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Abstract

With the scale and capacity of pretrained mod-
els growing rapidly, parameter-efficient lan-
guage model tuning has emerged as a popular
paradigm for solving various NLP and Vision-
and-Language (V&L) tasks. In this paper, we
design a unified parameter-efficient multitask
learning framework that works effectively on
both NLP and V&L tasks. In particular, we
use a shared hypernetwork that takes trainable
hyper-embeddings and visual modality as in-
put, and outputs weights for different modules
in a pretrained language model, such as the
parameters inserted into multi-head attention
blocks (i.e., prefix-tuning) and feed-forward
blocks (i.e., adapter-tuning.). Our proposed
framework adds fewer trainable parameters in
multi-task learning while achieving superior
performances and transfer ability compared to
state-of-the-art methods. Empirical results on
the GLUE benchmark and multiple V&L tasks
confirm the effectiveness of our framework.

1 Introduction

Pretraining and fine-tuning are now the prevalent
paradigm in natural language processing, yield-
ing state-of-the-art performances on a variety of
tasks (Devlin et al., 2019). With pre-trained lan-
guage models (PLMs) growing rapidly in size, it
becomes increasingly infeasible to perform con-
ventional fine-tuning on the entire model parame-
ters. There has recently been one line of research
on Parameter-Efficient Language model Tuning
(PELT)(Houlsby et al., 2019; Li and Liang, 2021;
He et al., 2021; Mao et al., 2022). They only up-
date a set of extra trainable task-specific parameters
that are newly introduced to PLMs. Although the
number of new parameters is much fewer than the
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original PLM, training these parameters per sin-
gle task is still costly, especially when targeting a
number of tasks, i.e., multi-tasking scenario.

Therefore, we are motivated to start with a uni-
fied parameter-efficient language model tuning
framework (He et al., 2021) and explore on a shared
hypernetwork (von Oswald et al., 2020; Mahabadi
et al., 2021) that is able to take multi-task informa-
tion as input, and generate weights for tuning differ-
ent task-specific modules of PLMs, such as the pa-
rameters inserted into multi-head attention blocks
(i.e., prefix-tuning) and feed-forward blocks (i.e.,
adapter-tuning.). We name it HyperPELT. Be-
sides, we propose a novel perspective of adopting
parameter-efficient multimodal fusion for PLMs
via the hypernetwork. Thus we explore to use an
additional separate hypernetwork handling visual
input and generating visual-specific weights for
multiple modules of PLMs.

Empirical results on 8 tasks of GLUE bench-
mark show that HyperPELT achieves superior per-
formances (87.09 vs. 86.53) with a tenth of the
parameters (0.24% vs. 2.96%) when compared to
state-of-the-art alternatives. Study on the few-shot
transfer learning indicates that HyperPELT is more
stable and efficient than alternatives. It confirms
the effectiveness of our unified parameter-efficient
multitask learning framework. What’s more, we
evaluate our framework on V&L multi-tasks (4
tasks). Results show the promising performance of
our novel fusion method on extending V&L ability
on top of PLMs via hypernetworks.

In summary, we make the following contribu-
tions: (1) propose a unified parameter-efficient
multitask learning framework that is able to take
multi-task and multi-modality information as in-
put, and generate weights for tuning different task-
specific modules of PLMs; (2) present a novel
perspective of using hypernetworks to achieve the
parameter-efficient multimodal fusion on top of
PLMs; (3) design various experiments to compre-
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Figure 1: The model structure of the proposed unified pure language and V&L multi-task framework (left), and
illustration of computing the hyper-embedding (right). We use green color to fill the trainable layers and grey color
for the frozen ones. And the dashed parts denote the modules for processing visual modality.

hensively demonstrate the effectiveness of our pro-
posed framework in multi-task learning and few-
shot domain transfer scenarios.

2 Related Work

Existing research has explored a large amount of
methods on parameter-efficient tuning, such as the
widely used adapter-tuning (Houlsby et al., 2019),
prefix-tuning (Li and Liang, 2021) and the mixed
methods (He et al., 2021; Mao et al., 2022). How-
ever, it is time & space-consuming to deal with
a set of tasks in multi-task learning if we simply
update and save separate replicas of model param-
eters per single task. In this work, we explore a
hypernetwork-based multi-task learning framework
to generate weights for different PELT modules.

