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Abstract

Contrastive learning has become a popular ap-
proach in natural language processing, particu-
larly for the learning of sentence embeddings.
However, the discrete nature of natural lan-
guage makes it difficult to ensure the quality
of positive and negative sample pairs generated
through data augmentation methods. Although
supervised contrastive learning can produce
more accurate sample pairs with human feed-
back labels, it still lacks fine-grained training
signals. In this paper, we propose to improve
Contrastive Learning of sentence embeddings
from AI Feedback (CLAIF). Our method uti-
lizes AI feedback from large pre-trained lan-
guage models (LLMs) to construct sample pairs
with fine-grained sample similarity scores to
improve contrastive learning. Besides, we com-
bine human feedback and AI feedback to pro-
vide better supervision signals for supervised
contrastive learning of sentence embeddings.
Experimental results show that our method
achieves state-of-the-art performance on sev-
eral semantic textual similarity (STS) and trans-
fer learning tasks compared to other unsuper-
vised and supervised contrastive learning meth-
ods. 1

1 Introduction

Learning sentence embeddings with rich seman-
tics is very important for many natural language
processing tasks, such as semantic matching and
information retrieval. Recently, pre-trained lan-
guage models (Devlin et al., 2019; Liu et al., 2019;
Qiu et al., 2020) provide a convenient way to get
sentence embeddings. However, sentence embed-
dings directly generated by pre-trained language
models show poor performance on semantic textual
similarity (STS) tasks due to the representation de-
generation problem (Gao et al., 2019). Therefore,

1We will release our code and data at https://github.
com/xiami2019/CLAIF

†Corresponding author.

finding ways to further improve pre-trained models
to produce better sentence embeddings becomes
an crucial and fundamental challenge in natural
language processing.

Given the shortage of labeled data for sentence
embedding learning, recent studies mainly focus on
unsupervised methods, such as utilizing contrastive
learning methods(Yan et al., 2021; Gao et al., 2021;
Chuang et al., 2022). Contrastive learning can be
classified into two categories (Khosla et al., 2020):
supervised contrastive learning and unsupervised
contrastive learning, depending on whether addi-
tional label information is utilized to construct pos-
itive and negative sample pairs. However, the qual-
ity of positive and negative sample pairs in un-
supervised contrastive learning can be difficult to
ensure. Recent studies also show that data aug-
mentation strategies in unsupervised contrastive
learning may introduce some bias like length infor-
mation (Wu et al., 2022) and improper negatives
(Zhou et al., 2022a). While supervised contrastive
learning methods can produce more accurate sam-
ple pairs by utilizing label information, such as
using supervised datasets from natural language
inference (Gao et al., 2021), it can only provide
coarse-grained labels and lack fine-grained super-
vision signals. We aruge that these limitations of
current contrastive learning methods restrict fur-
ther performance enhancement of sentence embed-
dings.

With the emergence of large pre-trained lan-
guage models (LLMs) (Brown et al., 2020; Sun
et al., 2021; Ouyang et al., 2022; Zhang et al.,
2022), researchers hope powerful LLMs can help
human train other AI models (Bai et al., 2022).
One way is to use LLMs to generate datasets using
for zero-shot learning (Schick and Schütze, 2021;
Ye et al., 2022; Meng et al., 2022). These meth-
ods all use predefined labels and task descriptions
to generate training inputs, instead of utilizing AI
feedback as supervision signals. Therefore, these
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a man is playing a flute .

a man <mask> playing a flute .

a man is playing <mask> <mask> .

a <mask> playing <mask> <mask> .

…

…
GPT-3

Prompt for
generating

a man was playing a flute .

a man is playing a guitar .

a boy and girl playing hopscotch together .

…

…

Original sentence Masked sentences Generated sentences

Step 1: Sentence Pair Generation

GPT-3

Prompt for
labeling

The similarity score is 0.89 .

The similarity score is 0.20 .

The similarity score is 0.00 .

…

…

("a man is playing a flute .", "a man was playing a flute .")

("a man is playing a flute .", "a man is playing a guitar .")

("a man is playing a flute .", "a boy and girl playing hopscotch together .")

…

…

Sentence pairs Similarity scores
Step 2: Semantic Similarity Labeling

Figure 1: Illustration of the sample pair generation process. The darker the color, the more information the sentence
shares with the original sentence.

method are not suitable for tasks whose labels are
continuous values and may lead to lack of diversity
in training samples. Inspired by these studies, we
hope to exploit the capability of LLMs to address
shortcomings in contrastive learning of sentence
embeddings.

We propose to improve Contrastive Learning of
sentence embeddings from AI Feedback (CLAIF).
Specifically, we design a two-step sample pair gen-
eration method to produce high quality sentence
pairs and fine-grained semantic similarity scores
using AI feedback from GPT-3, as shown in Figure
1. In the first step, we mask some words in a sen-
tence with different mask rates and then use GPT-3
to generate new sentences based on the remain-
ing information in the masked sentence. Then we
combine the generated sentences and the original
sentence to construct sentence pairs. In this way,
we can use the mask rate to control the amount
of sharing information between two sentences in
a pair, which will produce sentence pairs with dif-
ferent semantic similarities. In the second step,
we utilize GPT-3 to generate semantic similarity
scores for sentence pairs. These scores are the
AI feedback on sample similarity. Since the se-
mantic change caused by reconstructing a masked
sentence is difficult to measure, we leverage the

linguistic knowledge of LLMs to generate the se-
mantic similarity score. The diversity of AI feed-
back similarity scores ensured by the sentence pair
generation process in the first step. At last we use
our generated sample pairs and similarity scores to
train the model for sentence embeddings.

