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Abstract
We revisit the question of why neural mod-
els tend to produce high-confidence predic-
tions on inputs that appear nonsensical to hu-
mans. Previous work has suggested that the
models fail to assign low probabilities to such
inputs due to model overconfidence. We evalu-
ate various regularization methods on fact ver-
ification benchmarks and find that this prob-
lem persists even with well-calibrated or un-
derconfident models, suggesting that overcon-
fidence is not the only underlying cause. We
also find that regularizing the models with re-
duced examples helps improve interpretability
but comes with the cost of miscalibration. We
show that although these reduced examples are
incomprehensible to humans, they can contain
valid statistical patterns in the dataset utilized
by the model.1

1 Introduction

During the development stage, we put much effort
into tuning neural models to achieve high accu-
racy on held-out data. However, when deploying
such tuned models in real-world scenarios, it is
also important for them to be reliable. For example,
when a fact verification model judges that a claim
is true with a confidence of 0.95, it should have
a 95% chance of being correct. Meanwhile, low-
confidence predictions can be passed onto humans
to be double-checked manually. If the model can
align its confidence with the correctness, it is con-
sidered calibrated. Despite achieving human-level
performance on various tasks, recent studies (Guo
et al., 2017; Ovadia et al., 2019; Hendrycks et al.,
2020) have shown that modern neural models tend
to be miscalibrated.

Miscalibration further reveals an anomaly of neu-
ral models in which they tend to produce high-
confidence predictions on inputs that appear non-
sensical to humans. Figure 1 shows examples from

1Our code is available at https://github.com/
nii-yamagishilab/pathologies.

Evidence

CONCLUSIONS : In our cohort of COVID-19 patients, 
immunosuppression was associated with a lower risk of 
moderate-severe ARDS.

Original supported claim

Immunosuppression is associated with a lower risk of moderate 
to severe acute respiratory distress syndrome in covid-19 .

Reduced supported claim

upp moderate respiratory .

Confidence  1.000 → 0.999

Original refuted claim

Immunosuppression is associated with a higher risk of moderate 
to severe acute respiratory distress syndrome in covid-19.

Reduced refuted claim

is associated

Confidence  0.999 → 0.904

Dataset: COVIDFACT

Figure 1: Examples of the original and reduced claims
from the COVIDFACT test set where the model still
makes the same correct predictions without considering
the salient words (highlighted in blue and red). These
reduced claims are ungrammatical/uninformative and
appear random to humans.

the COVIDFACT dataset (Saakyan et al., 2021)
where the fact verification model still makes the
same correct prediction given the reduced version
of the original claim. Feng et al. (2018) first
discovered such pathologies of neural models on
widely used NLP datasets, such as SQUAD (Ra-
jpurkar et al., 2016) and SNLI (Bowman et al.,
2015). They attributed the main underlying cause
to model overconfidence and proposed a regular-
ization method incorporating reduced examples to
mitigate the problem. While the interpretability
could be improved, it is unclear how the reduced ex-
amples affect model calibration. In addition, their
method is based on an entropy regularizer called the
confidence penalty (Pereyra et al., 2017), and other
possible techniques still remain uninvestigated.

In this paper, we explore a family of regulariza-
tion methods and propose an extension that uni-
fies label smoothing (Szegedy et al., 2016) and
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the confidence penalty (Pereyra et al., 2017). We
conducted experiments on three fact verification
datasets and found that:

• Pathologies still occur even when the model
is well-calibrated or underconfident.

• Incorporating the reduced examples im-
proves interpretability (i.e., increases the input
lengths) but amplifies miscalibration (i.e., in-
creases calibration errors).

Our results suggest that model overconfidence
is not the only cause of pathological behaviors.
Regularizing the objective function with the re-
duced examples encourages the model to output
high entropy (i.e., low confidence) on such exam-
ples. However, these reduced examples can also
contain valid statistical patterns that are sufficient
for the model (but nonsensical to humans) to make
predictions. This finding has also been observed in
computer vision (Carter et al., 2021).