Besides, there has been a series of recent
work (Cho et al., 2021; Tsimpoukelli et al., 2021;
Sung et al., 2021; Alayrac et al., 2022) to equip a
language model with the ability of handling visual
input with a small number of trainable modules and
parameters. Different from existing work, we pro-
pose a novel perspective of multimodal fusion via
extending the proposed parameter-efficient multi-
task learning framework. We further review recent
research on parameter-efficient tuning for pure lan-
guage and V&L tasks, as well as the corresponding
work for multi-task learning in Appendix A.

3 Proposed Method

We target a general multi-task learning problem,
which is formulated in Appendix B. In this section,
we describe the hyper-embedding I for hypernet-
works to generate weights ∆θ and which modules
of PLMs to insert these weights to achieve PELT.
In our methods, the hyper-embedding I consists of
two: task-specific hyper-embedding Iτ , and visual-
specific hyper-embedding Iv. We will mostly intro-
duce the hyper-embedding Iτ , and Iv is used in a
similar parallel manner. A simple linear projection
layer is employed as the hypernetwork, for exam-
ple, hτP (.) and hvP (.) are used for prefix-tuning,
while hτA(.) and hvA(.) are for adapter-tuning as
shown in Figure 1. The hypernetwork takes the
hyper-embedding I as input, and outputs weights
for multiple modules of PLMs.

3.1 Hyper-Embedding for PELT
Considering a flexible parameterization of task-
specific parameters for L layers of transformer, we
introduce a set of layer id embeddings I = {li}Li=1,
and block type embeddings B = {bj}5j=1, which
specify the position where the parameters ∆θ are
inserted to. Then, we compute a hyper-embedding
Iτ ∈ RdI for each individual task via a task projec-
tor network, which is a multi-layer perceptron con-
sisting of two feed-forward layers and a ReLU non-
linearity: Iτ = MLP([zτ , li, bj ]). Thus, it learns a
suitable compressed hyper-embedding from a con-
catenation of task embeddings zτ ∈ Rdτ , layer id
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embeddings li ∈ Rdτ , and block type embeddings
bj ∈ Rdτ . In this way, the hypernetwork is able to
produce distinct weights for tuning each task, and
each transformer block at each layer.

3.2 HyperPELT: Incorporate with
Prefix-tuning and Adapter-tuning

To further capture knowledge across tasks and
transfer to others, we follow the unified parameter-
efficient framework (He et al., 2021), and input the
hyper-embedding to a hypernetwork for generating
the weights in adapters as well as prefix vectors.
We extend the dimension for different embeddings
to match the prefix length N , i.e., z ∈ RN×dτ ,
li ∈ RN×dτ , bj ∈ RN×dτ , and then compute the
hyper-embedding Iτ ∈ RN×dI . We finally employ
a hypernetwork hτP (.) with trainable parameters
θhτ

P
, to project Iτ to prefix vectors Pτ ∈ RN×d:

Pτ = hτP (θhτ
P
, Iτ ) .

Besides, as depicted in Figure 1, we introduce
a hypernetwork-based adapter layer with a train-
able scaled parameter λ, which is inserted par-
allelly with feed-forward blocks. We generate
adapter weights (W τ

up,W
τ
down) through a hypernet-

work hτA(.): (W
τ
up,W

τ
down) := hτA(θhτ

A
, Iτ ), where

W τ
down ∈ Rdmid×d and W τ

up ∈ Rd×dmid .

3.3 VL-HyperPELT: Incorporate with Visual
Modality

As illustrated in Fig. 1, we use CLIP (Radford
et al., 2021) with a trainable visual mapping layer,
which projects the visual representation to the
identical dimension of task embedding, i.e., zv ∈
RN×dv , dv = dτ . Then we feed this visual rep-
resentation zv to a visual projector network. In
this way, we learn the visual hyper-embedding
Iv ∈ RdI . Finally, taking the visual-specific hyper-
embeddings as input, we use visual-specific hyper-
networks to generate visual-specific parameters to
different modules in PLMs. Similar to the Sec-
tion 3.1 & 3.2, the incorporation of visual-specific
parameters to PLMs are the same as task-specific
ones, e.g., used as prefix vectors via a prefix hyper-
network hvP (.) and adapter weights via an adapter
hypernetwork hvA(.). We name it VL-HyperPELT.

