting
model performances. We also observe that sketch-
based models generally respond better to model
compression than sequence-to-sequence models.
However, we are not able to effectively compress
PICARD on the spider dataset and we would tackle
this problem as a future work.

Limitations

There are several limitations to this paper. First,
due to time and space constraints, we are unable to
experiment with other interesting model compres-
sion techniques such as neural architecture search
and quantization. We also have to select only a
small subset of baseline Text-to-SQL models to
represent the performances on each of the datasets.
We are also aware of the existence of RYANSQL
(Choi et al., 2021), a sketch-based model for the
Spider dataset. However, we are not able to repro-
duce the baseline results to the best of our efforts

and have to exclude them from our analysis. There-
fore, it is important to be aware of these potential
limitations and biases when using our results for
real-world deployments.
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�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
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disclaimers of any risks to participants or annotators, etc.?
Not applicable. Left blank.
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(e.g., country of residence)?
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