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Abstract

We extend a non-parametric Bayesian model
of (Titov and Klementiev, 2011) to deal with
homonymy and polysemy by leveraging dis-
tributed contextual word and phrase representa-
tions pre-trained on a large collection of unla-
belled texts. Then, unsupervised semantic pars-
ing is performed by decomposing sentences
into fragments, clustering the fragments to ab-
stract away syntactic variations of the same
meaning, and predicting predicate-argument re-
lations between the fragments. To better model
the statistical dependencies between predicates
and their arguments, we further conduct a hi-
erarchical Pitman-Yor process. An improved
Metropolis-Hastings merge-split sampler is pro-
posed to speed up the mixing and convergence
of Markov chains by leveraging pre-trained dis-
tributed representations. The experimental re-
sults show that the models achieve better accu-
racy on both question-answering and relation
extraction tasks.

1 Introduction

The goal of semantic parsing is to map natural lan-
guage input into a formal meaning representation
(MR), which is one of the long-standing challenges
in natural language understanding. Unlike shallow
semantic analysis tasks such as relation extraction
and semantic role labeling, the output of semantic
parsing is complete and unambiguous to the point
where it is machine interpretable or even can be
executed by a computer program in order to en-
able various tasks including question answering,
reading comprehension, parsing utterances in con-
versational agents, and translating natural language
to database queries (Goldwasser et al., 2011).

Early semantic parsing systems were built using
hand-crafted rules (Woods, 1973; Johnson, 1984;
Androutsopoulos et al., 1995). After the seminal
work of (Zelle and Mooney, 1996), much atten-
tion has been given to statistical approaches that
can learn models on a corpus of pairs of sentences

and their desired outputs (Thompson, 2003; Zettle-
moyer and Collins, 2005, 2007; Kwiatkowksi et al.,
2010). Both rule-based and statistical approaches
require a large amount of labor-intensive annota-
tion. Many methods have been proposed to reduce
the number of annotated examples including active
learning (Thompson et al., 1999), weak supervision
(Berant et al., 2013), using auxiliary information
(Krishnamurthy and Mitchell, 2012), supervision
from conversations (Artzi and Zettlemoyer, 2011),
and learning from user feedback (Iyer et al., 2017).
However, writing hand-crafted rules or creating
training datasets by manual annotation is still a
formidable task so they are hard to scale and only
work well in certain domains.

Over the last decade, there has been a rise in end-
to-end trainable neural network-based approaches
using encoder-decoder frameworks for semantic
parsing (Jia and Liang, 2016; Cheng et al., 2017;
Dong and Lapata, 2018). Arguably, the biggest dis-
advantage of these approaches is their “black box”
nature—it is hard to know how or why a neural
network comes up with a certain output. It is still
unclear whether the machine truly “understands”
natural language or just uses some tricks and short-
cuts to fulfill the tasks (Jia and Liang, 2017). Even
though neural network-based approaches greatly re-
duce the burden of defining lexicons, templates and
manually selected features, it is hard for them to
model meaning and composition at varying levels
of granularity by disentangling higher- and lower-
level semantic information and capturing meaning
from low-level to high-level via compositionality.

Unsupervised approaches are more widely ap-
plicable than supervised ones because they do not
require humans to manually annotate training data.
The work of (Poon and Domingos, 2009) is the
first attempt to learn a semantic parser in an un-
supervised way. They use Markov logic networks
(Richardson and Domingos, 2006) to model the
joint probability of dependency trees and their la-
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Figure 1: Two example sentences with different syntactic structures but sharing the same meaning representation of
Border(USA,Canada). These syntactic structures can be better represented by their contextual embeddings.

tent semantic representations. For each sentence, a
Markov network is induced which is an undirected
graphical model with nodes representing ground
atoms and cliques representing ground clauses. In
order for the parameters can be efficiently esti-
mated by a variant of expectation–maximization
(EM) algorithm, additional structural constraints
were imposed to induce a tree-structured (directed)
graph for each sentence. Titov and Klementiev
(2011) pointed out that those structural constraints
do not fit well with the methodology of Markov
logic networks and believe that it is more natural to
use a directed model with an underlying generative
process specifying how the semantic structure is
generated from a dependency parse tree.

Inspired by (Poon and Domingos, 2009), Titov
and Klementiev (2011) considered the goal of se-
mantic parsing is to decompose the dependency
tree of a sentence into fragments, assign each frag-
ment to a semantically equivalent cluster, and pre-
dict predicate-argument relations between the frag-
ments. They use hierarchical Pitman-Yor processes
to model dependencies between the meaning rep-
resentations of predicates and those of their argu-
ments. However, their approach fails to model pol-
ysemy while many words in languages are polyse-
mous, carrying multiple related and distinct mean-
ings. As the examples shown in Table 2, their ap-
proach cannot discover the words “windows” and
“case” have at least two meanings which seriously
degrades the accuracy of semantic parsing, while
our proposed algorithm can model such polysemy.