2 Task formulation

2.1 Datasets
We focus on the task of fact verification, which
involves classifying a claim as supported (SUP),
refuted (REF), or not enough information (NEI)
with respect to evidence. We conduct experiments
on three datasets:

COVIDFACT (Saakyan et al., 2021) starts from
valid real-world claims and evidence sentences
from peer-reviewed research documents concern-
ing the COVID-19 pandemic. They then generated
counterclaims by replacing the most salient word
in the original claim using language model infill-
ing with entailment-based quality control. The
dataset consists of 3,263/419/404 samples in the
training/dev/test sets with two classes: SUP and
REF.

FEVER (Thorne et al., 2018) is from the Fact
Extraction and VERification challenge, which
has three subtasks: document retrieval, sen-
tence selection, and fact verification. We only
consider fact verification and use the data pre-
processed by Schuster et al. (2021), which con-
sists of 178,059/11,620/11,710 samples in the train-
ing/dev/test sets with three classes: SUP, REF, and
NEI.

VITAMINC (Schuster et al., 2021) augments
FEVER with the symmetric annotation strat-
egy (Schuster et al., 2019). Given a claim-evidence

pair from FEVER, they first edited the evidence
sentence to flip the original label (e.g., REF→SUP)
and then composed a new claim that holds the orig-
inal label for the new, edited evidence sentence.
They also collected new samples from Wikipedia
revisions, but we only use the synthetically created
dataset, which consists of 121,700/20,764/20,716
samples in the training/dev/test sets with two
classes: SUP and REF.

2.2 Architecture
We formulate our task as supervised multi-class
classification. Our aim is to train a model that
can assign a label y ∈ Y = {1, . . . ,K} to an
input x ∈ X . Our model is a neural network h
parameterized by θ:

hθ(x) = MLP(PLM(x)),

where MLP is a multilayer perceptron and PLM is a
pre-trained language model. Each PLM layer trans-
forms x into a sequence of hidden state vectors.2

Following standard practice, we obtain the fixed-
length vector representation of x from the first hid-
den state vector of the last PLM layer. The MLP
then maps the vector representation toK unnormal-
ized logits. Finally, we apply the softmax function
to obtain the predicted distribution p ∈ RK over
labels:

p(y|x) = softmax(hθ(x)).

Let q ∈ RK denote the ground-truth label distribu-
tion (i.e., one-hot encoding). During training, we
aim to minimize the cross-entropy loss between q
and p:

Lce = H(q, p) =
∑

y∈Y
q(y|x) log 1

p(y|x) . (1)

3 Input Reduction

Model interpretation methods offer explanations
for model predictions (Ribeiro et al., 2016; Li et al.,
2016; Wallace et al., 2019). The goal is to under-
stand why the model made specific predictions. A
brute-force method is to look at model weights, but
they are incomprehensible. Because most modern
neural architectures (including ours) rely on atten-
tion mechanisms, attention weights over inputs are
often used as explanations. However, subsequent

2In our case, an input x is a concatenation of claim and
evidence sentences.
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Algorithm 1 Input reduction
Require: Original x
1: ŷ = argmaxy∈Y p(y|x)
2: while true do
3: w∗ = argminw∈x‖∇ewLce‖
4: x̃← x \w∗
5: ỹ = argmaxy∈Y p(y|x̃)
6: if ỹ == ŷ and x̃ 6= ∅ then
7: x← x̃
8: else
9: break

10: end if
11: end while
12: return Final x

Evidence

Toms Hardware reports that The Raspberry Pi Foundation is ramping up 
production of its Pi Zero boards to help supply manufacturers with 
enough units to keep up with the high demand for ventilators. ... 
(truncated)

Original refuted claim

Raspberry pi about to avoid ventilators for coronavirus victims

Reduced refuted claim

(0.999) R aspberry pi about to avoid vent il ators for coron av irus victims
(0.999) aspberry pi about to avoid vent il ators for coron av irus victims
(0.999) pi about to avoid vent il ators for coron av irus victims
(0.999) pi about to avoid vent ators for coron av irus victims
(0.997) pi about to avoid vent ators for av irus victims
(0.995) about to avoid vent ators for av irus victims
(0.997) to avoid vent ators for av irus victims
(0.989) avoid vent ators for av irus victims
(0.986) vent ators for av irus victims
(0.988) ators for av irus victims
(0.989) ators for av irus

Dataset: COVIDFACT

Figure 2: Reduction path of the refuted claim from the
COVIDFACT dev set. The number in parentheses indi-
cates model confidence, which remains high during re-
duction. Although the salient word “avoid” is removed,
the model still makes the same correct prediction with
0.989 confidence.

studies have argued that attention weights can be
manipulated (Pruthi et al., 2020) and uncorrelated
with feature importance measures (Jain and Wal-
lace, 2019).

