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Abstract

Prompting large language models has enabled
significant recent progress in multi-step rea-
soning over text. However, when applied to
text generation from semi-structured data (e.g.,
graphs or tables), these methods typically suf-
fer from low semantic coverage, hallucination,
and logical inconsistency. We propose MUR-
MUR, a neuro-symbolic modular approach to
text generation from semi-structured data with
multi-step reasoning. MURMUR is a best-first
search method that generates reasoning paths
using: (1) neural and symbolic modules with
specific linguistic and logical skills, (2) a gram-
mar whose production rules define valid com-
positions of modules, and (3) value functions
that assess the quality of each reasoning step.
We conduct experiments on two diverse data-
to-text generation tasks like WebNLG and Log-
icNLG. The tasks differ in their data represen-
tations (graphs and tables) and span multiple
linguistic and logical skills. MURMUR obtains
significant improvements over recent few-shot
baselines like direct prompting and chain-of-
thought prompting, while also achieving com-
parable performance to fine-tuned GPT-2 on
out-of-domain data. Moreover, human evalu-
ation shows that MURMUR generates highly
faithful and correct reasoning paths that lead to
26% more logically consistent summaries on
LogicNLG, compared to direct prompting.1

1 Introduction

Data-to-text generation (McKeown, 1992; Reiter
and Dale, 1997; Wen et al., 2015; Dušek and Ju-
rcicek, 2015; Mei et al., 2016; Novikova et al.,
2017; Gatt and Krahmer, 2018) is the task of gen-
erating fluent, faithful, and consistent summaries
of semi-structured data. Recent works have in-
troduced different data-to-text generation tasks

1Supporting code available at https://github.com/
swarnaHub/MURMUR

Summary-1: Reinhold Roth had one win in his 250cc
career.

Summary-2: Reinhold Roth's best finish in the 250cc
class was a second-place finish in 1989.

Summary-1: Reinhold Roth scored the least number of
points in the year he was on the suzuki team.

Year Class Team Points Wins
1979 350cc yamaha 3 0
1980 250cc yamaha 4 0
1982 250cc yamaha 4 0
1982 500cc suzuki 0 0
1983 250cc yamaha 14 0
1984 500cc honda 14 0
1985 250cc romer-juchem 29 0
1986 250cc hb - honda 10 0
1987 250cc hb - honda 108 1
1988 250cc hb - honda 158 0
1989 250cc hb - honda 190 2
1990 250cc hb - honda 52 0

Table Topic: Reinhold Roth

Reasoning Path-1: eq{hop{argmin{all_rows;   
               points}; team}; suzuki}

Direct
Prompting

Surface Realization

Summary-2: Reinhold Roth scored an average of 29       
points in the years he won 0 races. 

Reasoning Path-2: eq{avg{filter_eq{all_rows;   
                 wins; 0}; points}; 29}

Surface Realization

MURMUR

Figure 1: Sample table from LogicNLG and two logical
summaries generated by MURMUR and Direct Prompt-
ing baseline. Direct Prompting summaries include logi-
cal inconsistencies and hallucinations (marked in red)
while MURMUR generates reasoning paths (composed
of modules) and converts them to logically consistent
summaries (marked in green). Each color code high-
lights part of the table relevant to a MURMUR summary.

wherein the data is represented in diverse struc-
tures, like meaning representations (Novikova et al.,
2017), graphs (Gardent et al., 2017), or tables (Le-
bret et al., 2016; Parikh et al., 2020; Chen et al.,
2020a). Text generation from such data is chal-
lenging because it extends surface realization of
the input content and requires various reasoning
and compositionality skills, such as filtering a table
based on a certain criterion, retrieving the maxi-
mum value from a table column, etc.

Existing works fine-tune pre-trained language
models (Radford et al., 2019; Raffel et al., 2020)
as the de-facto standard for building supervised
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data-to-text generation systems (Kale and Rastogi,
2020; Agarwal et al., 2021). However, this requires
a large amount of domain-specific parallel data,
which is expensive to obtain, and training models
on such data also affects out-of-domain generaliza-
tion (Laha et al., 2020; Dušek et al., 2020).

Motivated by the recent success of few-shot
prompting in multi-step reasoning over text (Wei
et al., 2022; Nye et al., 2021; Wang et al., 2022a;
Dohan et al., 2022), we pose data-to-text genera-
tion as multi-step reasoning over data.2 Reasoning
over data for text generation brings its own set of
challenges: (1) Generation Quality: Firstly, di-
rectly prompting large language models (LLMs)
can cause models to suffer from low semantic cov-
erage, hallucinations, and logically inconsistent
generations (see red marked phrases for the Direct
Prompting summaries in Fig. 1). Other prompt-
ing methods like Chain-of-Thought (CoT) encour-
age LLMs to also generate intermediate reasoning
steps (Wei et al., 2022) but it compromises the
transparency, faithfulness,3 and correctness of the
reasoning process due to the lack of explicit condi-
tioning between the reasoning steps (Creswell and
Shanahan, 2022). (2) Transformation-invariance:
Text is a sequence of tokens while data is typ-
ically represented as a set of elements (e.g., a
graph is a set of edges, a table is a set of rows,
etc). Hence, a model that reasons over data must
be transformation-invariant (Wang et al., 2022a).
For instance, the summary generated from a table
should be invariant to randomly shuffling the rows
of the table. Thus, prompting methods that lin-
earize the data in an arbitrary order, can be prone
to some variance (see Table 3 and 6).

We propose MURMUR, a few-shot Modular
Multi-step Reasoning approach to text generation
from data (§3). It is a best-first search algorithm
(§3.4) that generates reasoning paths (see exam-
ples in Fig 1) with three features: (1) Modularity
(§3.1): MURMUR defines a set of few-shot neural
and symbolic modules with diverse input/output
data types that constitute multiple steps in a reason-
ing path. Neural modules perform linguistic skills
that LLMs are good at (e.g., the Surface Realiza-
tion module in Fig. 1 converts a reasoning path to
a natural language summary) and symbolic mod-

2By data, we mean semi-structured data such as graphs or
tables. Henceforth, we will refer to it as just ‘data’.