We extend the work of (Titov and Klementiev,
2011) in the following five aspects: (i) the features
derived from the contextual word and phrase rep-
resentations pre-trained on large-scale unlabelled
texts are integrated into a non-parametric Bayesian
model for unsupervised semantic parsing; (ii) cap-
turing phenomena of homonymy and polysemy by
leveraging introduced distributed representations
that cannot be modeled before; (iii) phrase-level
representations or embeddings are used to better

determine whether adjacent words should be com-
posed into a fragment as the smallest semantic
unit; (iv) the similarity scores estimated by dis-
tributed contextual representations are taken into
account in selecting which two semantic classes
could be merged into one with priority, which
greatly speeds up the mixing and convergence of
Markov chains; (v) unlike the situation where only
discrete features are used, language semantics can
be modeled in a more compact feature space of
distributed representations to alleviate the problem
of data sparsity. With the above improvements,
the enhanced models achieved better performance
on both question-answering and relation extrac-
tion tasks. The source code of our model can
be downloaded from https://github.com/
narcissusLZX/USP.

2 Method
Similar to (Poon and Domingos, 2009; Titov and
Klementiev, 2011), we consider the problem of
semantic parsing as a process that seeks to split
the words of a sentence into fragments, assign
each fragment to a cluster consisting of semanti-
cally equivalent expressions, and identify predicate-
argument relations between the fragments, given
the dependency parse tree of the sentence. As two
example sentences shown in Figure 1, we should
compose three adjacent words of “The United
States” to a fragment and assign it to the semantic
class “USA”. The fragments of “shares a border
with” and “is adjacent to” also need to be grouped
into a semantic class “Border”. Therefore, a ma-
jor challenge in semantic parsing is syntactic varia-
tions of the same meaning, which abound in natural
languages. By our definition of unsupervised se-
mantic parsing (USP) problem, two main matters
need to be addressed. One is to determine whether
neighboring words should be composed into frag-
ments, and the other is to cluster fragments into
groups based on their similarity in semantic mean-
ing. We demonstrate that pre-trained contextual
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word and phrase embeddings are quite useful to
better revolve those two matters.

2.1 Semantic Parsing Model
To unsupervisedly induce the semantic represen-
tations from the syntactic structures of sentences,
we aim to maximize the generation probabilities
of the dependency parse trees created for a set of
sentences. In order to make the induced meaning
representations consistent with each other, the fol-
lowing constraints are imposed on the generation
processes of dependency parse trees (an illustrative
example is shown in Figure 2).

• Each semantic class c is associated with a
distribution ϕc that is drawn from a Dirichlet
process DP(d,H) with a base distribution H
and a concentration parameter d > 0;

• For each semantic class c and each argument
type t that is a dependency from the elements
in the class (i.e., heads) to modifiers (or de-
pendents), a Pitman-Yor process, denoted as
θc,t ∼ PY(α, β,G), is used to model the dis-
tribution of these modifiers where G is a base
measure over the syntactic realizations of the
modifiers, 0 ≤ α < 1 a discount parameter,
and β > −α a strength parameter that con-
trols how heavy the tail of the distribution;

• For each semantic class c and each argument
type t, a random variable zc,t is used to mea-
sure how likely class c has at least one argu-
ment of type t, which has a geometric distri-
bution Geom(ψc,t). The number of additional
arguments of the same type t, denoted as z+c,t,
is drawn from another geometric distribution
of Geom(ψ+

c,t);
• A distributionφc,e ∼ PY(α, β,Q) (not shown

in Figure 2) is defined over all types of argu-
ments for each pair of classes c and e.

The distribution ϕc is used to model the syntactic
realizations and their variations for semantic class
c. For the predicate of Border shown in Figure
1, this distribution should concentrate on syntactic
fragments (or lexical items) such as “shares a bor-
der with”, “is adjacent to” and “is bordered by”.
The central part of the model is a set of parameters
θc,t, which reflect the preferred selection of cer-
tain semantic classes for argument type t of class
c. For the arguments of predicate Border, these
distributions would assign most of their probability
mass to semantic classes representing countries or
locations. For another example illustrated in Figure

Figure 2: An illustrative example. Each semantic class
c (i.e., a set of words referring to some “fruits” here)
is associated with a distribution ϕc that is drawn from
a Dirichlet process DP(d,H), a Pitman-Yor process
θc,t ∼ PY(α, β,G) is used to model the distribution of
the modifiers for the “amod” dependency of the “fruit”
class, and parameters ψc,t and ψ+

c,t are applied to model
the number of dependents the “fruit” class could have.

2, the distribution of the arguments for “amod” de-
pendency of the “fruit” class should concentrate on
adjectives such as color, quantity, and size. Pitman-
Yor processes are considered to be more suitable for
modeling the distributions of semantic classes in
natural language with power-law tails (Teh, 2006).

Parameters ψc,t and ψ+
c,t are used to model how

many arguments of type t class c has. For example,
a noun could be modified by at least one adjec-
tive with a high probability, but the chance of be-
ing modified by more than three adjectives is slim.
The parameter φc,e defines a distribution over the
types of arguments for each pair of classes c and
e. For instance, the distribution of the types of
arguments between “fruit” class and “color” class
should concentrate on “amod”. For each pair of se-
mantic classes, a Pitmann-Yor process PY(α, β,Q)
is used to model such a distribution. When β = 0,
the Pitman-Yor process reduces to the Dirichlet
process. The expected number of components in
Pitman-Yor process mixture model scales as αnβ

with the number of draws n while it scales logarith-
mically for Dirichlet processes.