In our work, we focus on a gradient-based
method called input reduction (Feng et al., 2018).
The idea is to find a minimal input subset sufficient
for attaining the same prediction as the original in-
put. This minimal input subset can be regarded as
a rationale, i.e., a few substrings that are sufficient
for justifying predictions (Zaidan et al., 2007).

Input reduction iteratively removes the least im-
portant word from the original input until the model
changes its prediction. In our case, the basic unit
is a token, which can be a word or a subword. Let
w ∈ x denote a token in the input and ew denote
its embedding vector obtained from the PLM. Al-
gorithm 1 summarizes the process of our input

Evidence

Epistemology studies the nature of knowledge, justification, and 
the rationality of belief.

Original refuted claim

Epistemology has nothing to do with the study of the rationality of 
belief.

Reduced refuted claim

nothing do

Confidence  0.963 → 0.946

Evidence

Shortly after Plato died , Aristotle left Athens and , at the request 
of Philip II of Macedon , tutored Alexander the Great beginning in 
343 BC .

Original supported claim

Aristotle tutored Alexander the Great .

Reduced supported claim

otle tut

Confidence  0.998 → 0.991

Dataset: FEVER

Dataset: VITAMINC

Figure 3: Additional examples of the original and re-
duced claims from the FEVER and VITAMINC dev sets,
where the prediction of the reduced claim is identical
to that of the original claim.

reduction. Note that the ground-truth label is un-
necessary for input reduction. We estimate the
importance of each w through the hallucinated gra-
dient of the loss with respect to the embedding
vector and the predicted label. At each iteration,
we remove the token having the smallest gradient
norm (Wallace et al., 2019). We only proceed if the
new predicted label of the reduced input x̃ is the
same as that of the original input x.

Our inspection

Recall that our input is a sentence pair consist-
ing of claim and evidence sentences. To conform
with Feng et al. (2018), we remove tokens from the
claim only (equivalent to the hypothesis in SNLI)
and keep the evidence untouched. Figure 2 shows
the reduction path of the refuted claim from the
COVIDFACT dev set generated using Algorithm 1.
Figure 3 shows additional examples of the original
and reduced claims from FEVER and VITAMINC.

Figure 4 compares the claim lengths before and
after reduction on the FEVER, VITAMINC, and
COVIDFACT dev sets. Unlike Feng et al. (2018),
we examine the results in detail by class. Feng
et al. (2018) reported that the reduced examples
only contain one or two words on average across
all of their tasks. However, we find that their obser-
vation holds on particular classes on our specific
datasets. The NEI/REF claims can be reduced to
a few tokens without changing the original predic-
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Figure 4: Distributions of claim lengths before and after input reduction on the dev sets of FEVER, VITAMINC,
and COVIDFACT. The SUP claims cannot be reduced to very short lengths to retain the original predictions, in
contrast to the REF/NEI claims.

tions. On the contrary, we observe that the SUP

claims need to remain longer to retain the original
predictions.

Our observation seems to correlate with fact-
checking data construction. The process usually
starts with creating valid claims (i.e., SUP) and
modifying them to create other types (REF/NEI),
which leaves annotation artifacts (Gururangan et al.,
2018) or shortcuts (Geirhos et al., 2020), enabling
the model to use them for predictions.

4 Regularization methods

In this section, we review widely used regulariza-
tion methods, inspect their properties, and intro-
duce our extension.

4.1 Existing methods

Temperature scaling (Guo et al., 2017) is a simple
yet effective regularization method that simplifies
Platt scaling (Platt, 1999) by adjusting the unnor-
malized logits with only one parameter, tempera-
ture τ ∈ R:

p(y|x) = softmax(
hθ(x)
τ ).

We can soften the predicted distribution by setting
τ > 1. Following Guo et al. (2017), we use temper-
ature scaling as a post-processing method so that
the model accuracy is preserved (i.e., the predicted
labels remain unchanged). We optimize τ with

respect to Lce (defined in Eq. (1)) on the develop-
ment set. This procedure differs from the softmax
temperature used in knowledge distillation (Hinton
et al., 2015), which involves training a small model
with the soft target labels from a larger model.