In addition to using AI feedback alone, we also
combine human feedback and AI feedback by in-
troducing AI feedback into supervised contrastive
learning of sentence embeddings which needs hu-
man feedback labels to generate positive sample
pairs. We use the AI feedback similarity score for
the positive sample pair as a soft label to replace the
one-hot label in InfoNCE loss (He et al., 2020). We
term our loss Soft InfoNCE. This process can be
referred to as contrastive learning of sentence em-
beddings from human and AI feedback (CLHAIF).

We conduct extensive experiments to show the
effectiveness of our method. Sentence embeddings
learned with CLAIF and CLHAIF achieve state-of-
the-art performance on standard semantic textual
similarity tasks and outperform strong baselines on
transfer learning tasks. We also find that CLAIF
results in significant improvements to the cross-
encoder architecture for the sentence-pair modeling
task.

Our main contributions are as follows:
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Feedback Source Positive Pair Negative Pair Loss Function

Zero Feedback
(CLZF) (xi, x

′
i) {(xi, xj) | xj ∈ X, i ̸= j}

InfoNCE (van den Oord et al.,
2018; He et al., 2020; Gao et al.,
2021),
NT-Xent (Chen et al., 2020)

Human Feedback
(CLHF) (xi, x

+
i )

{
(xi, x

−
i ), (xi, xj) | xj ∈ X, i ̸= j

}
SupCon (Khosla et al., 2020),
InfoNCE (Gao et al., 2021),
KNN-Contrastive (Zhou et al.,
2022b)

AI Feedback
(CLAIF) (xi, x

′
i, yi) (xi, x

′
i, yi)

∗ Mean Squared Error

Human and AI Feedback
(CLHAIF) (xi, x

+
i , yi)

{
(xi, x

−
i ), (xi, xj) | xj ∈ X, i ̸= j

}
Soft InfoNCE

Table 1: The details of contrastive learning from different feedback. X is the full set containing all samples and xi

is the i-th sample of X , such as a sentence or an image. x′
i is an augmented sample obtained by using some data

augmentation strategies to xi. x+
i and x−

i are postive sample and negative sample of xi picked by human feedback
information, such as class label information. yi is the AI feedback sample similarity score for the i-th sample pair.
∗: CLAIF does not explicitly construct positive and negative pairs, sample pairs with high simiarity scores can be
seen as positive pairs and those with low scores can be seen as negative pairs.

• We propose to improve contrastive learning
of sentence embeddings from AI feedback
(CLAIF) and achieve state-of-the-art perfor-
mance on several semantic textual similarity
tasks and transfer learning tasks.

• We construct a semantic textual similarity
dataset with high quality sentence pairs and
fine-grained AI feedback similarity scores us-
ing large pre-trained language models.

• We propose a method to incorporate human
feedback and AI feedback to provide better su-
pervision for contrastive learning of sentence
embeddings.

• Experimental results show the scalability of
CLAIF, which is cheaper and more efficient
than collecting data from human feedback.

2 Understanding Contrastive Learning
from Different Feedback

In this section, we categorize contrastive learning
methods into four categories according to their
feedback sources. We summarize the details of
contrastive learning from different feedback in Ta-
ble 1, including their feedback types, sample pairs
construction methods and representative loss func-
tions.

2.1 Contrastive Learning from Zero Feedback

Traditional contrastive learning is used for self-
supervised representation learning (Hadsell et al.,

2006; He et al., 2020). These methods construct
positive and negative sample pairs using data aug-
mentation strategies without any human feedback.
For example, in natural language processing, Gao
et al. (2021) construct positive sample pairs by
doing the dropout operation twice for the same
sentence and negative pairs by combining with an-
other sentences. We refer to these methods as Con-
trastive Learning from Zero Feedback (CLZF). The
most common loss function for CLZF is InfoNCE
(van den Oord et al., 2018). Chen et al. (2020) pro-
pose NT-Xent loss, which can be seen as a variant
of InfoNCE. However, due to the discrete nature
of natural language, it is hard to find effective and
unbiased data augmentation strategies to construct
high quality sample pairs.

2.2 Contrastive Learning from Human
Feedback

Recently, Khosla et al. (2020) propose to use la-
bel information to construct positive sample pairs.
In sentence embeddings, Gao et al. (2021) use
premise-hypothesis pairs with entailment relation-
ship from natural language inference (NLI) datasets
as positive sample pairs and still use InfoNCE for
training. Since these methods leverage label in-
formation from human, we refer to them as Con-
trastive Learning from Human Feedback (CLHF).
With the help of label information, some new losses
can be used in CLHF, like SupCon (Khosla et al.,
2020) and KNN-Contrastive (Zhou et al., 2022b).
Although CLHF can construct more accurate sam-
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ple pairs, it still lacks fine-grained supervision sig-
nals. For example, in InfoNCE, all positive pairs
have a label of 1. But there are also differences
in the similarity between different positive sample
pairs.