4 Results and Analysis

We conduct a series of experiments to verify the
effectiveness of our proposed framework compared
to existing ones.

4.1 Implementation Details
Our models are built on T5BASE (Raffel et al.,
2020) 1, which contains 12 layers and 222M pa-
rameters, and use the tokenizer of T5 to tokenize
text inputs. We set N = 49, d = dτ = 768,
dI = 64 for all the experiments. Following the
training strategies from Raffel et al. (2020), we
fine-tune all models with a constant learning rate of
0.001, use 218 = 262144 steps in all experiments
with batch size of 128 and sample tasks via the
conventional temperature-based sampler with tem-
perature T = 2, i.e., sample corresponding task
proportional to p

1/T
τ , where pτ = Nτ∑T

i=1 Nτ
and

Nτ is the number of training samples for the τ -th
task. We did not experiment with other complex
sampling strategies or tuning of T . For the experi-
ments under multi-task training settings, we save
a checkpoint every 1000 steps and report results
on a single checkpoint with the highest average
validation performance across all tasks.

In terms of the vision-and-language scenarios,
we convert V&L tasks to the text generation for-
mat as Cho et al. (2021). We use ResNet101 as
our vision encoder, and initialize it with weights
from pretrained CLIP (Radford et al., 2021). Input
images are resized to 224 × 224 for memory effi-
ciency. We extract the 7 × 7 grid features produced
by the last convolutional layer. The percentage of
updated parameters is also reported as one metric
for approach efficiency, and we do not take visual
encoder into account since it is frozen in our exper-
iment.

4.2 Datasets
Our framework is evaluated on the GLUE bench-
mark (Wang et al., 2019b) in terms of natural
language understanding. This benchmark cov-
ers multiple tasks of paraphrase detection (MRPC,
QQP), sentiment classification (SST-2), natural lan-
guage inference (MNLI, RTE, QNLI), and linguis-
tic acceptability (CoLA). The original test sets are
not publicly available, and following Zhang et al.
(2021), for datasets fewer than 10K samples (RTE,
MRPC, STS-B, CoLA), we split the original valida-
tion set into two halves, one for validation and the
other for testing. For other datasets, we randomly
split 1K samples from the training set for validation
and test on the original validation set.

In addition, we evaluate the few-shot transfer
performance on four tasks and datasets: 1) the

1https://huggingface.co/t5-base
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Methods
#Total
params

#Trained
params/task

CoLA SST-2 MRPC QQP STS-B MNLI QNLI RTE Avg

Single-Task Training

T5BASE † 8.0× 100% 54.85 92.19 88.18/91.61 91.46/88.61 89.55/89.41 86.49 91.60 67.39 84.67
Adapters † 1+8×0.01 0.87% 59.49 93.46 88.18/91.55 90.94/88.01 87.44/87.18 86.38 92.26 68.84 84.88

Multi-Task Training

T5BASE † 1.0× 12.5% 54.88 92.54 90.15/93.01 91.13/88.07 88.84/88.53 85.66 92.04 75.36 85.47

Adapters † 1.07× 0.82% 61.53 93.00 90.15/92.91 90.47/87.26 89.86/89.44 86.09 93.17 70.29 85.83
Prefix-tuning ♣ 1.14× 1.72% 56.67 93.92 89.42/92.57 90.59/87.37 89.49/89.34 85.23 93.17 79.17 86.09
MAMAdapters ♣ 1.15× 2.96% 56.53 93.58 91.35/93.96 90.58/87.53 88.89/88.76 85.98 92.77 81.94 86.53

HYPERFORMER++ † 1.02× 0.29% 63.73 94.03 89.66/92.63 90.28/87.20 90.00/89.66 85.74 93.02 75.36 86.48
HyperPELT 1.02× 0.24% 65.96 93.23 89.42/92.31 90.48/87.54 89.15/89.07 85.35 92.79 82.64 87.09

Table 1: Performance of all models on the GLUE tasks. For each method, we report the total number of parameters
across all tasks and the number of parameters that are trained for each task as a multiple and proportion respectively
of the baseline single-task T5 model. †: Results from the implementation of Mahabadi et al. (2021), ♣: We
implement the methods of Li and Liang (2021) and He et al. (2021) on top of T5.