Label smoothing (Szegedy et al., 2016), in con-
trast to temperature scaling, softens the ground-
truth label distribution q. Label smoothing replaces
q with q′ = (1− ε)q + εu(y), where ε is a balanc-
ing parameter, and u(y) is the uniform distribution
over labels (i.e., u(y) = 1

K ). For notational conve-
nience, we scale down q′ by 1/(1− ε) so that:

q′s = q + βu(y),

where β = ε
(1−ε) (Meister et al., 2020). By apply-

ing Eq. (1), we can derive the label smoothing loss
as:

Lls = H(q′s, p)

=
∑

y∈Y
(q(y|x) + βu(y)) log

1

p(y|x)

=
∑

y∈Y
q(y|x) log 1

p(y|x)

+ β
∑

y∈Y
u(y) log

1

p(y|x)

= Lce + β H(u, p). (2)

The above equation consists of the usual cross-
entropy loss and the regularization function
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H(u, p). It is also equivalent to the cross-entropy
form of Szegedy et al.’s (2016) label smoothing.

Confidence penalty (Pereyra et al., 2017), as its
name suggests, penalizes the confident predicted
distribution p. We can measure the degree of con-
fidence in p by using the entropy H(p). A high
confidence p corresponds to a low H(p) and vice
versa. Pereyra et al. (2017) defined the confidence
penalty loss as:

Lcp = Lce − β H(p). (3)

The regularization function of the above equation
becomes the negative entropy H(p). The balanc-
ing parameter β enables a trade-off between mini-
mizing the cross-entropy loss and maximizing the
entropy of the predicted distribution p.

4.2 Observations
Guo et al. (2017) empirically found that model mis-
calibration is due to negative log-likelihood over-
fitting. Here, we interpret this phenomenon from
a Kullback–Leibler (KL) divergence perspective.
Let H(q) denote the entropy of the ground-truth la-
bel (one-hot) distribution, which is a constant. We
rewrite the cross-entropy loss in Eq. (1) as:

Lce = H(q, p)− H(q) + H(q)

= KL(q ‖ p) + H(q)︸︷︷︸
constant

. (4)

Thus, minimizing Lce is equivalent to minimizing
the KL divergence between the ground-truth label
distribution q and the predicted distribution p (i.e.,
pushing p towards q). When overfitting occurs,
the model places most of the probability mass to a
single label, resulting in peakiness in p. Typically,
mitigating model miscalibration involves making p
less peaky.

We can also express the label smoothing loss in
KL divergence form. We know that:

KL(u ‖ p) = H(u, p)− H(u), (5)

Therefore, we can rewrite Eq. (2) as:

Lls = Lce + β KL(u ‖ p) + β H(u)︸ ︷︷ ︸
constant

.

Thus, minimizing Lls is equivalent to finding a
balance between pushing p towards q (as defined

3The number of classes in COVIDFACT is 2, so β H(u) =
0.1 log(2) ≈ 0.069.
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Figure 5: Regularization terms H(u, p) and H(p) in Lls

and Lcp, respectively, trained on COVIDFACT. We also
include H(u) as a reference value.3 H(u, p) and H(p)
start close to H(u) and then diverge as the models be-
come more confident in their predictions, resulting in
low H(p) but high H(u, p).

in Eq. (4)) and towards u. Likewise, we can ex-
press the confidence penalty loss in (reverse) KL
divergence form. Since:

KL(p ‖ u) = H(p, u)− H(p), (6)

we reformulate Eq. (3) as:

Lcp = Lce + β KL(p ‖ u)− β H(p, u)︸ ︷︷ ︸
constant

.

Since the KL divergence is always non-negative,
it follows from Eqs. (5) and (6) that H(p) is upper
bounded by H(u, p):

H(u, p) ≥ H(u) = H(p, u)4 ≥ H(p).

We inspect the above relationship by plotting
H(u, p) and H(p) in Lls and Lcp, respectively, as
shown in Figure 5. We trained the models for 10
epochs with β = 0.1. Each epoch can have many
iterations depending on the mini-batch size.