2.3 Contrastive Learning from AI Feedback

Measuring the similarity of sample pairs in con-
trastive learning is a laborious task. However,
thanks to emergence of LLMs, we can use LLMs
to measure the similarity of sample pairs and use
the AI feedback as our training signals. We re-
fer to this approach as Contrastive Learning from
AI Feedback (CLAIF). CLAIF does not need to
explicitly construct positive and negative sample
pairs because each sample pair has a fine-grained
label. We use mean squared error (MSE) loss for
the training of CLAIF in this work.

2.4 Contrastive Learning from Human and
AI Feedback

Besides contrastive learning from AI feedback, we
propose to combine human and AI feedback to pro-
duce better supervision signals when they are both
available. We call this category contrastive learn-
ing from human and AI feedback (CLHAIF) and
we propose a soft InfoNCE loss for the training
of CLHAIF. We hope to use fine-grained AI feed-
back to refine the coarse-grained signals in current
CLHF methods.

3 Methodology

In this section, we first introduce our method to
generate sample pairs and the training process
of CLAIF. In order to obtain high quality sen-
tence pairs with diverse and fine-grained similarity
scores, we propose a two-step sample pair gen-
eration method: Sentence Pair Generation and
Semantic Similarity Labeling. The generation
process is shown in Figure 1. We use these sam-
ple pairs to train language models like BERT and
RoBERTa. Then we introduce CLHAIF, which
combines human and AI feedback in contrastive
learning of sentences embeddings.

3.1 Sentence Pair Generation

We use unpaired sentences from the training set of
STS Benchmark (Cer et al., 2017) as our original
sentences. As shown in Figure 1, we first mask
some words of the original sentence "a man is play-
ing a flute." with different mask rates using the

0.0~0.10.1~0.20.2~0.30.3~0.40.4~0.50.5~0.60.6~0.70.7~0.80.8~0.90.9~1.0
0.00

0.05

0.10

0.15

0.20

0.25

Figure 2: The score distribution of our generated sample
pairs. The x-axis is the similarity score and the y-axis is
the percentage of the score.

<mask> token, in order to delete some information
in the original sentence. The more words that are
masked, the less information is left. We use the
depth of color to indicate the degree of informa-
tion sharing between two sentences in Figure 1.
Then we write a task description prompt to steer
GPT-3 to generate new sentences based on masked
sentences. We provide our task descriptions in Ap-
pendix B. To increase the diversity of generated
sentences, we merge adjacent <mask> tokens in
50% of masked sentences into one <mask> token.
Then we combine the original sentence with each
generated sentence to construct sentence pairs.

3.2 Semantic Similarity Labeling

In this step, we label the semantic similarity score
for each sentence pair using AI feedback from GPT-
3. The similarity score ranges from 0 to 1, where
a score of 1 means that the semantic of the two
sentences are exactly the same, and a score of 0
means that the semantic of the two sentences are
completely different. We write a task description
prompt to steer GPT-3 to generate a similarity score
between 0 and 1 for each sample pair generated
in step 1. The first step ensures the diversity of
semantic similarity scores. As illustrated in Figure
2, the generated scores are diverse and distributed
in the value range from 0 to 1.

3.3 Training on Generated Pairs

With the generated sample pairs, we train a lan-
guage model as the sentence encoder to get better
sentence embeddings. Given diverse sentence pairs
which have fine-grained similarity scores, we do
not need to explicitly construct positive and nega-
tive sample pairs. Therefore, we directly use the
mean squared error (MSE) loss to fit the cosine
similarity of each sentence pair to its AI feedback
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similarity score:

L =
1

N

N∑

i=1

[
cos

(
hi,h

′
i

)
− yi

]2 (1)

where N is the batch size, hi and h′
i are two sen-

tence embeddings of the i-th sentence pair (xi, x′i)
encoded by the model, yi is the corresponding simi-
larity score and cos means the calculation of cosine
similarity. During inference, we use the cosine
similarity of two sentence embeddings as their se-
mantic similarity score.

3.4 Combining Human Feedback and AI
Feedback

In this section, we mainly study the cooperation
of human and AI models to provide better training
signals for contrastive learning, which we called
CLHAIF. Reimers and Gurevych (2019) use super-
vised NLI datasets to learn sentence embeddings.
Gao et al. (2021) construct positive and hard nega-
tive sample pairs for contrastive learning leveraging
label information of NLI datasets, achieving signif-
icant improvements. However, as we mentioned in
Section 2.2, CLHF does not distinguish between
different positive sample pairs and assigns label of
1 for all positive pairs. In this way, all positive sam-
ple pairs are pulled together with the same extent
in contrastive learning, ignoring differences in sim-
ilarity between different positive pairs. Therefore,
we use AI feedback to refine these coarse-grained
supervision signals.