Figure 2: Few-shot domain transfer results of five different tasks averaged across 5 seeds. We compute accuracy for
all tasks and datasets. HyperPELT and HyperPELT TaskEmbed are respectively fine-tuning hypernetworks with all
hyper-embeddings and only task embedding in the few-shot learning.

natural language inference (NLI) datasets CB and
2) the question answering (QA) dataset BoolQ from
SuperGLUE (Wang et al., 2019a); 3) the sentiment
analysis datasets IMDB (Maas et al., 2011); and
4) the paraphrase detection dataset PAWS (Zhang
et al., 2019). For CB and BoolQ, since the test set
is not available, we split the validation set into two
halves, one for validation and the other for testing.
For IMDB, since the validation set is not available,
we similarly split the test set to form validation.
For PAWS, we report on the original test set.

To evaluate our framework on V&L tasks, we ex-
periment on four datasets COCO (Lin et al., 2014),
VQA (Goyal et al., 2017), VG-QA (Krishna et al.,
2017) and GQA (Hudson and Manning, 2019). Fol-
lowing Cho et al. (2021), we use VQA Karpathy
split, which splits the VQA dataset into 605,102
/ 26,729 / 26,280 image and question pairs sep-
arately as the train/validation/test set to evaluate
VQA tasks in a generative manner. We further
evaluate our framework on two datasets for V&L
few-shot transfer learning: OKVQA (Marino et al.,
2019); SNLI-VE (Xie et al., 2018).

4.3 Results on the GLUE Benchmark

We conduct experiments on GLUE for both single-
and multi-task settings, as shown in Table 1. Com-
pared to the single-task Adapters that finetunes
all newly introduced parameters in adapters, our
method yields a significant improvement by 2.21%
with much fewer trainable parameters. It illustrates
the effectiveness of our proposed multi-task train-
ing framework. The comparison to MAMAdapter
shows that using hypernetwork to tune each trans-
former module and thus learn the shared knowledge
across multitasks, leads to an improvement in task
performance (86.53 vs. 87.09) while training fewer
parameters (2.96% vs. 0.24%). Overall, our Hy-
perPELT obtains the best performance with less
trainable parameters.

4.4 Few-shot Domain Transfer

We use the above models trained on GLUE as re-
ported in Table 1, and evaluate them on the test set
of four different tasks, i.e., PAWS, IMDB, BoolQ,
and CB, after being few-shot finetuned on each
target training data, as shown in Figure 2. For the
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Methods Trained
Params (%)

VQAv2 VQA Karpathy test GQA COCO Caption
test-std in-domain out-domain overall test-dev B@4 M C S

Single-Task Training

VL-T5 † 100% 70.3 71.4 13.1 67.9 60.0 34.6 28.8 116.1 21.9

Multi-Task Training

VL-T5 † 100% - - - 67.2 58.9 - - 110.8 -
CLIP-T5 † 100% - - - 67.3 56.5 - - 113.1 -
CLIP-T5 ♠ 100% 69.8 70.8 17.4 66.8 59.6 32.4 27.1 108.5 20.4

VL-Adapter † 7.98% - - - 67.6 56.2 - - 111.8 -
VL-Adapter ♠ 7.16% 69.4 70.0 16.4 65.9 57.6 31.4 27.2 105.6 20.1
VL-HyperPELT 6.62% 69.6 70.3 16.8 66.3 57.9 32.1 27.0 108.2 20.1

Table 2: Experimental results on V&L banchmarks. We report vqa-score for VQA, gqa-score for GQA and various
metrics for image captioning (B@4: BLEU@4, M: METEOR, C: CIDEr, S: SPICE). †: Results from the paper of
Cho et al. (2021) and Sung et al. (2021), ♠: Our re-implementation of Sung et al. (2021).

tasks of CB and BoolQ from SuperGLUE, even
though the backbone T5 was previously trained on
the train sets of these two, the performance of all
methods differs a lot. The two baselines still do not
work with very few samples, like 4 and 16 samples.
Therefore, we assume that the two baselines suf-
fer from catastrophic forgetting problems to some
degree during multi-task training. In contrast, our
proposed HyperPELT works effectively on these
two tasks. We speculate that the reason might be
the use of hypernetworks on both prefix-tuning and
adapter-tuning modules of transformer. We leave
this exploration to our future work.