With the distributions described above, we can
estimate the generation probability of the depen-
dency parse tree created for a sentence1. Starting

1In this study, the Stanford (dependency) parser is used to
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from the root of the dependency tree, a sentence is
generated by recursively drawing a semantic class,
the syntactic realization of the class, the number
and type of arguments, and the semantic classes for
these arguments. Given a set of sentences, we fit
the model by maximizing the generation probabili-
ties of all the sentences in the corpus.

2.2 Inference
Pitman-Yor (PY) processes are used to model se-
mantic classes and their arguments in our USP
model. A Pitman-Yor process over a set S, denoted
by PY(α, β,G), is a stochastic process whose sam-
ples are the probability measures on partitions of
S. Blackwell and MacQueen (1973) show that the
conditional of yi+1 given the previous i draws with
the probability measures marginalized out follows:

yi+1|y1, . . . , yi ∼
K∑

k=1

ik − β

i+ α
δξk +

Kβ + α

i+ α
G (1)

where ξ1, . . . , ξK are assigned to y1, . . . , yi with
K different values (i.e., K different syntactic re-
alizations here). The number of times that ξk was
assigned is denoted as ik, and i =

∑K
k=1 ik.

In the case of conjugate Dirichlet process models
(PY processes are the generalization of Dirichlet
processes), the Gibbs sampler is the widely-used
Markov chain Monte Carlo (MCMC) algorithm.
The number of distinct semantic classes is expected
to be extremely large for natural languages, and
the Gibbs samplers that update the state space one
at a time converge very slowly and tend to get
stuck in local modes for the problems with large
state spaces. Split-merge MCMC algorithms with
Metropolis-Hastings (MH) updates (Dahl, 2003;
Jain and Neal, 2004) are more efficient than the
Gibbs samplers, and can be applied to our model.
We consider two moves between states (discuss
later) suggested by Titov and Klementiev (2011) to
address the above-mentioned two major matters in
USP when applying the split-merge MH samplers.
The proposed sampling algorithm for unsupervised
semantic parsing is given in Algorithm 1.

2.2.1 Metropolis-Hastings Updates
The MH acceptance ratio, denoted as a(η∗|η), is
the probability that a proposed state η∗ is accepted
from the current η. This ratio for the split-merge
sampling algorithm is given as follows:

a(η∗|η) = min
[
1,

p(η∗|y)
p(η|y)

π(η|η∗)
π(η∗|η)

]
(2)

parse sentences (Manning et al., 2014).

where π(η∗|η) is the probability of transiting from
state η to proposed state η∗, p(η∗|y) is the parti-
tion posterior distribution evaluated at η∗, and y is
a set of observed data (y1, . . . , yN ).

Having proposed a move to η∗, we determine
whether to accept this proposal or not according to
the value of a(η∗|η). If the proposal is accepted,
the new state is η∗, otherwise the new state is the
same as the current state η. In this way, we move
to the state with a higher probability and repeat the
sample until the convergence criterion is met.

2.2.2 Split-Merge Move
In split-merge moves, we decide whether to merge
two semantic classes into one or split a class into
two. Pre-trained contextual distributed representa-
tions are used to choose which two semantic classes
should be merged and estimate allocation probabil-
ities of splits. To compute the MH ratio for these
moves, only the semantic classes involved in the
split and merge operations need to be considered
while keeping the rest unchanged. Therefore, such
moves can be calculated efficiently.

When the proposal η∗ is a split move, π(η|η∗)
is 1 since these two split classes could only be
merged in one way. Similarly, when the proposal
η∗ is a merge update, π(η∗|η) = 1. Therefore, we
only need to compute π(η∗|η) when η∗ is a split
move or π(η|η∗) when it is a merge update.

If a pair of syntactic realizations xi and xj ran-
domly selected belong to the same class in η (we
will discuss how to select them later), we propose
η∗ by attempting a split move. The common class
containing xi and xj is denoted as S. To com-
pute π(η∗|η), we first remove xi and xj from
S and create two singleton sets Si = {xi} and
Sj = {xj}. Letting k be successive values in a
uniformly-selected permutation of the indices in S,
add xk to Si with probability:

p(xk ∈ Si|Si, Sj) =
σ(sk, Si)

σ(sk, Si) + σ(sk, Sj)
(3)

where σ is a similarity function whose values are
the cosine similarity calculated between the embed-
ding of xk and the centroid of Si and then normal-
ized into [0, 1]. Note that either Si or Sj gains a
new element at each iteration. After randomly allo-
cating all the elements of S to either Si or Sj , the
split proposal probability π(η∗|η) is the product
of the allocation probabilities calculated by Equa-
tion (3) for each element in S. The merge proposal
probability π(η|η∗) can be computed in a similar
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way, but which class an element should be allocated
is specified in η∗.

Since the number of semantic classes usually is
very large, selecting a pair of xi and xj randomly
would result in a small proportion of merge moves
getting accepted, and lead to a slow-mixing Markov
chain. Instead of selecting both of them indepen-
dently from a uniform distribution, we first choose
xi uniformly, and then randomly select xj from the
distribution based on the cosine similarity of their
pre-trained embeddings of xi and xj .

2.2.3 Compose-Decompose Move
In compose-decompose moves, we decide whether
to compose a pair of head and modifier occurred
in some dependency tree into a fragment or de-
compose it into two. For example, if two randomly-
selected fragments have syntactic realizations of “a”
and “border”, they would be composed to the frag-
ment “a det←− border” that could be further merged
with other syntactic structures such as “share” and
“with”. Conversely, if two randomly-selected frag-
ments have already been composed, we attempt to
split them. After a successful composing or decom-
posing move, each newly-created fragment will be
associated with its distributed representation and
assigned to a new semantic class.