At first, we use the semantic similarity labeling
step in Section 3.2 to generate AI feedback sim-
ilarity scores for sentence pairs constructed from
supervised NLI datasets: SNLI (Bowman et al.,
2015) and MNLI (Williams et al., 2018). Follow-
ing Gao et al. (2021), we construct sample pairs
using the label information. For the i-th sample of
the NLI dataset, we can obtain two sentence pairs
(xi, x

+
i ) and (xi, x

−
i ), where xi is the premise, x+i

and x−i are entailment and contradiction hypothe-
sis. (xi, x+i ) is the positive pair and (xi, x

−
i ) is the

hard negative pair.

In order to incorporate AI feedback, we propose
soft InfoNCE loss by replacing the one-hot label

with the AI feedback score as the soft label:

L = − 1

N

N∑

i=1

li (2)

li = yi log
ecos(hi,h

+
i )/τ

∑N
j=1

(
ecos(hi,h

+
j )/τ + ecos(hi,h

−
j )/τ

)

where N is the batch size, hi, h+
i and h−

i are
sentence embeddings of xi, x+i and x−i , yi is the
AI feedback similarity score for the positive pair
(xi, x

+
i ) and τ is the temperature parameter.

4 Experiments

4.1 Evaluation Datasets

We conduct extensive experiments on seven se-
mantic textual similarity (STS) tasks and seven
transfer learning tasks. The STS tasks include
STS 2012-2016 (Agirre et al., 2012, 2013, 2014,
2015, 2016), STS Benchmark (Cer et al., 2017)
and SICK-Relatedness (Marelli et al., 2014). The
transfer learning tasks include MR (Pang and Lee,
2005), CR (Hu and Liu, 2004), SUBJ (Pang and
Lee, 2004), MPQA (Wiebe et al., 2005), SST-2
(Socher et al., 2013), TREC (Voorhees and Tice,
2000) and MRPC (Dolan and Brockett, 2005).

Following Gao et al. (2021), for STS tasks, we
calculate the Spearman’s correlation between the
cosine similarity of sentence embeddings and the
golden similarity scores from STS datasets. For
transfer learning tasks, we train a logistic regres-
sion classifier based on fixed sentence embeddings
and follow the default settings of SentEval (Con-
neau and Kiela, 2018). We use the same evaluation
script as Gao et al. (2021) to calculate metrics.

4.2 Baselines

We compare our method with some strong base-
lines among three types of sentence embedding
methods:
Post-processing methods: These methods adopt
some post-processing operations to enhance sen-
tence embeddings which do not need to further
train the backbone model. We use BERT-whitening
(Su et al., 2021), BERT-flow (Li et al., 2020) and
prompt based BERT (Jiang et al., 2022) as base-
lines.
Training methods: These methods use additional
data to further train the backbone model for better
sentence embeddings. We use SBERT (Reimers
and Gurevych, 2019), ConSERT (Yan et al., 2021),
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Dataset Sample Number Sample Type
Wiki-1M 1,000,000 sentence
NLI 275,601 sentence triplet
Dino 83,497 sentence pair
CLAIF 113,773 sentence pair
CLAIFscaled 1,215,618 sentence pair

Table 2: Statistics of datasets for different settigns. Wiki-
1M is used by CLZF methods. NLI is used by CLHF
methods. We use CLAIF and CLAIFscaled to refer to our
generated datasets here.

SimCSE (Gao et al., 2021), DiffCSE (Chuang et al.,
2022) and PromptBERT (Jiang et al., 2022) as base-
lines.
Dataset-generation based methods: Some studies
generate datasets from LLMs for sentence embed-
ding learning. We use Dino (Schick and Schütze,
2021) as our baseline. Dino generates sentence
pairs based on three discrete similarity labels using
GPT2-XL. For a fair comparison, we re-implement
Dino using GPT-3 in our experiments.

4.3 Implementation Details

Choice of large pre-trained language models: In
our experiments, we get all AI feedback from text-
davinci-003, which is the latest version of GPT-3.
We access text-davinci-003 through the OpenAI
API.
Sample pair generation: We use nine mask rates
for each original sentence in sentence pair genera-
tion: 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8. For
CLAIF, we use unpaired sentences from the train-
ing set of STS-B as original sentences to construct
sentence pairs from scratch and randomly sample
two other sentences for each original sentence to
construct two sentence pairs with a similarity score
of 0. For CLHAIF, following previous studies (Gao
et al., 2021; Jiang et al., 2022), we use the SNLI
and MNLI datasets to construct sentence pairs and
add a AI feedback similarity score for each sen-
tence pair. We only use the AI feedback scores
for positive pairs in our experiments of CLHAIF.
Besides, to demonstrate the scalability of CLAIF,
we use sentence pairs constructed from STS-B and
from NLI datasets for the training of CLAIF, which
we called CLAIFscaled. We list statistics of some
datasets used for different methods in Table 2.
Training details: We use the base version of the
pre-trained language model BERT (Devlin et al.,
2019) and RoBERTa (Liu et al., 2019) as our back-
bone models. We use the development set of STS-B
as our validation set. In CLAIF, we use the mean

Model SentEval Avg.
SimCSEBERT 85.81
PromptBERT 85.49
DiffCSEBERT 86.86
CLAIFBERT 86.62
SimCSERoBERTa 84.84
PromptRoBERTa 87.36
DiffCSERoBERTa 87.04
CLAIFRoBERTa 87.99
SimCSEBERT-supervised 86.51

w/ CLHAIF 86.73
PromptBERTsupervised 86.98

w/ CLHAIF 87.09
SimCSERoBERTa-supervised 88.08

w/ CLHAIF 88.82
PromptRoBERTasupervised 89.11

w/ CLHAIF 89.27
CLAIFscaled-BERT 87.15
CLAIFscaled-RoBERTa 89.44

Table 3: The performance comparison of CLAIF and
CLHAIF on transfer learning tasks. SentEval Avg is
the average accuracy on seven transfer learning datasets
from SentEval.

pooling strategy to get sentence embeddings for
BERT and RoBERTa. For CLHAIF, we take the
same pooling strategy as the corresponding base-
line. Other implementation details are in Appendix
A.