3Faithful reasoning refers to an underlying causal structure
in the reasoning process. This is different from a text’s faith-
fulness to an input context which will be called hallucinations.

ules perform logical skills that they mostly struggle
with (Wang et al., 2022b; Gao et al., 2022) (e.g., the
argmin module in Fig. 1 finds the row with the min-
imum points); (2) Grammar (§3.2): MURMUR
introduces a grammar whose production rules spec-
ify valid compositions of modules. For instance,
in the second path of Fig. 1, MURMUR first gen-
erates the module filter_eq followed by the avg
module, because the former outputs a table data
type which is also the input data type to the lat-
ter; (3) Value functions (§3.3): To evaluate the
quality of each plausible reasoning step and choose
the best modules at each step, MURMUR defines
value functions that score, rank, and select the best
steps. For example, in the second path of Fig. 1,
an avg module is perhaps more salient than a max
or min module (which only finds the maximum or
minimum points).

Our findings are: MURMUR can perform multi-
step generative reasoning on simple to complex
semi-structured data-to-text generation tasks in-
cluding WebNLG (Gardent et al., 2017), a graph-to-
text task (§5) and LogicNLG (Chen et al., 2020a),
a table-to-text task (§6). We compare MURMUR
with state-of-the-art supervised (end-to-end and
pipeline) and few-shot prompting methods. On
WebNLG, MURMUR obtains significant improve-
ments in semantic coverage and hallucinations of
generated summaries over other few-shot baselines
like direct prompting and CoT prompting. Ad-
ditionally, MURMUR demonstrates good out-of-
domain generalizability by obtaining comparable
performance to fine-tuned LMs like GPT-2. On
LogicNLG, human evaluation demonstrates that
MURMUR significantly improves the logical con-
sistency of summaries over direct prompting (by
up to 26%), showcasing the strength of a neuro-
symbolic approach for data-to-text generation.

2 Definitions: Reasoning Step and Path

A Reasoning Step is a triple (M,X , y) where a
module M performs a certain skill by condition-
ing on an input X to generate an output y. For
example, in Fig. 2, the module argmin takes a ta-
ble and a column (points) as input and outputs the
row with the minimum points. A Reasoning Path
is defined as a sequence of such reasoning steps
{(Mi,Xi, yi)}ri=1. Fig. 2 shows an example of a
reasoning path, represented as a nested structure. It
consists of three reasoning steps for three modules
(argmin, hop, and eq). The argmin module outputs
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Year Class Team Points Wins
1979 350cc yamaha 3 0

1980 250cc yamaha 4 0

1982 250cc yamaha 4 0

1982 500cc suzuki 0 0

1983 250cc yamaha 14 0

1984 500cc honda 14 0

1985 250cc romer-juchem 29 0

1986 250cc hb - honda 10 0

1987 250cc hb - honda 108 1

1988 250cc hb - honda 158 0

1989 250cc hb - honda 190 2

1990 250cc hb - honda 52 0

argmin

points

Best  
Module

Best  
Input

Execute

1982 500cc suzuki 0 0

Output Data Type: Row

Input Data Type: Table

hop

team

Output Data Type: String

suzuki

Grammar Production Rule: 

Table -> Row 

Value  
Function

Reasoning Step 1 Reasoning Step 2

Grammar Production Rule: 

Row -> String 

Output Data Type: Bool

true

Reasoning Step 3

Grammar Production Rule: 

String -> Bool 

eq{hop{argmin{all_rows;
points}; team}; suzuki}

Reinhold Roth scored the least
amount of points in the year he
was on the suzuki team.

Final Summary

Surface  
Realization

eq

suzuki
Reasoning Path

Table Topic: Reinhold Roth

Figure 2: Illustration of MURMUR generating a reasoning path and then converting it into a logically consistent
summary, supported by the input table. The reasoning path consists of three reasoning steps. At each step, MURMUR
chooses a set of plausible modules (according to a grammar) and then selects the best module, with the best input
according to a value function. The output generated at each step serves as the input to the next step.

the row in the table with minimum points, which is
the input to the next module hop that selects a col-
umn from that row. MURMUR generates textual
summaries by constructing such reasoning paths
that are then converted to the final outputs through
a Surface Realization module, as shown in Fig. 2.4

3 MURMUR Approach

MURMUR consists of four components: (1) a set of
modules, (2) a grammar, (3) value function(s), and
(4) a search algorithm that brings all the previous
three components together. The search algorithm
constructs reasoning paths by first identifying plau-
sible modules at each reasoning step according to
the grammar and then determining the best mod-
ules (and their corresponding inputs) with the help
of value functions. Fig. 2 shows a working exam-
ple of MURMUR, in which given an input table, it
searches for a reasoning path (of three steps), and
finally converts it into a summary. The specifics
of MURMUR’s components vary based on the task
at hand. As case studies, we consider two data-
to-text generation tasks: WebNLG (Gardent et al.,
2017), a graph-to-text generation task and Logic-
NLG (Chen et al., 2020a), a complex table-to-text
generation task where the goal is to generate logical
summaries from salient parts of the table.

3.1 MURMUR Modules
MURMUR defines a set of modules {Mi}mi=1 that
perform specialized reasoning skills for the cor-
responding task. Formally, each module Mi is
defined as a multi-variate function Mi : X → y
that maps an n-tuple input X = (x1,· · · , xn) to an

4For better illustration, we show Surface Realization out-
side of the reasoning path but ideally, it can be considered as
another (final) step in the reasoning path.

output y. Each input variable xi and output y can
have their own expected data types di and dy re-
spectively. These data types could be user-defined5

like Table, Triple, etc or standard ones like String,
Number, Bool, etc. For example, in Fig. 2, the mod-
ule Margmin : (t, c) → r takes a table t (with data
type Table) and a column c (with data type String)
as input and outputs a row r (with data type row)
with the minimum value in column c. The mod-
ules are implemented as few-shot neural models
or symbolic functions. We choose few-shot neural
modules for linguistic skills that LLMs typically
excel at and symbolic modules for logical opera-
tions that LLMs mostly struggle with (Wang et al.,
2022b; Gao et al., 2022). Reasoning over semi-
structured data allows us to implement symbolic
modules with PYTHON functions. Below we pro-
vide examples of neural and symbolic modules for
the two tasks.