Besides, we show the results of Prompt-
tuning (Lester et al., 2021) and fine-tuning only
the task embedding in our HyperPELT. Note
that in this comparison, we keep the same train-
able parameters between these two methods, i.e.,
RN×dτ , where N denotes the prompt length in
Prompt-tuning method. Our HyperPELT TaskEm-
bed mostly achieves a comparable or even better
performance than Prompt-tuning.

4.5 Results on Vision-and-Language
Benchmarks

We compare the pre-trained and full fine-tuning
VL-T5 (Cho et al., 2021), and other adapter-based
methods built on top of T5, i.e., CLIP-T5 and VL-
Adapter (Sung et al., 2021) in the multi-task train-
ing setting. The results and the number of trainable
parameters are reported in Table 2. Since the used
dataset is slightly different from Sung et al. (2021)
and their checkpoint is not avaliable at this time,
we re-implement CLIP-T5 and VL-Adpater. Com-
pared to which, our method achieves a comparable
performance with a fewer number of trainable pa-

rameters (e.g., 7.16% of VL-Adapter vs. 6.62% of
VL-HyperPELT).

We further evaluate our models on multimodal
few shot learning tasks and show its superiority
in appendix E.1. To our best knowledge, we are
the first to employ the visual modality to tune the
very few parameters of different transformer blocks,
instead of normally inserting image patch tokens
to the input sequence. Experimental results evi-
dence the effectiveness of our novel approach, thus
providing a new perspective on how to extend the
multi-modality capability on top of PLMs.

5 Discussion and Conclusion

In this paper, we propose a unified parameter-
efficient tuning framework for multitasks. On the
one hand, we use the hypernetwork to reduce the
scale of trainable parameters of existing adapter-
tuning and prefix-tuning modules. On the other
hand, for the V&L tasks, we directly integrate the
image features into the prefix vectors as well as
adapters, which further reduces the number of train-
able parameters for processing visual input. Exten-
sive experiments on pure language and V&L tasks
demonstrate the superiority of our proposed frame-
work in both multi-tasking and few-shot settings.
In the future, we plan to explore more combination
of methods across tuning task-specific and visual-
specific parameters for different modules of PLMs.

Limitations

Our experiments are conducted based on the T5-
base pre-trained language model. Due to the com-
putational resource constraints, we did not conduct
experiments on other similar PLMs, such as BART,
and T5 model with larger scale, such as T5-large
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and T5-3B. Although we believe our conclusion
can generalize to other backbones since T5 is a
classical encoder-decoder model, we will conduct
more experiments to confirm for future work.
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Method Number of Tunable Parameters

Prompt Tuning N × d
Prefix Tuning N × d+ (1 + 2× L)× dmid × d×Battn
Adapter 2× dmid × d× (Battn +Bffn)× L
MAM Adapter N × d+ (1 + 2× L)× dmid × d×Battn + 2× dmid × d×Bffn × L

HYPERFORMER++ (N +Battn +Bffn + L)× dt + dt × dmid
I + dmid

I × dI + 2× dI × (dmid × d)
HyperPELT (N +Battn +Bffn + L)× dt + dt × dmid

I + dmid
I × dI + 2× dI × d+ 2× dI × (dmid × d)

Table 3: Number of tunable parameters of various parameter-efficient tuning methods with T5 models.