4.4 Main Results
Semantic Textual Similarity We compare CLAIF
with methods which do not use additional labeled
datasets for training, including CLZF methods and
dataset generation methods. The results of CLAIF
on STS tasks are shown in Table 4. We observe
that CLAIF achieves the best performance on the
four datasets STS15, STS16, STS-B, SICK-R and
get the highest averaged Spearman’s correlation
on seven STS datasets. And in the comparison
with dataset generation methods, CLAIF outper-
forms Dino by 3.37 and 2.75 points on BERT and
RoBERTa. Therefore, we believe that CLAIF is
more effective for the learning of sentence embed-
dings than CLZF methods.

We implement CLHAIF by incorporating AI
feedback into supervised SimCSE and supervised
PromptBERT/PromptRoBERTa. We compare
CLHAIF with other methods that use additional
labeled datasets for training. As shown in Table
5, incorporating AI feedback improves results of
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Model STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.
BERT-base

BERT-flow† 58.40 67.10 60.85 75.16 71.22 68.66 64.47 66.55
BERT-whitening† 57.83 66.90 60.90 75.08 71.31 68.24 63.73 66.28
Prompt based BERT† 60.96 73.83 62.18 71.54 68.68 70.60 67.16 67.85
ConSERT† 64.64 78.49 69.07 79.72 75.95 73.97 67.31 72.74
SimCSE† 68.40 82.41 74.38 80.91 78.56 76.85 72.23 76.25
DiffCSE‡ 72.28 84.43 76.47 83.90 80.54 80.59 71.23 78.49
PromptBERT† 71.56 84.58 76.98 84.47 80.60 81.60 69.87 78.54
DinoGPT-3 72.61 81.92 75.09 80.42 76.26 77.10 70.43 76.26
CLAIF 70.62 81.51 76.29 85.05 81.36 84.34 78.22 79.63

RoBERTa-base
RoBERTa-whitening† 46.99 63.24 57.23 71.36 68.99 61.36 62.91 61.73
SimCSE† 70.16 81.77 73.24 81.36 80.65 80.22 68.56 76.57
DiffCSE‡ 70.05 83.43 75.49 82.81 82.12 82.38 71.19 78.21
PromptRoBERTa† 73.94 84.74 77.28 84.99 81.74 81.88 69.50 79.15
Dino§ 70.27 81.26 71.25 80.49 77.18 77.82 68.09 75.20
DinoGPT-3 71.24 81.55 75.67 81.42 78.77 80.10 71.31 77.15
CLAIF 68.33 82.26 77.00 85.18 83.43 85.05 78.02 79.90

Table 4: The performance comparison of CLAIF on STS tasks. †: results from (Jiang et al., 2022). ‡: results from
(Chuang et al., 2022). §: results from (Schick and Schütze, 2021). Other results are from our experiments. We bold
the highest results among models with the same backbone.

Model STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.
BERT-base

SBERT† 70.97 76.53 73.19 79.09 74.30 77.03 72.91 74.89
SBERT-flow† 69.78 77.27 74.35 82.01 77.46 79.12 76.21 76.60
SBERT-whitening† 69.65 77.57 74.66 82.27 78.39 79.52 76.91 77.00
ConSERT† 74.07 83.93 77.05 83.66 78.76 81.36 76.77 79.37
SimCSE† 75.30 84.67 80.19 85.40 80.82 84.25 80.39 81.57

w/ CLHAIF 74.86↓0.44 85.09↑0.42 81.24↑1.05 85.96↑0.56 81.33↑0.51 84.96↑0.71 81.36↑0.97 82.08↑0.51
PromptBERT∗ 75.10 85.54 80.58 86.00 81.24 84.57 80.36 81.91

w/ CLHAIF 75.03↓0.07 85.88↑0.34 81.48↑0.90 86.33↑0.33 81.40↑0.16 84.93↑0.36 80.98↑0.62 82.29↑0.38
CLAIFscaled 74.36 85.07 80.64 87.21 83.36 86.26 79.68 82.37

RoBERTa-base
SRoBERTa† 71.54 72.49 70.80 78.74 73.69 77.77 74.46 74.21
SRoBERTa-whitening† 70.46 77.07 74.46 81.64 76.43 79.49 76.65 76.60
SimCSE† 76.53 85.21 80.95 86.03 82.57 85.83 80.50 82.52

w/ CLHAIF 76.23↓0.30 85.46↑0.25 81.48↑0.53 86.47↑0.44 83.40↑0.83 85.93↑0.10 80.95↑0.45 82.85↑0.33
PromptRoBERTa∗ 76.41 85.64 82.11 86.18 82.71 85.74 79.95 82.68

w/ CLHAIF 76.26↓0.15 86.01↑0.37 82.83↑0.72 86.70↑0.52 82.94↑0.23 86.04↑0.30 80.55↑0.60 83.05↑0.37
CLAIFscaled 72.58 84.50 79.48 86.92 84.19 85.85 79.64 81.88

Table 5: The performance comparison of CLHAIF on STS tasks. †: results from Jiang et al. (2022). Other results
are from our experiments. ∗: The results of PromptBERT and PromptRoBERTa are obtained by running official
code of Jiang et al. (2022) with recommended hyperparameters.