The transition probabilities π(η|η∗) of compose-
decompose moves are simply estimated based on
the number of occurrences of different fragments.
For each move, a head-modifier pair will be ran-
domly selected from the distribution based on the
number of their occurrences in all the dependency
parse trees generated from a text corpus.

2.2.4 Partition Posterior Distribution
In our USP model, the probability of p(η|y) can be
factorized into three parts involving parameters ϕc,
θc,t, and φc,e for all the semantic classes affected
by proposal η. Note that for any semantic classes
involved, these probabilities need to be computed
for two cases: one for them being the role of head,
and another for taking the role of modifier (see
Figure 2). The probability of p(η|y) is the product
of the probabilities of all parts.

For the first part ϕc ∼ DP(d,H), the partition
prior for a set of syntactic realizations of a semantic
class c can be calculated as follows:

p(η) = dK
K∏

j=1

Γ(|Sj |)/
N∏

i=1

(d+ i− 1) (4)

where η = {S1, . . . , SK} is a set partition with K

Algorithm 1 A sampling algorithm for USP.
Input: D: A set of unlabelled sentences;

R: A set of pre-trained contextual embeddings;
T : The maximum number of sampling attempts;
E: A desired rejection rate of proposals (e.g., 95%);
L: A similarity threshold for initialization (e.g., 0.8);

Initialization:
Parse the sentence in D and obtain their dependency trees;
Create a set of initial semantic classes and their realizations
by assigning the tokens with similarity higher than L to a set.

while the desired rejection rate of proposals E is not achieved
or the maximum number of sampling T is not reached do

Randomly select which move to be attempted.
if a merge move is selected then

Randomly choose a pair of semantic classes to
merge and propose a merge update η∗.

else if a split move is selected then
Randomly select a class to split and propose
a split update η∗

else randomly select a pair of head and modifier.
if the selected pair is already composed then

Propose a decomposing update η∗.
else Propose a composing update η∗.

Compute the MH acceptance ratio a for proposal η∗ by
using Equation (2).
Generate a random number r between 0 and 1.
if r ≤ a then accept η∗ and move to the new state.
else reject η∗ and let the new state be the same as η.

end
Return: A set of semantic classes and their syntactic realiza-

tions as well as a result of semantic parsing for each sentence
(i.e., the composed fragments and the predicate-argument
relations between them).

different kinds of syntactic realizations, |Sj | is the
number of elements in j-th set.

For each semantic class c and each argument
type t, the partition prior θc,t ∼ PY(α, β,G) (the
second part) is computed as follows:

p(η) = βK
Γ(α

β
+K)

Γ(α
β
)

∏K
j=1

Γ(|Sj |−β)

Γ(1−β)∏N
i=1(α+ i− 1)

(5)

where the definitions of η, |Sj |, and K are simi-
lar as Equation (4). For the third part involving
parameters φc,e, their partition priors also can be
calculated using Equation (5), where the elements
in sets are argument types rather than the syntactic
realizations of semantic classes.

Combining the partition likelihood and the parti-
tion prior, Bayes rules give the partition posterior
as p(η|y) ∝ p(y|η)p(η), where p(η) can be com-
puted by Equations (4) and (5). The partition likeli-
hood p(y|η) is given as a product over components
in η = {S1, . . . , SK} as

∏K
j=1 p(ySj ). Since the

observations in each component are fragments with
the same syntactic structure, p(ySj ) = 1 for all Sj .

To estimate the generation probabilities of de-
pendency parse trees, the probability of the number
of arguments that may be provided to a semantic
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class also needs to be calculated, which can be
viewed as a part of p(ySj ). The geometric distribu-
tion Geom(ψc,t) defines the probability of having
at least one argument of type t for a given seman-
tic class c, and Geom(ψ+

c,t) models the number of
additional arguments of the same type. We denote
the number of elements in class c as n, the number
of occurrences of argument type t for class c as u,
and the number of distinct occurrences as m. The
probability of having at least one argument can be
calculated by Bm,n−m(λ0, λ1), and that of having
an additional argument by Bu−m,m(λ+0 , λ

+
1 ). The

function Bx,y(z0, z1) can be evaluated as follows:

Bx,y(z0, z1) =
Γ(z0 + z1)

Γ(z0)Γ(z1)

Γ(x+ z0)Γ(y + z1)

Γ(x+ z0 + y + z1)
(6)

3 Experiment

We evaluated the semantic parsing model enhanced
by pre-trained contextual embeddings on two tasks
of question answering (QA) and relation extraction
(RE), comparing to some strong baselines. We also
conducted an ablation study to investigate whether
contextual embeddings contribute to the problem
of homonymy and polysemy and can improve the
performance of USP models.

3.1 Evaluation Tasks and Settings

The tasks of question-answering and relation ex-
traction are often used to evaluate semantic parsing
models learned in an unsupervised fashion.