Interestingly, both curves appear to be mirror
images of each other in the early iterations. H(u, p)
and H(p) start close to H(u), meaning that the mod-
els place almost equal probabilities on both labels.
As the number of iterations increases, the models
become more and more confident in their predic-
tions, and H(u, p) and H(p) gradually diverge from
H(u). Another observation is that H(p) heavily pe-
nalizes the confidence penalty loss in Eq. (3) at

4The equation H(u) = H(p, u) follows from the fact
that H(u) =

∑
y∈Y u(y) log

1
u(y)

= logK and H(p, u) =∑
y∈Y p(y|x) log 1

u(y)
= logK.
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the beginning iterations because H(p) starts close
to H(u) (i.e., the maximum entropy). However,
the effect of H(p) diminishes because its value ap-
proaches zero at the final iterations. This behavior
is contrary to that of H(u, p).

4.3 Proposed extension
Being able to represent Lls and Lcp in asymmet-
ric KL divergence forms encourages us to pursue
their symmetric counterpart. A known symmetric
form of the KL divergence is the Jeffreys (J) di-
vergence (Jeffreys, 1946), defined as J(p1 ‖ p2) =
KL(p1 ‖ p2) + KL(p2 ‖ p1).5 On the basis of the
J divergence, we derive our loss as:

LJ = Lce + β J(u ‖ p)
= Lce + β

(
KL(u ‖ p) + KL(p ‖ u)

)

= Lce + β
(
H(u, p)− H(p)

)
. (7)

The regularization term of Eq. (7) simply becomes
the combination of those of Lls and Lcp from
Eqs. (2) and (3), respectively.

5 Hybrid methods

Feng et al. (2018) proposed a regularization method
to mitigate overconfident predictions on nonsensi-
cal inputs, specifically by modifying Pereyra et al.’s
(2017) confidence penalty with the reduced exam-
ples. The idea resembles data augmentation, but
they only used the reduced examples for comput-
ing the regularization function. They first applied
input reduction (described in §3) to the original
training set to obtain its reduced version X̃ . Let
p̃(y|x̃) denote the predicted distribution given the
reduced example x̃ ∈ X̃ . By modifying Eq. (3),
Feng et al.’s (2018) loss function can be expressed
as:6

Lc̃p = Lce − β H(p̃). (8)

Therefore, the model will attempt to maximize
H(p̃) (i.e., making p̃ less peaky) to reduce the over-
all loss.

Proposed extension
Because the modification in Eq. (8) only involves
the regularization function, this motivates us to
apply the same idea to Lls and LJ . From Eqs. (2)

5Another symmetric form is the Jensen–Shannon (JS) di-
vergence (Lin, 1991). We discuss its properties in Appendix A.

6Feng et al. (2018) formulated their problem as maximiza-
tion, so the sign of the regularization term in their paper is
positive.

and (7), we derive two additional loss functions
that incorporate the reduced examples:

L
l̃s
= Lce + β H(u, p̃), (9)

and

L
J̃
= Lce + β J(u ‖ p̃). (10)

6 Experiments

6.1 Training details
We implemented our model (described in §2.2) on
top of Hugging Face’s Transformers library (Wolf
et al., 2020). For the PLM, we used RoBERTa-
base (Liu et al., 2019). For optimization, we used
Adafactor (Shazeer and Stern, 2018) with a learn-
ing rate of 3e-5, a linear learning rate decay, a
warmup ratio of 0.02, and a gradient clipping of
1.0. We trained each model for 10 epochs or un-
til the validation accuracy had not improved after
three times (i.e., early stopping with a patience
of 3). Early stopping can also be regarded as a
regularization method to alleviate overfitting.

We used a batch size of 256 for FEVER and
VITAMINC. Following Saakyan et al. (2021), we
used a batch size of 16 for COVIDFACT. We found
that using a large batch size yields lower accuracy
on COVIDFACT. One plausible explanation is that
COVIDFACT has a much smaller training set than
FEVER and VITAMINC. We fixed the model hy-
perparameters and searched for an optimal β in the
range of {0.05, 0.1, 0.3, 0.5} for the regularization
methods (§4) and their variants (§5) on the dev set.
We conducted all experiments on NVIDIA Tesla
A100 GPUs.