CLHF methods like supervised SimCSE on six
STS datasets except STS12.

Transfer Tasks In addition to STS tasks, we also
evaluate several transfer learning tasks from Sen-
tEval. Experimental results show that sentence em-
beddings learned with CLAIF and CLHAIF also
achieve better or comparable performance com-
pared to baselines. We present the average results
for seven transfer tasks in Table 3 and detailed re-
sults in Appendix C.

4.5 Scalability of CLAIF

In this section we discuss the scalability of CLAIF.
The results of CLAIFscaled in Table 5 show that us-
ing more data to scale CLAIF can bring significant
improvements. CLAIFscaled greatly outputforms
CLAIF by 2.74 points on BERT-base (79.63 →
82.37 ) and even outputforms or performs on par
with CLHF and CLHAIF methods. We believe that
using more data can further improve the perfor-
mance of CLAIF. Since collecting data from AI
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Model STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.
BERT-base

Trans-Encodercross 71.94 84.14 76.39 82.87 80.65 81.06 71.16 78.32
CLAIFcross 70.36 83.27 79.73 87.87 84.54 85.00 78.33 81.30

RoBERTa-base
Trans-Encodercross 72.59 83.24 76.83 84.20 82.82 82.85 69.51 78.86
CLAIFcross 72.80 83.75 81.52 88.66 86.61 87.05 81.28 83.10

Table 6: The performance comparison of CLAIF based on the cross-encoder architecture.

feedback is more cheaper than from human feed-
back, we argue that CLAIF has great potential in
practical applications.

4.6 Sentence-Pair Modeling

In this section, we evaluate CLAIF on the sentence-
pair modeling task. Cross-encoders usually outper-
form bi-encoders in information retrieval. How-
ever, we observe in Liu et al. (2022) that the cross-
encoder does not show its superior on sentence-pair
modeling. We contribute this to the lack of fine-
grained training signals. We train a cross-encoder
with CLAIF. Experimental results in Table 11 show
that, with the help of AI feedback, CLAIFcross
brings significant improvements for cross-encoders
on the sentence-pair modeling task compared to the
previous model Trans-Encoder (Liu et al., 2022).
More training details are in Appendix D.

4.7 Human Evaluation

In this section, we conduct human evaluation to
measure the quality of generated sentences and
similarity scores. We measure whether the gener-
ated sentences are fluent and whether the similarity
scores are consistent with the real semantic simi-
larities. To help human judge the consistency, we
generate a natural language explanation for each
generated similarity score using GPT-3. We invite
4 experts to participate in our human evaluation.
Then we random pick 100 samples from the dataset
used in CLAIF and assign 25 samples to each ex-
pert. In the evaluation, 92 percent of generated
sentences are considered fluent and 90 percent of
generated scores are considered consistent by the
expert, which means our method can generate high
quality sentence pairs and similarity scores.

5 Related Work

Recent studies about sentence embeddings mainly
focuse on using additional data to further train
pre-trained language models. Yan et al. (2021)
and Gao et al. (2021) propose different data aug-

mentation strategies for contrastive learning and
achieve significant improvements using unlabeled
data. Chuang et al. (2022) use equivariant con-
trastive learning for learning better representations.
Zhou et al. (2022a) and Wu et al. (2022) address the
bias caused by construction processes of negative
and positive samples. Jiang et al. (2022) use dif-
ferent prompt templates to produce positive pairs
for contrastive learning. Opitz and Frank (2022)
use various semantic sentence features to construct
fine-grained labels for sentence embedding train-
ing.

Impressed by the powerful capabilities of LLMs
(Brown et al., 2020; Ouyang et al., 2022), re-
searchers pay more attention to using AI feedback
from LLMs for zero-shot and few-shot learning.
Li et al. (2023); Li and Qiu (2023) use AI feed-
back from language models to enhance In-context
Learning and Chain-of-Thoughts. Ye et al. (2022)
and Meng et al. (2022) generate datasets by tak-
ing labels and prompts as the input of LLMs and
then let LLMs generate training samples. Schick
and Schütze (2021) design a dataset generation
method for STS tasks. They construct three nat-
ural language instructions based on three discrete
similarity scores and then use these instructions to
steer LLMs to construct sentence pairs. However,
it is hard to use natural language to describe vari-
ous similarity scores, since the similarity score is a
continuous variable with values ranging from 0 to
1.