Question Answering Following the evaluation
setting suggested by Titov and Klementiev (2011),
USP models were evaluated on a set of questions
and their answers collected by Poon and Domin-
gos (2009) from GENIA corpus (Kim et al., 2003),
which consists of 2, 000 biomedical abstracts. All
the collected questions are special questions and
use “what” at the beginning of the sentence to ask
specific questions. For each question, we can ob-
tain the predicate-argument structure of its first
word “what” from the semantic parsing results pro-
duced by a USP model unsupervisedly trained on
2, 000 abstracts and questions. We then match such
a predicate-argument structure against those cre-
ated for the sentences in the abstracts and extract
the matched fragment as the answer.

Relation Extraction Recent research in relation
extraction has focused on unsupervised or mini-
mally supervised methods. For the evaluation of

this task, we chose to use CASIE dataset (Satya-
panich et al., 2020) consisting of 1, 000 English
news on cybersecurity. A set of trigger-argument
pairs were manually annotated for each news in
CASIE dataset, and those triggers can be viewed
as predicates in semantic parsing. We collect all
the predicate-argument pairs produced by a USP
model as the extraction results from the news, and
match them against the annotated trigger-argument
pairs to calculate the recall and precision.

3.2 Implementation Details

In the implementation of (Titov and Klementiev,
2011), they start with assigning each distinct word
(specifically, a word’s stem and its part-of-speech
tag) into an individual semantic class. Unlike theirs,
we first use the distributed contextual representa-
tions (also known as embeddings) produced by
BERT (Devlin et al., 2018) to generate the feature
vector for each word in a sentence and then merge
the words with similarity higher than 0.8 into one
class for initialization. The cosine similarity is used
to measure how similar the words based on their
features, which consist of two parts: discrete fea-
tures and distributed ones. The distributed features
are those generated by BERT. For words being split
into multiple sub-words or fragments consisting of
more than one word, we take the average of their
components’ embeddings as their distributed fea-
ture representations. The discrete feature vector
of a word is produced by collecting the number of
different dependencies that the word appears as a
headword and a modifier (like bag-of-words, but
words being replaced by the types of dependencies).
The similarity between two words is a weighted
sum of the scores calculated based on their discrete
and distributed feature vectors. Since it would be
better not to choose the values of hyper-parameters
for any specific dataset, we simply set the weight to
0.5 when combining the similarity scores estimated
using discrete and distributed features.

There would be a large number of distinct feature
vectors when distributed contextual representations
are used to deal with homonymy and polysemy. To
make the computation tractable and speed up the re-
trieval of similar words or fragments, we used Faiss
(Johnson et al., 2019) which is a toolkit for efficient
similarity search and clustering of dense vectors.
We also applied a well-known algorithm, called
Alias (Walker, 1974), for constant-time sampling
from a discrete probability distribution.
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As shown in Figure 1, for each sampling attempt,
we first need to randomly decide which move will
be attempted among three options: merge, split,
and compose-decompose moves. A merge move
will be chosen with 45% probability, a split with
45%, and a compose-decompose with 10% for all
the considered tasks. The sampling will continue
repeatedly until more than 95% of the proposals
were rejected or the maximum number of sampling
is reached. The maximum number of sampling was
set to 1, 500, 000 in all the experiments.

3.3 Results

In Table 1, we report the experimental results of
question answering on GENIA corpus and those
of relation extraction on CASIE dataset, compared
to USP-Bayes (Titov and Klementiev, 2011) from
which our model, named USP-DCR, was enhanced
in the ability to deal with homonymy and polysemy.
For the QA task, we report the number of questions
that can be answered by the models, indicated by
“Total”, the number of questions correctly answered
by “Corr”, and accuracy by “Accu”. For the RE
task, precision (indicated by “Prec”), recall, and F1
are reported where F1-score is the harmonic mean
of precision and recall.

Model GENIA CASIE
Total Corr Accu Prec Recall F1

USP-Bayes 325∗ 259∗ 79.7∗ 37.4 16.9 23.3
USP-DCR 317 273 86.1 43.4 19.8 27.2
w/o Polysemy 313 256 81.8 40.0 18.0 24.9

Table 1: Results of question answering and relation ex-
traction on GENIA and CASIE datasets respectively.
The numbers indicated by the symbol “∗” were ex-
cerpted from the paper of (Titov and Klementiev, 2011).

USP-DCR significantly outperforms USP-Bayes
on the question-answering task. Our model can cor-
rectly answer more questions than USP-Bayes even
though the number of answers returned by theirs is
slightly greater than that by ours. USP-Bayes tends
to deliver more spurious matches when attempting
to answer the questions. USP-DCR performs bet-
ter than USP-Bayes baseline both in precision and
recall on the relations extraction task. The results
on GENIA and CASIE datasets demonstrate that
both QA and RE tasks can benefit from the intro-
duced contextual distribution representation (CDR)
which makes it possible to cluster the fragments
that are the same in their appearances but carry
distinct meanings into different semantic classes.

3.4 Ablation Study

We conducted an ablation study over GENIA and
CASIE datasets to investigate how the performance
is impacted if we do not model polysemy. This
variant of USP-DCR, indicated by “w/o Polysemy”
in Table 1, was trained by assuming that the same
syntactic fragments are assigned to the same seman-
tic class (i.e., without polysemous expressions) al-
though the distributed representations are still used
to estimate the similarity between two fragments.
Note that if the features derived from distributed
contextual representations are also not used, our
USP-DCR is reduced to USP-Bayes model. The
numbers reported in the last row of Table 1 show
that the “full-fledged” USP-DCR is superior to its
variants, and both contextual embeddings and pol-
ysemy modeling are crucial to USP-DCR.