A.1 Parameter-Efficient Multi-task Learning

As recent models grow rapidly in size, how to fine-
tune pretrained models with a small number of
trainable parameters becomes more crucial. Ex-
isting research (Liu et al., 2021a; Ding et al.,
2022) has explored a large amount of methods on
parameter-efficient tuning. These methods gener-
ally include two categories according to whether
new trainable parameters are introduced. One cate-
gory is that only a subset of model parameters can
be updated while freezing the remain (Liu et al.,
2021b; Lee et al., 2019). The other is introduc-
ing a few task-specific new parameters to different
parts of pretrained models, such as multi-head at-
tention (Li and Liang, 2021) and feedforward lay-
ers (Houlsby et al., 2019). In this method, a small
network (often named as hypernetwork with the
input embedding named as hyper-embedding) is
often used to generate weights for a main network.

On the other hand, learning a unified model to
perform well on multiple tasks (i.e., multi-task
learning) is a challenging problem. It has to ad-
dress many challenges such as catastrophic forget-
ting, and model overfitting in low-resource tasks
while underfitting in high-resource tasks (Aharoni
et al., 2019). Radford et al. (2019) highlights the
ability of language models to perform a wide range
of multitasks in a zero-shot setting. Mahabadi et al.
(2021) proposes to use a shared hypernetwork (von
Oswald et al., 2020) to generate weights for a small
number of parameters in adapter modules, thus to
allow the model to adapt to each individual task in
a parameter-efficient manner.

A range of recent work aims to unify parameter-
efficient tuning methods (He et al., 2021; Mao et al.,
2022), to achieve better tuning performance. We ex-
plore a framework to generate weights for different
PELT methods using the hypernetwork. Compared
to only generating weights for adapters, empirical
results indicate that generating weights for multiple
modules of PLMs achieves superior performance

with fewer trainable parameters.

A.2 Parameter-Efficient Tuning towards
Vision-and-Language

Building vision-and-language models on top of
PLMs pretrained on pure large text corpora has led
to a noticeable improvement to V&L tasks (Cho
et al., 2021). There is a series of recent work that
extends the ability of language models to handle
multimodal input in a parameter-efficient manner.
For example, Frozen (Tsimpoukelli et al., 2021)
aligns the image representation to the text repre-
sentation space of frozen GPT model which thus is
able to generate captions for images. VL-Adapter
(Sung et al., 2021) introduces a limited set of new
trainable parameters to T5 via the adapter-tuning
approach that can match the performance of fine-
tuning the entire model. Flamingo (Alayrac et al.,
2022) uses an extra cross-attention module, whose
keys and values are generated via visual features,
thus enabling language modeling conditioned on
visual inputs. Different from existing work, we
propose a novel perspective of parameter-efficient
multimodal fusion. We introduce a seperate visual-
specific hypernetwork for handling visual input and
generating weights for PLMs.

B Mutli-task Learning Problem
Formulation

Our paper targets at a general multi-task learning
problem, where we are given the data from a set
of tasks {Dτ}Tτ=1. T is the total number of tasks
and Dτ = {(xiτ , yiτ )}Nτ

i=1 is the training data of
the τ -th task with Nτ samples. We are also given
a large-scale pretrained language model, i.e., T5,
parameterized by θ, which generates the output yiτ
for input xiτ . The standard multi-task finetuning
minimizes the following loss on the training set:

Ltotal =
T∑

τ=1

∑

(xi
τ ,y

i
τ )∈Dτ

Ltask(θ, x
i
τ , y

i
τ ), (1)
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Task Input Text Target Text

GLUE Tasks

CoLA cola sentence: [sentence] acceptable/unacceptable
SST-2 sst2 sentence: [sentence] positive/negative
MRPC mrpc sentence1: [sentence1] sentence2: [sentence2] equivalent/not_equivalent
QQP qqp question1: [question1] question2: [question2] duplicate/not_duplicate
STS-B stsb sentence1: [sentence1] sentence2: [sentence2] 0.0 - 5.0
MNLI mnli hypothesis: [hypothesis] premise: [premise] entailment/neutral/contradiction
QNLI qnli question: [question] sentence: [sentence] entailment/not_entailment
RTE rte sentence1: [sentence1] sentence2: [sentence2] entailment/not_entailment

Few-shot Tasks

CB cb hypothesis: [hypothesis] premise: [premise] entailment/neutral/contradiction
BoolQ boolq question: [question] context: [context] True/False
IMDB imdb sentence: [sentence] positive/negative
PAWS paws sentence1: [sentence1] sentence2: [sentence2] equivalent/not_equivalent