Neural Linguistic Modules. In any modular
data-to-text generation approach, one of the mod-
ules is responsible for the transition from struc-
tured data to unstructured text. We call it Surface
Realization. In particular, for WebNLG, we de-
fine it as Msr : t → s that converts a triple t
(with data type Triple) into a short sentence s (with
data type String). For LogicNLG, we define it as
Msr : (t, p) → s that takes a table t (with data
type Table) and a reasoning path p as input and con-
verts it into a summary s (with data type String). As
we show later, in WebNLG, Surface Realizations
are the first reasoning steps, while in LogicNLG, it

5The modules are analogous to function definitions with
expected IO types. Similarly, user-defined data types can
be thought of as class definitions. For instance, a data type
Triple can be implemented as a class consisting of a subject, a
relation, and an object (all with data type String).
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Module Description

Filtering Mfilter : (t, cr) → t′: takes a table t and a
filtering criterion cr as input and outputs a table
t′ with rows where the criterion cr is satisfied.

Aggregation Performs aggregation operations on a table. For
example, Mmax : (t, c) → n is a max module
that takes a table t and a column c as input and
outputs the maximum number n in column c.

Boolean Mbool : (t, cr) → b: takes a table t and a crite-
rion cr as input and outputs a boolean b based on
whether the criterion is satisfied.

Hop Mhop : (r, c) → e: takes a row r and a column
c as input; outputs the element e in (r, c) cell.

Table 1: MURMUR Symbolic Modules to perform log-
ical operations over tables in Table-to-Text generation.

is the last step. For WebNLG, we also define a Text
Fusion module Mtf : (s1, s2) → s that combines
two strings s1 and s2 into a coherent text s. Text
Fusion iteratively combines intermediate genera-
tions at each step, enabling more controllability in
generation (Tan et al., 2021).

Symbolic Logical Modules. For LogicNLG,
drawing motivation from prior work (Chen et al.,
2020c), we define different categories of symbolic
modules that perform logical operations over tables
(see Table 1 and refer to Table 8 for the detailed list).
WebNLG requires summarizing an input graph and
hence, does not involve any logical modules.

3.2 Grammar over Modules

The role of the grammar is to determine a set of
plausible modules in a reasoning step and how they
should be composed. The production rules of the
grammar capture possible transitions from an in-
put data type to an output data type(s) (see Fig. 2
and Table 2). Each production rule thus defines
multiple permissible modules. For example, the
production rule ‘Table → Number’ (meaning that
a number can be generated from a table) is valid
for both max and min modules. When MURMUR
searches for reasoning paths, the grammar reduces
the search space (over all possible modules) by
only selecting the ones that can be composed at
each reasoning step. We provide examples below
of how such grammars are constructed.

Grammar for Graph-to-Text Generation. Ta-
ble 2 shows the grammar for Graph-to-Text gen-
eration. It consists of two production rules, one
for Surface Realization and another for Text Fu-
sion. Past pipeline approaches for graph-to-text
generation (Xiang et al., 2022) also perform sur-

Graph-to-Text (WebNLG)

Triple → String
(String, String) → String

Table-to-Text (LogicNLG)

Table → Table | Row | Number | Boolean
Row → String | Number
String | Number → Boolean
(Table, Path) → String

Table 2: Grammars for WebNLG and LogicNLG defin-
ing production rules between different data types.

face realization followed by fusion, as explained
through the grammar.

Grammar for Table-to-Text Generation. Gen-
erating logical summaries from a table is a more
challenging task. Based on the types of modules
introduced previously, we define a grammar, as
shown in Table 2. As an instance, the first rule
encodes the knowledge that given an input of type
Table, one can output a Table, a Row of the table, a
Number, or a Boolean.

3.3 Value Functions
While the grammar helps reduce the search space
by defining permissible compositions of modules,
each reasoning step can still have multiple plausible
modules and each module can also have multiple
plausible inputs to choose from. Thus, MURMUR
introduces value functions (see Fig. 2) that assess
the quality of each plausible reasoning step by scor-
ing, ranking, and selecting the best step(s).

Value Function for Graph-to-Text Generation.
In a Graph-to-Text generation task, each intermedi-
ate reasoning step r generates a summary yr for a
subset of edges (triples) Gr from the input graph
(see Fig. 7 for an illustration). The value func-
tions evaluate the following two aspects of the gen-
erated summary yr. First, Fluency is measured
by log-likelihood of the generated text similar to
BARTScore (Yuan et al., 2021):

Sf (yr) = exp{1
l

l∑

i=1

log pθ(y
i
r|y<i

r )}

Second, Semantic Consistency measures the av-
erage logical entailment probability Pe(·) between
the generation yr and triples Gr

6 and vice-versa:

Ssc(Gr, yr) = 0.5× (Pe(Gr, yr) + Pe(yr, Gr))

We use an NLI model to compute entailment prob-
abilities. The both-way entailment scores capture

6We concatenate the surface realizations of the triples to
construct the sequence for the NLI model.
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equivalence between the triples and the generation,
ensuring that the latter not only covers all the triples
but also does not hallucinate any new information.
Overall score is an ensemble of the two scores,
given by αSf (yr) + (1− α)Ssc(Gr, yr).

Value Function for Table-to-Text Generation.
Our value function chooses the best module(s) at
each reasoning step, as well as the best input(s)
for the corresponding module(s).7 For instance,
if a reasoning step generates a number from a ta-
ble (according to the grammar), the value function
should determine the best module(s) between max,
min, etc, as well as which column the max or min
module should be computed on. Taking inspira-
tion from past work on verifying intermediate rea-
soning traces over text (Creswell and Shanahan,
2022; Yang et al., 2022), we train a value function
S : (T, Pr) → p that judges the correctness of a
partial reasoning path Pr for an input table T . In
particular, we train a binary classifier on samples
with correct and incorrect partial reasoning paths.
We call this value function a saliency metric be-
cause it selects the best reasoning steps that reason
over salient parts of the table. We discuss the model
and training data for our saliency metric in § 4.2.