6 Conclusion

In this paper, we first formalize four types of con-
trastive learning: contrastive learning from zero
feedback (CLZF), contrastive learning from human
feedback (CLHF), contrastive learning from AI
feedback (CLAIF) and contrastive learning from
human and AI feedback (CLHAIF). Then we im-
prove contrastive learning of sentence embeddings
from AI feedback and combine human feedback
with AI feedback to produce better supervision
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signals. Experimental results show that CLAIF
and CLHAIF can bring substantial improvements
for sentence embedding learning. We hope that
learning from AI feedback can shed new lights for
representation learning and contrastive learning.

Limitations

To inspire future work, we conclude some limita-
tions of our work as follows:

• While our method achieves promising perfor-
mance on sentence embedding related tasks
like STS, the performance on other natural
language processing tasks are still need to in-
vestigate.

• The AI feedback in our experiments comes
from GPT-3, which requires a fee to use.

• We do not explore the effect of different task
description prompts on the quality of gener-
ated sample pairs, which may influence the
performance of CLAIF.

• In CLHAIF, we only use the AI feedback for
positive sample pairs. How to utilize AI feed-
back for negative sample pairs remains to be
studied.
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A Implementation Details

For CLAIF, we train our models for 3 epochs with
a batch size of 32, and set the learning rate to 2e-5.
Following previous work, we use the development
set of STS-B as the validation set. We evaluate the
model every 125 training steps on the validation set
to choose the best checkpoint during training. We
conduct a grid-search of learning rate ∈ {1e-5,2e-5}
on the validation set.

For CLHAIF, we use the official implementa-
tion and the default configuration of our baselines
SimCSE (Gao et al., 2021) and PrompBERT (Jiang
et al., 2022). We only replace the one-hot label
with our soft label.

We run experiments of CLAIF on a single RTX
3090 GPU with 24G gpu memory and experiments
of CLHAIF on 4 RTX 3090 GPUs. We fix the
random seed to 42 for all experiments.

B Task Descriptions

We use three task description prompts in our exper-
iments. For sentence pair generation in Section 3.1,
our two prompts are:
"Replace all <mask> tokens in ’<masked-
sentence>’ to make a new sentence. The new sen-
tence is:" and "Write two sentences that mean the
same thing. Sentence 1: ’<sentence1>’ Sentence
2:".
For semantic similarity labeling in Section 3.2, our
prompt is:
"The similarity score for two sentences is in the
range from 0.0 to 1.0, 0.0 means completely dif-
ferent and 1.0 means almost the same. Now given
two sentences ’<sentence1>’ and ’<sentence2>’,
please give a similarity score for these two sen-
tences: The similarity score for these two sentences
is".

C Transfer Learning Tasks

We list the detailed performance comparison of
CLAIF and CLHAIF in Table 7 and Table 8. Ex-
perimental results show that CLAIF achieves the
best performance on RoBERTa-base and compa-
rable performance on BERT-base. CLHAIF also
achieves better results compared to the baselines.
Using more data to scale CLAIF also brings perfor-
mance improvements on transfer learning tasks as
shown in Tabel 8.
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Model MR CR SUBJ MPQA SST-2 TREC MRPC Avg.

BERT-base
Avg. BERT embeddings† 78.66 86.25 94.37 88.66 84.40 92.80 69.54 84.94
BERT- [CLS] embedding† 78.68 84.85 94.21 88.23 84.13 91.40 71.13 84.66
SimCSE‡ 81.18 86.46 94.45 88.88 85.50 89.80 74.43 85.81
SimCSE w/MLM‡ 82.92 87.23 95.71 88.73 86.81 87.01 78.07 86.64
DiffCSE‡ 82.69 87.23 95.23 89.28 86.60 90.40 76.58 86.86
PromptBERT† 80.74 85.49 93.65 89.32 84.95 88.20 76.06 85.49
DinoGPT-3 79.96 85.27 93.67 88.87 84.29 88.60 69.62 84.33
CLAIF 81.64 87.98 94.24 89.34 86.16 89.80 77.16 86.62

RoBERTa-base
Avg. RoBERTa embeddings 84.35 88.34 95.28 86.13 89.46 93.20 74.20 87.28
SimCSE‡ 81.04 87.74 93.28 86.94 86.60 84.60 73.68 84.84
SimCSE w/MLM‡ 83.37 87.76 95.05 87.16 89.02 90.80 75.13 86.90
DiffCSE‡ 82.82 88.61 94.32 87.71 88.63 90.40 76.81 87.04
PromptRoBERTa† 83.82 88.72 93.19 90.36 88.08 90.60 76.75 87.36
DinoGPT-3 82.31 88.66 93.95 88.72 87.53 88.20 73.74 86.16
CLAIF 84.11 90.62 94.29 89.13 89.57 91.00 77.22 87.99

Table 7: The performance comparison of CLAIF on transfer learning tasks. †: results from (Jiang et al., 2022). ‡:
results from (Chuang et al., 2022). Other results are from our experiments.

D Sentence-Pair Modeling

In sentence-pair modeling task, cross-encoders can
be used to directly encode the sequence of two
sentences and then predict a similarity score. Pre-
vious studies (Thakur et al., 2021; Liu et al., 2022;
Lu et al., 2022) show that cross-encoders usually
outperform bi-encoders. We find that CLAIF can
significantly improve the performance of cross-
encoders on sentence-pair modeling task, with the
help of fine-grained AI feedback scores.