6.2 Assessing model miscalibration
The common practice of assessing model mis-
calibration is to visualize the probability outputs
with confidence histograms and reliability dia-
grams (Niculescu-Mizil and Caruana, 2005; Guo
et al., 2017). Further, these visualizations can be
summarized by a single number using the expected
calibration error (Naeini et al., 2015).

Confidence histograms: Let p̂j denote the con-
fidence score of the jth sample where p̂j =
maxyj∈Y p(yj |xj). We first divide the confidence
range of [0, 1] into M equal-size bins. The ith bin
covers the interval of ( i−1M , i

M ]. We then assign
each p̂j to its corresponding interval. To plot a con-
fidence histogram, we compute the percentage of
samples in each bin.
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Model COVIDFACT FEVER VITAMINC
β Acc ECE Len β Acc ECE Len β Acc ECE Len

Lce - 82.7 15.2 5.8 - 96.2 2.4 4.1 - 94.2 4.0 2.4
Lce+ts – 82.7 14.0 – – 96.2 2.0 – – 94.2 3.5 –

Lls 0.10 84.7 9.8 5.2 0.05 96.2 1.8 3.7 0.05 94.1 1.9 2.4
Lcp 0.05 82.9 7.3 4.7 0.10 96.2 1.5 3.7 0.30 94.0 2.6 2.3
LJ 0.05 84.2 6.6 5.2 0.05 96.2 2.0 3.5 0.05 94.0 1.7 2.3

Ll̃s 0.50 82.2 7.4 6.1 0.10 96.3 1.9 6.5 0.05 94.0 4.2 3.9
Lc̃p 0.05 82.2 13.5 6.2 0.10 96.0 2.1 6.8 0.05 94.2 4.1 4.2
LJ̃ 0.50 83.7 10.6 7.2 0.10 96.2 2.1 7.0 0.05 94.0 4.1 4.3

Table 1: Results on COVIDFACT, FEVER, and VITAMINC test sets. We show the optimal β values found on the
dev sets. Acc = accuracy; ECE = expected calibration error (lower is better); Len = average length of the claim
after input reduction; Lce+ts = Lce post-processed with temperature scaling. The lowest ECE in each group is in
bold.

Reliability diagrams: Let ŷj denote the pre-
dicted label of the jth sample where ŷj =
argmaxyj∈Y p(yj |xj) and Bi denote the set of sam-
ples belonging to the ith bin. To plot a reliability
diagram, we compute the average accuracy of the
ith bin:

acc(Bi) =
1

|Bi|
∑

j∈Bi
1(ŷj = yj),

where 1(·) is the indicator function.

Expected calibration error: In the same manner
as acc(Bi), we compute the average confidence of
the ith bin:

conf(Bi) =
1

|Bi|
∑

j∈Bi
p̂j .

The expected calibration error (ECE) is the
weighted average of the gaps between acc(Bi) and
conf(Bi) of all bins:

ECE =
M∑

i=1

|Bi|
N
|acc(Bi)− conf(Bi)|,

where N is the number of all samples.

6.3 Results

We report the accuracy (Acc), ECE, and average
claim length (Len) after input reduction. The aver-
age length acts as a proxy for quick assessment of
whether there are any differences among model’s
predictions. An increase in the length would mean
that the reduced claims are less likely to appear
nonsensical to humans (Feng et al., 2018), though
further inspection would be necessary.

Effect of regularization

Our proposed LJ produces the lowest ECE on
COVIDFACT and VITAMINC, as shown in Table 1
(middle section). Generally, all entropy regular-
ization models yield lower ECE than temperature
scaling. Figure 6 compares the confidence his-
tograms and reliability diagrams of the baseline
model with those of the best regularization models.
The baseline Lce shows severe miscalibration on
COVIDFACT. Our proposed LJ helps bridge the
gaps between the accuracy and confidence of all
bins. Surprisingly, Lce already produces low ECE
on FEVER and VITAMINC, while Lcp and LJ fur-
ther improve the accuracy-confidence alignment.

The results on FEVER and VITAMINC also
demonstrate that the models become underconfi-
dent in the last bin (i.e., the interval of (0.95, 1]),
which contains most of the model’s predictions.
Feng et al. (2018) suggested that the pathological
behaviors of the models is a consequence of model
overconfidence. In contrast, our results show that
this problem still occurs even when the model is
well-calibrated or underconfident.