3.4 Search Algorithm

We now describe how all the three components dis-
cussed above come together in generating reason-
ing paths for MURMUR (see Fig. 2). We propose a
best-first search algorithm that operates as follows.
It takes as input a set of m modules {Mi}mi=1, a
grammar G, a value function V , and number of rea-
soning paths or summaries to generate p. Addition-
ally, it considers a hyperparameter, the beam size
b of the search (b ≥ p). The search begins by ini-
tializing an empty priority queue that maintains the
beam (best b partial reasoning paths to be explored
anytime during the search). Next, at each step,
MURMUR (1) pops an element from the queue, (2)
identifies the data type of the element (e.g., Table),
(3) looks up the grammar to find all possible transi-
tions from that data type (e.g., Row, Number), (4)
selects all modules for each such transition (e.g.,
argmax and argmin for ‘Table → Row’, max and
min for ‘Table → Number’), and (5) constructs
all plausible reasoning steps consisting of modules
and their corresponding inputs (e.g., all numerical
columns for argmax). It then scores all these rea-

7In Graph-to-Text, we only need to choose the best inputs
because at each step there is only one plausible module.

soning steps using the value function, ranks them,
and only keeps the top-b paths in the queue. For
WebNLG, the search terminates when all triples
have been iterated. For LogicNLG, a reasoning
path is complete when the current module outputs
a boolean variable that evaluates to true (e.g., the eq
module). Upon termination of the search, we return
the top-p paths and the corresponding summaries.

4 Experimental Setup

4.1 Graph-to-Text Generation
We report results on both seen and unseen splits of
the test set of WebNLG (Gardent et al., 2017).8

Modules. We implement both modules, Surface
Realization and Text Fusion as few-shot neural
models by prompting OPT-175B (Zhang et al.,
2022) with skill-specific prompts (see Appendix D)
and greedy decoding.

Value Function. As defined in §3.3, we com-
pute fluency using the log probabilities estimated
by OPT-175B. The entailment probability for the
semantic scorer is based on a DeBERTa-base
model (He et al., 2020) trained on a collection of
eight NLI datasets.9 The mixing ratio α is set to
0.05. At each reasoning step, MURMUR scores
and ranks the intermediate generations in the queue
using the value function. Subsequently, it only ex-
plores the highest scoring intermediate generation
in the next step of the search and prunes the rest.10

4.2 Table-to-Text Generation
Modules. We implement all logical modules, as
described in §3.1, with PYTHON functions. We
again prompt OPT-175B for the Surface Realiza-
tion module (see Appendix D for the prompt).

Value Function. Our saliency metric is a binary
classifier. Specifically, we train a BERT-base model
that takes a table (as a sequence of rows) and a
partial reasoning path as input and classifies it as
correct or incorrect. During inference, we con-
sider the correct class probability as the saliency
score. We obtain training data from the Logic2Text
dataset (Chen et al., 2020c) that annotates open-
domain tables with gold reasoning paths. Given a

8The 2017 version of the dataset is available at https:
//webnlg-challenge.loria.fr/challenge_2017/.

9https://huggingface.co/MoritzLaurer/
DeBERTa-v3-base-mnli-fever-docnli-ling-2c.

10This is equivalent to performing greedy search. We exper-
imented with larger beams for a more exhaustive search with-
out observing any noticeable improvement in performance.
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BLEU METEOR
Seen Unseen All Seen Unseen All

su
pe

rv
is

ed MELBOURNE† 54.5 33.2 45.1 41.0 33.0 37.0
GPT-2-large† 65.3 43.1 55.5 46.0 38.0 42.0
T5-large† 64.9 54.0 59.9 46.0 43.0 44.0
Neural Pipeline‡ - - 43.3 - - 39.3

fe
w

-s
ho

t Direct Prompting (k=1)⋆ 33.1±0.3 34.2±0.1 33.6±0.1 30.4±0.1 31.2±0.1 30.8±0.1
Direct Prompting (k=5)⋆ 39.9±0.3 38.9±0.3 39.5±0.1 34.3±0.1 34.3±0.3 34.4±0.1
CoT Prompting (k=1)⋆ 22.2±0.2 14.9±0.2 18.0±0.1 22.3±0.1 22.9±0.2 22.6±0.1
MURMUR (k=1)⋆ 41.4±0.0 41.1±0.0 41.3±0.0 37.1±0.0 37.1±0.0 37.1±0.0

Table 3: Comparison of supervised and few-shot approaches on the WebNLG Seen and Unseen splits of the test set.
† = Supervised with 7k in-domain samples. ‡ = Supervised with a synthetic corpus of 934k samples. ⋆ = Few-shot
with k demonstrations. We report mean and variance for all few-shot methods with three random triple orderings.

gold reasoning path, we create correct partial paths
by breaking it at each intermediate step/module and
incorrect paths by performing two types of pertur-
bations on every correct partial path: (1) replacing
the module at the current step with another module
of same data type (e.g., replacing module max with
module min); (2) replacing the inputs to the mod-
ule with other plausible inputs (e.g., replacing max
over column c1 with max over another column c2).
See Appendix C.4 for an illustration of the training
data creation process. We choose 221 (table, rea-
soning path) pairs from the Logic2Text dataset and
convert them into 1500 correct and incorrect train-
ing samples consisting of (table, partial reasoning
path) pairs. While choosing the samples, we ensure
that the corresponding tables have no overlap with
those in the test and validation sets of LogicNLG.
We choose the beam size of the search to be 20 (see
further analysis of beam sizes in Appendix C.3).

5 Experiments on Graph-to-Text

5.1 Comparison of MURMUR with
supervised and few-shot methods

Baselines. We compare with both supervised and
few-shot baselines.
• Supervised. We compare with MELBOURNE, a

non-pretrained encoder-decoder model (Gardent
et al., 2017) and two fine-tuned LMs, GPT-2-
large (Radford et al., 2019) and T5-large (Raffel
et al., 2020). We also compare with a SOTA mod-
ular pipeline approach, Neural Pipeline (Kas-
ner and Dušek, 2022) that first converts triples
to sentences using hand-designed templates and
subsequently orders and fuses the sentences by
fine-tuning on a large synthetic corpus of 934k
samples.