The GENIA corpus is the primary collection of
biomedical abstracts, whose texts exhibit a lower
degree of polysemy than those from other domains.
We extracted a subset of questions from GENIA
dataset, which is expected to have a higher degree
of polysemy. This subset was constructed by select-
ing 175 questions that most likely contain polyse-
mous words (the occurrences of these words are far
apart in their contextual embedding space). On this
subset, USP-DCR achieved 77.4% accuracy and
performed better than USP-Bayes by a significant
margin of 16.7% improvement in accuracy.

3.5 Case Study

To investigate whether our USP-DCR can truly deal
with homonymy and polysemy in the language, we
randomly selected two polysemous words and ex-
cerpted four related sentences for each word from
the datasets used for the evaluation. As shown in
Table 2, the first four example sentences were ex-
cerpted from CASIE dataset, which all contain the
word “windows”. In these sentences, that word has
two meanings: one is a type of operating system
for personal computers, and another is a separate
viewing area on a computer display screen. While
USP-Bayes is unable to discriminate one meaning
from another, the two semantic classes induced by
USP-DCR have a clear semantic connection. For
example, the first cluster contains nouns used to de-
scribe actions or occurrences that can be identified
by a program, and all the words in the second clus-
ter are the names of operating systems. The polyse-
mous word “case” and the corresponding sentences
were excerpted from GENIA corpus. Again, USP-
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Lexicon: windows
1 Pop-ups are small windows that tend to show system warnings which are difficult to close.
2 A user may have multiple windows open at a time.
3 And from what I have been finding over the last 6 months, is that the moment you open a brand new laptop with

windows 10 and start to try to update it, the vulnerability is wide open for attack.
4 In windows 7 is almost impossible because those memory address are different in every windows installation.
USP-Bayes: {windows, linux, mario, hole}
USP-DCR: {windows1,2, hole, tale, event}, {windows3,4, Linux, Android, system, macOS}
Lexicon: case
1 We report an unusual case of a 55 year old Japanese woman with a seminoma but relatively normal menses.
2 In each case, cytogenetic analysis had either failed or had shown no abnormalities of chromosome 20.
3 In the case of thymic selection the mechanism is more subtle depending on the mutual repression of Nur77 and GR.
4 In one case, the PTT shift was explained by in-frame splicing out of exon 10, in the presence of a normal exon 10

genomic sequence.
USP-Bayes: {case, study, member, appearance}
USP-DCR: {case1,2, patient, example}, {in the case3, case4, situation, in the context, in the presence}

Table 2: Example sentences and the corresponding semantic classes (shown below) induced by USP-Bayes and
USP-DCR, where the words expressing the same meaning are highlighted in the same color (other than black).
The first four sentences were excerpted from the CASIE dataset and the last four from the GENIA corpus. These
examples demonstrate that USP-DCR is able to model the polysemy of the words “windows” and “case”.

DCR can successfully disambiguate the sense of
the word “case” according to its context.

4 Related Work
As one of the major challenges in natural language
processing, many methods have been proposed for
semantic parsing, which generally can be divided
into three categories: rule-based (Woods, 1973;
Johnson, 1984; Androutsopoulos et al., 1995), sta-
tistical (Zelle and Mooney, 1996; Thompson, 2003;
Zettlemoyer and Collins, 2005, 2007; Kwiatkowksi
et al., 2010), and neural network-based approaches
(Jia and Liang, 2016; Cheng et al., 2017; Dong and
Lapata, 2018). Existing approaches differ in the
form of meaning representations and the amount of
annotation required. In the following, we mainly
review prior work on unsupervised statistical meth-
ods by which manually labeled training examples
are no longer required to build parsing models and
refer to two recent surveys (Kamath and Das, 2018;
Kumar and Bedathur, 2020) for the other methods.

Poon and Domingos (2009) proposed the first
unsupervised approach to semantic parsing which
defines a probabilistic model over the dependency
tree and semantic parse using Markov logic. Their
model recursively clusters and composes the frag-
ments of dependency trees using a hard EM-style
procedure. Since they use non-local features and
operate over partitions, exact inference is infeasi-
ble. They thus resort to a greedy algorithm to find
the maximum-a-posteriori parse by searching over
partitions. Although it is a powerful model, it is
too computationally expensive to run on large cor-
pora. Besides, the methodology of Markov logic

networks (innately undirected models) might not
be suitable for modeling the semantic structure of
a sentence derived from its directed parse tree.

Goldwasser et al. (2011) introduced an unsu-
pervised learning algorithm for semantic parsing,
which takes a self-training method driven by con-
fidence estimation. The algorithm iteratively iden-
tifies high-confidence self-labeled examples with
several simple scoring models and uses the identi-
fied samples to re-train the model. To compensate
for the absence of direct supervision, Poon (2013)
proposed a grounded-learning approach to leverage
database schema for indirect supervision. Schmitt
et al. (2019) showed that converting a knowledge
graph (KG) to its description in natural language
(i.e., text generation) and mapping a text back to
the KG (i.e, semantic parsing) can be done jointly
in an unsupervised manner. Cao et al. (2020) first
used an unsupervised paraphrase model to convert
natural language utterances into their canonical
utterances that were automatically generated by
grammar rules and associated with the logic forms,
and then trained a semantic parser on a collection
of pairs of natural language utterances and the cor-
responding logic forms in a supervised way. Those
approaches are different from our Bayesian model
as they rely on either pseudo examples generally
without human annotation or external resources
such as database schemata or knowledge graphs.