Effect of incorporating reduced examples in
training

Table 1 (bottom section) shows the results of the
hybrid models (described in §5), which augment
the training set with the reduced examples and use
them in the regularization function. During train-
ing, incorporating the reduced examples encour-
ages the model to output high entropy (i.e., low
confidence) on such examples. Consequently, dur-
ing testing, the hybrid models can no longer re-
duce the input sentence to a very short length while
maintaining high confidence. While these models
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Figure 6: Confidence histograms and reliability diagrams (M = 20) for the baseline model (top) and the best
regularization methods without data augmentation (bottom). On FEVER and VITAMINC, the baselineLce produces
low ECE, and all models are slightly underconfident (i.e., more accurate than expected) in the last bin, which
contains the majority of samples.

Dataset Trained on Evaluated on Acc ECE

COVIDFACT Original Original 82.7 15.2
Original Reduced 82.7 10.5
Original Random 56.9 34.5
Reduced Reduced 81.4 17.9
Random Random 74.8 23.0

FEVER Original Original 96.2 2.4
Original Reduced 96.2 6.3
Original Random 64.3 27.8
Reduced Reduced 94.1 3.3
Random Random 79.4 12.5

VITAMINC Original Original 94.2 4.0
Original Reduced 94.1 8.4
Original Random 62.4 23.4
Reduced Reduced 90.7 6.3
Random Random 72.2 7.7

Table 2: Results of training/evaluating on
same/different datasets using our baseline Lce.
Original = original dataset; Reduced = dataset derived
from applying input reduction on the original dataset
and assigning the ground-truth labels; Random =
dataset where each claim consists of tokens randomly
sampled with the same length as the reduced claim.

increase the average length, they deteriorate ECE
compared to their normal versions.

Are reduced examples valid statistical patterns
in the dataset?

Following Carter et al. (2021), we constructed addi-
tional datasets from the reduced examples. Recall
that input reduction relies on the predicted label
from the model when producing reduced examples.
The reduced example only maintains the original
model prediction, which can be correct or incor-
rect. Here, we replaced the predicted label with the
corresponding ground-truth label for each reduced
example to create the reduced datasets. Thus, the
reduced example is not the optimal representative
of the original one with the true label. We can
expect discrepancies to a certain extent.

Table 2 shows the results of our baseline Lce
on various settings. The original-original rows are
from Table 1. We observe slight drops in accuracy
when training/evaluating on the reduced datasets
(i.e., reduced-reduced rows). The reduced exam-
ples produced by input reduction yield higher ac-
curacy than those created by randomly selecting
tokens in all settings. These results indicate that
although the reduced examples do not align with
human intuitions, they indeed contain valid statisti-
cal patterns in the datasets.
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Model Correct w/ Salient Success (%)

Lce 333 165 49.5

Lls 341 139 40.8
Lcp 334 127 38.0
LJ 339 150 44.2

Ll̃s 331 148 44.7
Lc̃p 331 199 60.1
LJ̃ 337 123 36.5

Table 3: Results of capturing salient words on
COVIDFACT test set. The “correct” column is the num-
ber of correct predictions, while the “w/ salient” col-
umn is the number of those that contain the salient word
in the reduced claim.

Do longer reduced examples capture more
meaningful information?
An ideal way to check whether longer reduced ex-
amples capture more meaningful information is to
ask humans to evaluate the reduced claims, but this
is time-consuming and costly. Here, we exploited
a characteristic of COVIDFACT in which the coun-
terclaim differs from the original claim in only one
salient word, as shown in Figure 1. This enables
us to perform the automatic evaluation. We first
chose all reduced claims where the predictions are
correct. We then checked whether the salient word
in the original claim is present in the reduced claim.

Table 3 shows that Lc̃p captures more salient
words than other models on COVIDFACT. Ap-
pendix B provides additional examples where Lc̃p
can successfully retain salient words. However, the
ECE of Lc̃p increases to close to that of baseline
Lce (13.5 vs. 15.2), as shown in Table 1. Fig-
ure 7 shows that the gaps between accuracy and
confidence of Lc̃p are amplified for almost all bins
compared to Lcp. A simple remedy for Lc̃p is to
post-process the outputs with temperature scaling.
We found that the ECE of Lc̃p decreases from 13.5
to 12.4 with a temperature τ of 1.2.