• Few-shot. For direct comparisons, we consider
two few-shot baselines, Direct Prompting (DP)

that directly prompts the OPT-175B model to
generate a summary of the graph, and Chain-
of-Thought Prompting (CoT) (Wei et al., 2022)
that prompts the model to generate the summary
step-by-step (see Appendix D for prompts). We
choose the demonstrations randomly from the
training data and keep them consistent across all
few-shot methods.

Metrics. Following prior work, we perform au-
tomatic evaluation using BLEU (Papineni et al.,
2002) and METEOR (Banerjee and Lavie, 2005).

Results. For all few-shot methods, we report
mean and variance of three random triple order-
ings. Table 3 shows the results. MURMUR signifi-
cantly outperforms DP and CoT by up to 8 points
in BLEU and METEOR (p < 0.001), when using
a single demonstration (k=1).11 MURMUR even
outperforms DP with five demonstrations (k=5).
Prompting an LLM by simply concatenating the
intermediate steps for CoT does not work well for
text generation. MURMUR also outperforms a
supervised baseline MELBOURNE and obtains
comparable performance to fine-tuned models like
GPT-2 on the unseen test split. Through its modular
treatment, MURMUR generates outputs with more
coverage of triples and lesser hallucinations, as
reflected in the improved scores and further demon-
strated in §5.2 through human evaluation. Finally,
MURMUR is transformation-invariant because it
treats the graph as a set (not sequence) of triples.
Refer to Appendix B for experiments studying the
number and variation in demonstrations.

11A single demonstration for DP can get decomposed into
multiple in-context examples in MURMUR. However, like
CoT, the decompositions are all from the same demonstration.
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DP MURMUR % Improve

Omissions↓ 1.64±0.06 0.73±0.01 +24%
Hallucinations↓ 0.77±0.03 0.43±0.03 +9%
Disfluencies↓ 0.14±0.05 0.30±0.04 -4%

Table 4: Average count of omissions, hallucinations,
and disfluencies in WebNLG summaries.

5.2 Human Evaluation of Final Summaries
and Intermediate Reasoning Steps

Evaluation of Final Summaries. We compare
the summaries generated by DP (our best baseline)
and MURMUR. Two NLP experts take part in the
study with 50 randomly chosen test samples (hav-
ing an average of 3.8 triples). They count the num-
ber of omissions, hallucinations, and disfluencies
in the generated outputs.12 Our results in Table 4
demonstrate that MURMUR benefits significantly
from a step-wise generative process and reduces
omissions by 24% and hallucinations by 9%. We
do observe a slight drop in fluency in MURMUR’s
generations because of its iterative fusion process.

Evaluation of Intermediate Reasoning Steps.
We also evaluate the quality of the individual rea-
soning steps of MURMUR. For every reasoning
step of a data point, we provide the annotators with
the (1) generation, and (2) the previous steps that
the current step is conditioned on. We conduct this
study on six randomly chosen test examples, span-
ning 50 reasoning steps (28 Surface Realization
and 22 Text Fusion). Annotators judge the genera-
tions for their grammaticality, module faithfulness
(i.e., if the module is doing what it is supposed to
do), and correctness (e.g., whether the fusion is cor-
rect). From Table 5, we conclude that both modules
are almost always grammatical, and highly faithful
and 64% of fusion operations are also fully correct.

6 Experiments on Table-to-Text

6.1 Comparison of MURMUR with
supervised and few-shot methods

Baselines. We compare with several non-
pretrained and pretrained supervised methods as
well as few-shot methods.
• Non-pretrained Supervised. We compare MUR-

MUR with a non-pretrained transformer model,
Field-Infusing + Trans (Chen et al., 2020a).

12All metrics including hallucinations and disfluencies are
counted at the level of triples or facts. This allows us to
compare the raw counts of both methods with respect to the
average number of triples in the input samples.

Module Grammatical Faithful Correct

Surface Realization 1.00 1.00 0.82
Text Fusion 0.90 0.72 0.64

Table 5: Fraction of grammatical, module faithful, and
correct intermediate reasoning steps generated by the
two modules in MURMUR for WebNLG.

BLEU-1 / BLEU-2 / BLEU-3

Field-Infusing† 43.7 / 20.9 / 8.4
BERT-TabGen† 49.1 / 27.7 / 13.5
GPT-TabGen† 49.6 / 28.2 / 14.2
GPT-Coarse-to-Fine† 49.0 / 28.3 / 14.6
DCVED† 49.5 / 28.6 / 15.3

Direct Prompting⋆ 37.2±0.4 / 18.8±0.2 / 8.6±0.2
CoT Prompting⋆ 35.6±0.2 / 18.6±0.1 / 8.8±0.0
BART + SR‡ 39.2±0.2 / 20.6±0.2 / 9.5±0.0
MURMUR‡ 39.8±0.0 / 22.2±0.0 / 11.2±0.0
- saliency⋆ 39.6±0.0 / 21.9±0.0 / 10.6±0.0

Table 6: Comparison of supervised non-pretrained, pre-
trained, and few-shot approaches on the LogicNLG test
set. † = Supervised with 37k in-domain samples. ⋆
= Few-shot with 1 demonstration. ‡ = Few-shot with
1 demonstration and 221 gold (table, path) pairs. We
report mean and variance for all few-shot methods with
three random orderings of the input table rows.

• Pretrained Supervised. Next, we compare
with three pre-trained LMs based on BERT
and GPT-2, BERT-TabGen, GPT-TabGen, GPT-
Coarse-to-Fine (Chen et al., 2020a) and a de-
confounded variational encoder-decoder model,
DCVED (Chen et al., 2021).

• Few-shot. We also compare with Direct Prompt-
ing (DP) and CoT Prompting. Additionally, we
evaluate the effect of our search algorithm and
saliency metric. First, in BART + SR, instead
of searching for reasoning paths, we fine-tune a
BART model that generates reasoning paths in
one go. As training data, we leverage the (ta-
ble, gold reasoning path) pairs that are used for
training the saliency metric. The surface real-
ization (SR) step is left unchanged. Second, we
remove the saliency metric by randomly select-
ing a module at each step (but according to the
grammar). All few-shot methods use one random
demonstration.