Vision-and-Language Tasks

COCO caption: [caption]
VQA vqa question: [question] [answer]
GQA gqa question: [question] [answer]

Vision-and-Language Few-shot Tasks

OKVQA okvqa question: [question] [answer]
SNLI-VE snli-ve premise: [premise] entailment/neutral/contradiction

Table 4: Input-output formats for NLU and Vision-and-Language tasks. Following Raffel et al. (2020); Cho et al.
(2021), we use different prefixes (such as “cola sentence:”, “vqa question:”) for questions from different datasets.

where Ltask is the loss function of the tasks that is
usually defined as the cross-entropy loss. Our goal
is to efficiently finetune the given model in this
multi-task learning setting, allowing knowledge
sharing across tasks, and at the same time, enabling
the model to adapt to each individual task.

We aim to integrate a unified hypernetwork-
based parameter-efficient transfer learning method
into a multi-task transformer model. In other word,
we insert the parameters generated by the hyper-
networks ∆θ into the layer and attention blocks
of PLMs. During training, we only update the hy-
pernetwork parameters θh with hyper-embedding
{Iτ}Tτ=1 and parameters in layer normalization,
while the remaining model parameters in θ are fixed
as in the Equation 2.

Ltotal =
T∑

τ=1

∑

(xi
τ ,y

i
τ )∈Dτ

Ltask(∆θ, θ, xiτ , y
i
τ )

=
T∑

τ=1

∑

(xi
τ ,y

i
τ )∈Dτ

Ltask(Iτ , θh, θ, x
i
τ , y

i
τ )

,

(2)

C Number of Tunable Parameters

Following He et al. (2021), to simplify the com-
putation of tunable parameters, we compute the

sum of parameter used in one encoder layer and
one decoder layer as the parameter overhead of
one single layer of the pre-trained encoder-decoder
model. T5 has an encoder-decoder structure that
has L layers. Each layer has Battn blocks and
Bffn blocks. For the encoder-decoder models like
T5, Battn = 3: the encoder self-attention block,
the decoder self-attention block and the decoder
cross-attention block and Bffn = 2: encoder feed-
forward block and decoder feed-forward block.
For modifications applied at the attention blocks,
the number of tunable parameters is computed
by θattn = θattn

W × Battn × L, where θattn
W denotes

the number of parameters used for one attention
sub-layer. Similarly, the number of tunable pa-
rameters for the FFN sub-layers is computed by
θffn = θffn

W × Bffn × L. Finally, the total number
of tunable parameters for prefix tuning and adapter
variants is θ = θattn + θffn as applicable. Using
T5 as an example, we present the number of pa-
rameters used by several representative methods
throughout our paper in Tab. 3.

D Experimental Setup

D.1 Input-Output Formats

As shown in Tab. 4, we formulate the input text
and labels from each task to the corresponding
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Figure 3: Few-shot domain transfer results of two differ-
ent V&L tasks averaged across 5 seeds. We report the
vqa-score on OKVQA validation split, and the accuracy
on SNLI-VE test-P split.

target text, and we learn these different tasks by
predicting target text with the language modeling
objective in Eq. 2.

E Additional Results and Analysis

E.1 Multimodal Few-shot Learning
We further use the models trained on V&L tasks as
reported in Figure 3 and evaluate them on the test
set after few-shot fine-tuning on OKVQA (Marino
et al., 2019) and SNLI-VE (Xie et al., 2018). For
OKVQA, since there is no test set, we split its origi-
nal validation set into two halves, one for validating
and the other for testing. For SNLI-VE, we use its
validation set for validating, and test-P set for test-
ing and reporting results. We follow the methods
in Section 4.4 to select samples, and report results
in Figure 3.

Compared with the full parameter fine-tuning,
i.e., CLIP-T5, and the previous parameter-efficient
V&L method VL-Adapter, our method achieves
the best performance. It is also worth noting that
for the used five random seeds, the variance of
our method is generally smaller than VL-Adapter,
which indicates that our method is more robust in
this few-shot learning scenario. We believe that our
framework, though training less parameters, can
still capture knowledge across tasks and transfer
them in the multimodal few-shot setting.
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