7 Conclusion

We revisited the pathological behaviors of neural
models in which they tend to be overconfident on
inputs that appear meaningless to humans. We
first analyzed the commonly used fact verification
benchmarks with input reduction (Feng et al., 2018)
and found that we could only shorten particular
types of claims into a few tokens without chang-
ing the model’s predictions. We explored various
entropy regularization methods and also proposed
our extensions. We found that regularizing the
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Figure 7: Confidence histograms and reliability dia-
grams for Lcp and Lc̃p on the COVIDFACT test set.

objective function with the reduced examples im-
proves interpretability but deteriorates calibration.
Training neural models that use more meaningful
features while being well-calibrated is an important
direction for future work.

8 Limitations

Our work has several limitations. We focused
on fact verification, which formulates the task
sentence-pair (i.e., claim-evidence) classification.
Our findings may hold for certain domains where
the task format is similar (e.g., natural language in-
ference or textual entailment recognition). We did
not apply beam search on input reduction, which
limits us from searching multiple versions of the
reduced claims having the same length. We inves-
tigated three widely used regularization methods:
temperature scaling, label smoothing, and the confi-
dence penalty. However, other subsequent methods
remain unexplored.
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A Relationship between Jeffreys (J)
divergence and Jensen–Shannon (JS)
divergence

We can express the JS divergence between u and p
as:

JS(u ‖ p) = 1

2

(
KL(u ‖ p+ u

2
)

+ KL(p ‖ p+ u

2
)
)
.

Both JS(u ‖ p) and J(u ‖ p) can be used as regu-
larization functions. Following Lin (1991), the JS
divergence is bounded by the J divergence:

JS(u ‖ p) ≤ 1

4
J(u ‖ p).

Thus, the J divergence penalizes the loss more
strongly than the JS divergence given the same
β. We preliminarily examined the use of the JS
divergence but found that it is not as effective as
the J divergence in our task.

B Additional examples

Table 4 shows examples from the COVIDFACT

test set where Lc̃p can successfully capture salient
words.
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Evidence: IgG titers in SARS-CoV-infected healthcare workers remained at a significantly high level until 2015. All
sera were tested for IgG antibodies with ELISA using whole virus and a recombinant nucleocapsid protein of
SARS- CoV, as a diagnostic antigen. CONCLUSIONS IgG antibodies against SARS-CoV can persist for at
least 12 years.

Label: SUP
Claim: Long-term persistence of igg antibodies in sars-cov infected healthcare workers
Lcp: term persistence of igg antibodies in s - c infected healthcare workers
Lc̃p: Long term persistence igg antibodies in ars - ov infected

Evidence: IgG titers in SARS-CoV-infected healthcare workers remained at a significantly high level until 2015. All
sera were tested for IgG antibodies with ELISA using whole virus and a recombinant nucleocapsid protein of
SARS- CoV, as a diagnostic antigen. CONCLUSIONS IgG antibodies against SARS-CoV can persist for at
least 12 years.

Label: REF
Claim: Pre-term persistence of igg antibodies in sars-cov infected healthcare workers
Lcp: term ars
Lc̃p: Pre - term persistence infected

Evidence: Here, we utilize multiomics single-cell analysis to probe dynamic immune responses in patients with stable
or progressive manifestations of COVID-19, and assess the effects of tocilizumab, an anti-IL-6 receptor
monoclonal antibody.

Label: SUP
Claim: Single-cell omics reveals dyssynchrony of the innate and adaptive immune system in progressive covid-19
Lcp: om ics reveals dy ss ynchron y of the innate and adaptive immune system in progressive cov id
Lc̃p: Single cell om ics reveals dy ss ynchron y of the innate adaptive immune progressive cov

Evidence: Here, we utilize multiomics single-cell analysis to probe dynamic immune responses in patients with stable
or progressive manifestations of COVID-19, and assess the effects of tocilizumab, an anti-IL-6 receptor
monoclonal antibody.

Label: REF
Claim: Single-brain omics reveals dyssynchrony of the innate and adaptive immune system in progressive covid-19
Lcp: ynchron immune
Lc̃p: Single brain om dy

Table 4: Examples of the original and reduced claims from the COVIDFACT test set where Lc̃p can retain the salient
word, but Lcp fails. Both Lcp and Lc̃p correctly predict the label.
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