Metrics. Following Chen et al. (2020a), we com-
pare all methods with BLEU scores. They also
propose metrics to evaluate logical consistency but
we found such learned metrics do not correlate well
with humans. Instead, we conduct more reliable
human evaluations of logical correctness in §6.2.
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Correct Partial Incorrect Ungrammatical Is Logical?

Direct Prompting 28.7±3.7 20.0±2.5 38.8±8.7 12.5±2.5 62.0±0.5
MURMUR 55.0±2.5 1.2±1.2 38.8±3.7 5.0±2.5 95.4±0.2

Table 7: Human evaluation of logical correctness for LogicNLG. ‘Is Logical’ denotes the percentage of correct
generations that also involve some underlying logical computations.

Results. Table 6 shows the results on the test set
of LogicNLG. MURMUR significantly improves
upon DP and CoT prompting by up to 2.4 points in
BLEU-3 (p < 0.001). We attribute this to two fac-
tors: (1) leveraging symbolic modules for logical
skills that ensure their correctness, (2) delegating
the task of converting a path to natural language
to an LLM. Both CoT and BART+SR, while gen-
erating intermediate reasoning paths, do not use
executable modules and hence cannot guarantee
valid compositionality or logical correctness of the
reasoning steps. MURMUR also improves upon
the supervised Field-Infusing model. Finally, MUR-
MUR obtains some improvement with the saliency
metric, indicating that it helps in choosing more
salient paths. Refer to Appendix C for studies on
the number and variation in demonstrations.

6.2 Human Evaluation of Logical Correctness
Next, we conduct human evaluation to compare
the logical correctness of the generations from DP
and MURMUR. Two NLP experts annotate 40 ran-
domly chosen generations from eight different ta-
bles. In particular, they take part in two studies.
First, they classify each generation into whether
it is (a) ungrammatical, (b) grammatical but incor-
rect, (c) grammatical but partially correct, or (d)
grammatical and also fully correct. Next, for each
fully correct generation, they annotate whether it in-
volves any underlying logical operation (like count-
ing, summation, etc) or are mere surface realiza-
tions of the table content. We observe from Table 7
that MURMUR not only generates 26% more cor-
rect outputs, but about 95% of those generations
also involve some logical operations. In summary,
MURMUR is most beneficial in two scenarios: (1)
generations that require many steps of reasoning,
(2) generations that require logical reasoning. The
first capability comes from the fact that MURMUR
is specifically designed to compose multiple steps
of reasoning through its grammar and value func-
tions. The second benefit is because of the pres-
ence of symbolic modules that ensure logical cor-
rectness. These two capabilities are specifically
required in long complex tables involving numer-
ical columns where there is a need to summarize

content (e.g., by filtering, averaging a numerical
column, etc). Generating reasoning paths through
logical modules ensures that almost all generations
are logical derivations from the table, an ability
that is significantly harder to achieve through direct
prompting. See Fig. 8 in the appendix for an illus-
trative example of the generations of MURMUR
for long complex tables.

7 Related Work

Multi-step Reasoning over Text. Recent devel-
opments in LLMs (Brown et al., 2020; Zhang et al.,
2022; Thoppilan et al., 2022; Chowdhery et al.,
2022) have enabled significant progress in few-
shot methods for logical reasoning tasks (Wei et al.,
2022; Creswell et al., 2022; Nye et al., 2021; Wang
et al., 2022c; Zelikman et al., 2022; Zhou et al.,
2022; Dasgupta et al., 2022; Kojima et al., 2022;
Dohan et al., 2022). Representative methods like
CoT prompting output intermediate reasoning steps
before generating the final answer. However, the
reasoning steps are all generated in one go from
a single model, potentially leading to unfaithful
reasoning due to the lack of explicit conditioning
between the steps (Creswell and Shanahan, 2022).
MURMUR overcomes this issue by developing
granular modules that are capable of performing
specialized skills by explicitly conditioning on the
outputs from previous reasoning steps. Conceptu-
ally, MURMUR bears similarity with the Selection-
Inference modular architecture (Creswell et al.,
2022; Creswell and Shanahan, 2022). However,
their focus is on QA and reasoning over textual con-
text (Saha et al., 2020, 2021b; Tafjord et al., 2021;
Dalvi et al., 2021; Bostrom et al., 2022). A few con-
current works have also proposed neuro-symbolic
approaches for reasoning over text (Gao et al.,
2022; Wang et al., 2022b; Chen et al., 2022; Cheng
et al., 2022). Different from these, we tackle a
more challenging setup of multi-step reasoning for
controlled generation from semi-structured data.

Modular Reasoning over Text. Neural Module
Networks learn and execute compositional pro-
grams over modules (Andreas et al., 2016; Jiang
and Bansal, 2019; Gupta et al., 2020; Subramanian
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et al., 2020; Saha et al., 2021a). While their mod-
ules typically output attention maps, prior works
have also used text-in text-out modules whose in-
put/output data types are strings (Khot et al., 2021,
2022; Saha et al., 2022). MURMUR’s modules are
a generalization of text-in text-out modules since
they can capture operations involving complex data
types (like tables) and strings, among others. The
data to text transition is also clearly represented
through the compositions of our modules, unlike at-
tention maps-based modules whose interpretability
has often been debated (Serrano and Smith, 2019).

Data-to-Text Generation. Existing methods for
data-to-text generation include (1) supervised meth-
ods that finetune seq2seq LMs (Kale and Rastogi,
2020; Chen et al., 2020b; Ribeiro et al., 2021; Ke
et al., 2021; Xiang et al., 2022), (2) pipeline modu-
lar methods (Reiter and Dale, 1997; Reiter, 2007;
Laha et al., 2020; Kasner and Dušek, 2022), and (3)
few-shot methods that assume access to a large cor-
pus of unlabeled examples for data augmentation
or retrieving similar examples (Puduppully et al.,
2019; Zhao et al., 2020; Trisedya et al., 2020; Su
et al., 2021). Unlike prior modular methods, MUR-
MUR uses few-shot neural or symbolic modules.
Unlike past few-shot methods, MURMUR works
well with as few as one demonstration, without
requiring access to any unlabeled corpus.