5 Conclusion

We improved the unsupervised learning algorithm
proposed by (Titov and Klementiev, 2011) for se-
mantic parsing based on a non-parametric Bayesian
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model. Pre-trained contextual word and phrase
embeddings were introduced to capture the lin-
guistic phenomena of homonymy and polysemy.
Those embeddings and the similarity scores de-
rived from them are also used to determine whether
adjacent words can be composed and which seman-
tic classes should be merged during the sequential
importance sampling, which can greatly improve
computational efficiency. We demonstrate empir-
ically that the semantic parser learned by our ap-
proach achieved better performance over the base-
lines on both question-answering and relation ex-
traction tasks, and show that contextual distributed
representations play a vital role in capturing the
polysemous variants of words and phrases.

Limitations

This work follows in line with those studies (Poon
and Domingos, 2009; Goldwasser et al., 2011;
Titov and Klementiev, 2011) where unsupervised
semantic parsing relies on the dependency parse
trees of texts. Although it enables us to leverage
advanced syntactic parsers and to disentangle the
complexity in syntactic analysis from that in se-
mantic parsing, the errors made in the dependency
parse trees created for input texts could propagate
to semantic parsing. In the future, we would like
to explore the feasibility of jointly performing syn-
tactic and semantic parsing in a completely unsu-
pervised fashion. Even though an improved MH
merge-split sampler was proposed in this study to
speed up the mixing and convergence of Markov
chains by leveraging pre-trained distributed repre-
sentations, the computational effort required to fit
the model can still be substantial, especially for a
large body of texts. We plan to improve computa-
tional efficiency beyond that offered by this study
by starting with good initialization and updating
the state space in a distributed and parallel manner.

Ethics Statement

This work fully complies with the ACL Ethics Pol-
icy. All the authors declare that there is no ethical
issue in this paper submitted to ACL 2023 for re-
view.

Acknowledgements

The authors would like to thank the anonymous
reviewers for their valuable comments. This work
was supported by National Natural Science Foun-
dation of China (No. 62076068), Shanghai Munic-

ipal Science and Technology Major Project (No.
2021SHZDZX0103), and Shanghai Municipal Sci-
ence and Technology Project (No. 21511102800).
Chang is supported in part by Cisco and Sloan
fellowship. Hsieh is supported in part by NSF IIS-
2008173 and IIS-2048280.

References
Ion Androutsopoulos, Graeme D Ritchie, and Peter

Thanisch. 1995. Natural language interfaces to
databases–an introduction. Natural language engi-
neering, 1(1):29–81.

Yoav Artzi and Luke Zettlemoyer. 2011. Bootstrapping
semantic parsers from conversations. In Proceedings
of the 2011 Conference on Empirical Methods in
Natural Language Processing, pages 421–432.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy
Liang. 2013. Semantic parsing on freebase from
question-answer pairs. In Proceedings of the 2013
conference on empirical methods in natural language
processing, pages 1533–1544.

David Blackwell and James B MacQueen. 1973. Fergu-
son distributions via pólya urn schemes. The annals
of statistics, 1(2):353–355.

Ruisheng Cao, Su Zhu, Chenyu Yang, Chen Liu, Rao
Ma, Yanbin Zhao, Lu Chen, and Kai Yu. 2020. Un-
supervised dual paraphrasing for two-stage semantic
parsing. arXiv preprint arXiv:2005.13485.

Jianpeng Cheng, Siva Reddy, Vijay Saraswat, and
Mirella Lapata. 2017. Learning structured natural
language representations for semantic parsing. In
Proceedings of the Annual Meeting of the Associa-
tion for Computational Linguistics.

David B Dahl. 2003. An improved merge-split sam-
pler for conjugate dirichlet process mixture models.
Technical R eport, 1:086.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Li Dong and Mirella Lapata. 2018. Coarse-to-fine de-
coding for neural semantic parsing. In Proceedings
of the Annual Meeting of the Association for Compu-
tational Linguistics.

Dan Goldwasser, Roi Reichart, James Clarke, and Dan
Roth. 2011. Confidence driven unsupervised seman-
tic parsing. In Proceedings of the 49th Annual Meet-
ing of the Association for Computational Linguistics:
Human Language Technologies, pages 1486–1495.

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, Jayant
Krishnamurthy, and Luke Zettlemoyer. 2017. Learn-
ing a neural semantic parser from user feedback. In
Proceedings of the Annual Meeting of the Association
for Computational Linguistics.

11462



Sonia Jain and Radford M Neal. 2004. A split-merge
markov chain monte carlo procedure for the dirichlet
process mixture model. Journal of computational
and Graphical Statistics, 13(1):158–182.

Robin Jia and Percy Liang. 2016. Data recombination
for neural semantic parsing. In Proceedings of the
Annual Meeting of the Association for Computational
Linguistics.

Robin Jia and Percy Liang. 2017. Adversarial exam-
ples for evaluating reading comprehension systems.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2021–2031, Copenhagen, Denmark. Association for
Computational Linguistics.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019.
Billion-scale similarity search with GPUs. IEEE
Transactions on Big Data, 7(3):535–547.