We use the binary cross-entropy (BCE) loss to
train cross-encoders initialized from BERT and
RoBERTa:

L = − 1

N

N∑

i=1

li (3)

li = yi log σ(ŷi) + (1− yi) log (1− σ(ŷi))

where N is the batch size, ŷi is the predicted score
of the i-th sentence pair, yi is the AI feedback simi-
larity score and σ is the sigmoid function.

E Cost for Data Generation

According to our billings, we spent about $100 to
generate data for CLAIF and about $720 for the
scaled dataset.

F Generated Examples

We present some generated sample pairs used in
CLAIF in Table 9 and some generated similarity

scores for sample pairs constructed from NLI in
Table 10.

G Comparison with
Text-Ada-Embedding-002

Recently, OpenAI has released a powerful embed-
ding model named text-ada-embedding-002, we
compare the performance of it on STS tasks with
CLAIF here. The results show that CLAIF-scaled
achieves better performance on STS tasks than text-
ada-embedding-002.
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Model MR CR SUBJ MPQA SST-2 TREC MRPC Avg.

BERT-base
SBERT† 83.64 89.43 94.39 89.86 88.96 89.60 76.00 87.41
SimCSE† 82.69 89.25 94.81 89.59 87.31 88.40 73.51 86.51

w/ CLHAIF 83.11↑0.42 88.98↓0.27 94.47↓0.34 89.95↑0.36 88.58↑1.27 86.40↓2.00 75.65↑2.14 86.73↑0.22
PromptBERT∗ 83.05 88.96 94.68 89.86 88.19 87.80 76.29 86.98

w/ CLHAIF 83.14↑0.09 89.12↑0.16 94.65↓0.03 89.97↑0.11 87.86↓0.33 88.80↑1.00 76.06↓0.23 87.09↑0.11
CLAIFscaled 82.08 89.12 94.48 90.22 87.53 90.20 76.41 87.15

RoBERTa-base
SRoBERTa† 84.91 90.83 92.56 88.75 90.50 88.60 78.14 87.76
SimCSE† 84.92 92.00 94.11 89.82 91.27 88.80 75.65 88.08

w/ CLHAIF 86.10↑1.18 91.76↓0.24 94.66↑0.55 90.07↑0.25 91.93↑0.66 91.60↑2.80 75.59↓0.06 88.82↑0.74
PromptRoBERTa∗ 86.22 91.55 95.08 90.97 91.82 91.40 76.70 89.11

w/ CLHAIF 86.41↑0.19 91.76↑0.21 94.90↓0.18 91.01↑0.04 92.04↑0.22 92.40↑1.00 76.35↓0.35 89.27↑0.16
CLAIFscaled 85.05 91.71 94.39 90.03 91.87 94.00 79.01 89.44

Table 8: The performance comparison of CLHAIF on transfer learning tasks. †: results from Jiang et al. (2022). ∗:
The results of PromptBERT and PromptRoBERTa are obtained by running official code of Jiang et al. (2022) with
recommended hyperparameters.

Original Sentence Generated Sentence Similarity Score

a plane is taking off .

an aircraft is departing .
The airplane is taking off.
A plane is taking off swiftly
The blue plane is taking off.
Airplane is flying.
Bob and Joe are taking a walk.
Aeroplane is flying
Put off steam
Turn off lights

0.80
0.80
0.90
0.75
0.67
0.00
0.67
0.00
0.00

a man is playing a large flute .

A male individual is performing on a big flute.
a man is playing a large flute.
He she is playing a large flute.
a man played a wooden flute.
a flute is not a wooden flute
a boy playing a large drum
a man is wise.
The old man stood .
The quick brown fox jumps over the lazy dog

0.86
1.00
0.78
0.71
0.20
0.33
0.00
0.00
0.00

three men are playing chess .

There are three men playing chess.
Three children are playing chess.
Three kings are playing chess.
They are playing chess .
three men played chess together
three men are walking
John and Mary were playing chess together
I play blitz chess online
I like to play soccer and tennis.

0.94
0.80
0.87
0.80
0.78
0.00
0.50
0.20
0.00

Table 9: Generated examples of sample pairs used in CLAIF.
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Premise Entailment Hypothesis Similarity Score
The other men shuffled. The other men were shuffled around. 0.78
well it’s been very interesting It has been very intriguing. 0.90
He started slowly back to the bunkhouse. He returned slowly to the bunkhouse. 0.91
well what the market can bear and The market can bear some. 0.71
She smiled back. She was happy. 0.25
The economy could be still better. It still have room for improvement. 0.55
The man should have died instantly. The man should not have been alive. 0.14
Turned out, I wasn’t completely wrong. I was not totally wrong. 0.8

Table 10: Generated examples of similarity scores used in CLHAIF.

Model STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.

Ada-Embedding-002 69.80 83.26 76.08 86.12 85.96 84.30 80.25 80.82
CLAIF-BERT 70.62 81.51 76.29 85.05 81.36 84.34 78.22 79.63
CLAIF-BERTscaled 74.36 85.07 80.64 87.21 83.36 86.26 79.68 82.37

Table 11: The performance comparison between CLAIF and OpenAI’s text-ada-embedding-002.
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