8 Conclusion

We presented MURMUR, a neuro-symbolic modu-
lar reasoning approach for data-to-text generation.
MURMUR shows the benefits of building inter-
pretable modular text generation systems by break-
ing a task down into sub-problems and then solving
them through separate modules, without requiring
module-specific supervision. It utilizes the power
of LLMs in solving linguistic sub-tasks through in-
context learning while delegating the logical sub-
tasks to symbolic modules. MURMUR generalizes
the concept of modules by treating them as func-
tions and defining their behaviors through expected
input/output data types and compositions with a
grammar (analogous to function compositions).

Limitations

MURMUR relies on large language models for few-
shot linguistic skills like surface realization and text
fusion. It is probable that smaller models do not
work as well, in which case one may curate ad-
ditional training data to train these modules. We

also note that our choice of logical modules is mo-
tivated by the characteristics of the task. Hence,
it is conceivable that other data-to-text generation
tasks might benefit from incorporating additional
modules. MURMUR does not make any assump-
tions about the type or implementation of the mod-
ules and it should be straightforward to extend our
method to other data-to-text generation tasks.

We limit our experiments to English datasets.
We also adopt a simple prompting strategy for con-
verting a reasoning path to a natural language sum-
mary by representing the path as a string. This
works well in practice and OPT is typically able
to resolve the module names and their arguments
correctly. However, more future work is needed to
understand when this fails so that better prompting
methods can be developed. Despite the known lim-
itations of standard automatic metrics like BLEU
and METEOR, we use them to compare our method
to previous works. While this is not ideal, we have
performed comprehensive human evaluation for
both tasks to further verify our claims.

Ethics Statement

Large Language Models can be prone to gener-
ate toxic and unwanted content (Weidinger et al.,
2021). Since MURMUR uses focused modules
to accomplish specific skills, we believe that this
might help limit inadvertent negative impacts. Fur-
thermore, the presence of specific modules should
provide users with more trust and control in real-
world scenarios, allowing one to verify, debug, and
improve the capabilities of these modules.
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Module Name Input Data Type Output Data Type Description

filter_eq
filter_not_eq

table, string, string table Returns a table with the rows where entry in the
input column (second argument) is equal or not
equal to the input value (third argument).

filter_greater
filter_greater_eq
filter_lesser
filter_lesser_eq

table, string, number table Returns a table with the rows where a numerical
column (second argument) is greater than or less
than (or equal to) the input number (third argument).

filter_all table, string table Returns the whole table.

arg_max
arg_min

table, string row Returns the row with the minimum or maximum
value for the input column (second argument).

max
min
avg
sum

table, string number Returns the maximum, minimum, average or sum
of numbers in the input column (second argument).

count table number Returns the number of rows in the table.

all_eq
all_not_eq

table, string, string bool Returns whether all entries in the input column are
equal (or not equal to) the input value.

all_greater
all_less
all_greater_eq
all_less_eq

table, string, number bool Returns whether all entries in the input column are
greater than or less than (or equal to) the input num-
ber.

most_eq
most_not_eq

table, string, string bool Returns whether most entries in the input column
are equal (or not equal to) the input value.

most_greater
most_less
most_greater_eq
most_less_eq

table, string, number bool Returns whether most entries in the input column
are greater than or less than (or equal to) the corre-
sponding number.

only table bool Returns whether the table has exactly one row.

hop row, string string Returns the entry corresponding to the input column
in the row.

eq string, string bool Returns whether the two inputs are equal or not.

Table 8: List of modules for LogicNLG with their corresponding input / output data types and descriptions.
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A Modules for Table-to-Text Generation
(Cont. from §3.1)

Table 8 shows the list of all modules for Logic-
NLG. Our choice of modules is motivated from
prior work (Chen et al., 2020c) that defines simi-
lar modules for generating logical summaries from
open-domain tables.

B Additional Experiments on WebNLG
(Cont. from §5)

B.1 Effect of Number of Demonstrations

Number of Demonstrations

M
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Effect of number of Demonstrations

Figure 3: Comparison of METEOR scores for Direct
Prompting (DP) versus MURMUR with varying num-
ber of demonstrations on WebNLG test set. DP shows
improved performance with more demonstrations while
MURMUR’s gains are marginal.

In Fig. 3, we compare the METEOR scores
of DP and MURMUR by varying the number of
demonstrations. DP shows improved performance
with more demonstrations, while MURMUR’s im-
provements are marginal. In the process of pro-
viding more demonstrative examples, DP implic-
itly learns the underlying step-wise reasoning pro-
cess, while such phenomenon is explicitly captured
through one demonstration in MURMUR.

B.2 Effect of Variations of Demonstrations

BLEU METEOR

Direct Prompting (k=1) 31.1±0.5 29.8±0.1
Direct Prompting (k=5) 38.3±0.4 33.6±0.1
MURMUR (k=1) 40.1±0.3 37.1±0.5

Table 9: Comparison of different few-shot methods
on the WebNLG validation set. We report mean and
variance of BLEU and METEOR scores with three dif-
ferent random seeds for choosing demonstrations from
the training set.

In Table 9, we compare the performance of few-
shot baselines on the validation set of WebNLG and

analyze the effect of different choices of random
demonstrations on in-content learning. Using three
different random seeds, we show that all methods
are fairly robust to randomness in demonstrations.

C Additional Experiments on LogicNLG
(Cont. from §6)

C.1 Effect of Number of Demonstrations

Number of Demonstrations
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Figure 4: Comparison of BLEU-3 scores for Direct
Prompting versus MURMUR with varying number of
demonstrations on LogicNLG validation set. For both
methods, results do not improve further with more
demonstrations.

In Fig. 4, we compare BLEU-3 scores of DP
and MURMUR by varying the number of demon-
strations from 1 to 3. Unlike WebNLG, we do
not observe any noticeable improvements in in-
context learning capabilities with more demonstra-
tions, possibly because of the inherent difficulty of
generating logical summaries from tables.