Tim Johnson. 1984. Natural language computing: the
commercial applications. The Knowledge Engineer-
ing Review, 1(3):11–23.

Aishwarya Kamath and Rajarshi Das. 2018. A
survey on semantic parsing. arXiv preprint
arXiv:1812.00978.

Jin-Dong Kim, Tomoko Ohta, Yuka Tateisi, and Jun’ichi
Tsujii. 2003. Genia corpus—a semantically anno-
tated corpus for bio-textmining. Bioinformatics (Ox-
ford, England), 19 Suppl 1:i180–2.

Jayant Krishnamurthy and Tom Mitchell. 2012. Weakly
supervised training of semantic parsers. In Proceed-
ings of the 2012 Joint Conference on Empirical Meth-
ods in Natural Language Processing and Computa-
tional Natural Language Learning, pages 754–765.

Pawan Kumar and Srikanta Bedathur. 2020. A survey
on semantic parsing from the perspective of compo-
sitionality. arXiv preprint arXiv:2009.14116.

Tom Kwiatkowksi, Luke Zettlemoyer, Sharon Goldwa-
ter, and Mark Steedman. 2010. Inducing probabilistic
ccg grammars from logical form with higher-order
unification. In Proceedings of the 2010 conference
on empirical methods in natural language processing,
pages 1223–1233.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David Mc-
Closky. 2014. The stanford corenlp natural language
processing toolkit. In Proceedings of the 52nd An-
nual Meeting of the Association for Computational
Linguistics: System Demonstrations, pages 55–60.

Hoifung Poon. 2013. Grounded unsupervised semantic
parsing. In Proceedings of the 51st Annual Meet-
ing of the Association for Computational Linguistics,
pages 933–943.

Hoifung Poon and Pedro Domingos. 2009. Unsuper-
vised semantic parsing. In Proceedings of the 2009
conference on empirical methods in natural language
processing, pages 1–10.

Matthew Richardson and Pedro Domingos. 2006.
Markov logic networks. Machine learning,
62(1):107–136.

T. Satyapanich, F. Ferraro, and T. Finin. 2020. Casie:
Extracting cybersecurity event information from text.
In AAAI.

Martin Schmitt, Sahand Sharifzadeh, Volker Tresp, and
Hinrich Schütze. 2019. An unsupervised joint sys-
tem for text generation from knowledge graphs and
semantic parsing. arXiv preprint arXiv:1904.09447.

Yee Whye Teh. 2006. A hierarchical bayesian language
model based on pitman-yor processes. In Proceed-
ings of the 21st International Conference on Com-
putational Linguistics and 44th Annual Meeting of
the Association for Computational Linguistics, pages
985–992.

Cynthia Thompson. 2003. Acquiring word-meaning
mappings for natural language interfaces. Journal of
Artificial Intelligence Research, 18:1–44.

Cynthia A Thompson, Mary Elaine Califf, and Ray-
mond J Mooney. 1999. Active learning for natural
language parsing and information extraction. In Pro-
ceedings of the International Conference on Machine
Learning, pages 406–414. Citeseer.

Ivan Titov and Alexandre Klementiev. 2011. A
Bayesian model for unsupervised semantic parsing.
In Proceedings of the 49th annual meeting of the
association for computational linguistics: Human
language technologies, pages 1445–1455.

A.J. Walker. 1974. New fast method for generating
discrete random numbers with arbitrary frequency
distributions. Electronics Letters, 10:127 – 128.

William A Woods. 1973. Progress in natural language
understanding: an application to lunar geology. In
Proceedings of the national computer conference and
exposition, pages 441–450.

John M Zelle and Raymond J Mooney. 1996. Learning
to parse database queries using inductive logic pro-
gramming. In Proceedings of the national conference
on artificial intelligence, pages 1050–1055.

Luke Zettlemoyer and Michael Collins. 2007. Online
learning of relaxed CCG grammars for parsing to
logical form. In Proceedings of the 2007 Joint Con-
ference on Empirical Methods in Natural Language
Processing and Computational Natural Language
Learning (EMNLP-CoNLL), pages 678–687.

Luke S Zettlemoyer and Michael Collins. 2005. Learn-
ing to map sentences to logical form: Structured
classification with probabilistic categorial grammars.
In Proceedings of the Twenty-First Conference on
Uncertainty in Artificial Intelligence.

11463

https://doi.org/10.18653/v1/D17-1215
https://doi.org/10.18653/v1/D17-1215
https://doi.org/10.1093/bioinformatics/btg1023
https://doi.org/10.1093/bioinformatics/btg1023
https://doi.org/10.1049/el:19740097
https://doi.org/10.1049/el:19740097
https://doi.org/10.1049/el:19740097


ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

6

�7 A2. Did you discuss any potential risks of your work?
We do not think there are any potential risks of our work.

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
1

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �3 Did you use or create scientific artifacts?
3

�3 B1. Did you cite the creators of artifacts you used?
3

�7 B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
The license is not required to use the artifacts.

�7 B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
Left blank.

�3 B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
3

�7 B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Left blank.

�3 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
3

C �3 Did you run computational experiments?
3

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
3

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

11464

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/


�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
3

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
3

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
3

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

11465