C.2 Effect of Variations in Demonstrations
In Table 10, we study the effect of randomness
in the choice of a single demonstration for Log-
icNLG. We report mean and variance of BLEU
scores for each method with a randomly chosen
demonstration from the training examples. Similar
to WebNLG, all methods are fairly robust to the
choice of demonstrations and exhibit comparable
variance in performance.

C.3 Effect of Different Beam Sizes in
Best-first Search of MURMUR

At each step of the search, MURMUR keeps track
of the highest scoring reasoning paths. Table 11
compares the effect of the beam size for our search
algorithm on the LogicNLG validation set. Perhaps
unsurprisingly, maintaining a bigger beam i.e., con-
ducting a more exhaustive search leads to some
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BLEU-1 / BLEU-2 / BLEU-3

Direct Prompting (k=1) 37.0±0.2 / 18.9±0.1 / 8.5±0.1
COT Prompting (k=1) 36.5±0.1 / 18.9±0.1 / 8.7±0.3
MURMUR (k=1) 40.5±0.1 / 22.2±0.0 / 10.8±0.1

Table 10: Comparison of different few-shot methods
on the LogicNLG validation set. We report mean and
variance of BLEU scores with two random seeds for
choosing one demonstration from the training set.

Beam Size BLEU-1 / BLEU-2 / BLEU-3

10 39.7 / 21.2 / 10.3
20 40.2 / 21.8 / 10.7
50 40.5 / 22.2 / 10.8
100 40.7 / 22.5 / 10.9

Table 11: Effect of beam size in MURMUR’s search
algorithm on BLEU scores of LogicNLG validation set.

improvements in BLEU scores, however, the gain
mostly saturates with beam sizes of around 50-100.

C.4 Further Analysis of Saliency Metric
(Cont. from §4.2)

Training Data Construction. In Fig. 5, we show
an illustrative example of the training data creation
process for our saliency metric. In ‘Incorrect Par-
tial Path-1’, when we perturb the avg module with
the sum module, we aim to teach the model that
although both are valid reasoning steps, averaging
over the column ‘points’ is a more salient and in-
formative reasoning step than summing over the
column ‘year’. Similarly, in ‘Incorrect Partial Path-
2’, when we perturb the input to the module avg
by performing average over the column ‘wins’, we
want the model to learn the salient columns to rea-
son over for a given module.

Effect of Varying Supervision on Metric Accu-
racy and Downstream Performance. We con-
duct an in-depth analysis of the saliency metric
used to score the reasoning steps in MURMUR. As
shown in Table 12, we vary the amount of supervi-
sion for training the saliency metric and study its
effect on the validation set accuracy (in identify-
ing whether a partial reasoning path is correct or
not) and also on the downstream LogicNLG BLEU
scores. Our key takeaway is that a small number
of gold reasoning paths (about 200, spanning 100
tables) is enough to train a good saliency metric
that not only achieves a high classification accuracy
of 76% but also leads to a BLEU-3 score of 10.8
on LogicNLG. Increasing the training data further

to 7k gold paths (equivalently, 42k correct and in-
correct partial paths) increases the classification
accuracy to 82% but does not impact LogicNLG
performance much.

# Gold # Gold # Samples Acc. LogicNLG
Tables Paths (Pos/Neg/ All) BLEU-3

100 221 769/729/1498 76.16 10.8
200 443 1534/1457/2991 78.52 10.6
500 1085 3773/3633/7406 80.32 10.9

3000 7145 21.5k/20.5k/42.0k 82.84 10.7

Table 12: Effect of varying amount of supervision for
the saliency metric on the metric accuracy (Acc.) and on
downstream LogicNLG BLEU scores. Metric accuracy
is computed on 4.4k validation samples consisting of
2264 correct paths (positive samples) and 2179 incorrect
paths (negative samples).

D Prompts (Cont. from §4)

WebNLG. Table 13 shows an example of direct
prompting (Zhang et al., 2022) for WebNLG. In
Table 15 and Table 16, we show the prompts for
the surface realization and text fusion modules in
MURMUR. Note that the single demonstration for
direct prompting is decomposed into individual
reasoning steps for the two modules in MURMUR.

Let’s convert triples to sentences
###
Triples: A.S._Gubbio_1910 | league | Serie_D # Italy | leader |
Pietro_Grasso # Italy | capital | Rome # A.S._Gubbio_1910 |
ground | Italy # Serie_D | champions | S.S._Robur_Siena
Output: S.S. Robur Siena are champions of Serie D in which
AS Gubbio 1910 also play. This latter club have their home
ground in Italy where the capital city is Rome and the leader
is Pietro Grasso.
###
Triples: {triples}
Output:

Table 13: Example of Direct Prompting for WebNLG.

Let’s convert triples to sentences step-by-step
###
Triples: A.S._Gubbio_1910 | league | Serie_D # Italy | leader |
Pietro_Grasso # Italy | capital | Rome # A.S._Gubbio_1910 |
ground | Italy # Serie_D | champions | S.S._Robur_Siena
Output: AS Gubbio 1910 plays in Serie D. # Pietro Grasso is
the leader of Italy. # ... # S.S. Robur Siena are champions of
Serie D in which AS Gubbio 1910 also play. This latter club
have their home ground in Italy where the capital city is Rome
and the leader is Pietro Grasso.
###
Triples: {triples}
Output:

Table 14: Example of Chain-of-Thought Prompting for
WebNLG. The intermediate reasoning steps (truncated
for clarity) are concatenated together and we consider
the last step as the final summary.
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Year Class Team Points Wins
1979 350cc yamaha 3 0
1980 250cc yamaha 4 0
1982 250cc yamaha 4 0
1982 500cc suzuki 0 0
1983 250cc yamaha 14 0
1984 500cc honda 14 0
1985 250cc romer-juchem 29 0
1986 250cc hb - honda 10 0
1987 250cc hb - honda 108 1
1988 250cc hb - honda 158 0
1989 250cc hb - honda 190 2
1990 250cc hb - honda 52 0

Table Topic: Reinhold Roth

Gold Path: eq{avg{filter_eq{all_rows; wins; 0}; points}; 29}

Partial Path-1: avg{filter_eq{all_rows; wins; 0}; points} Partial Path-2: filter_eq{all_rows; wins; 0}

Partial Path-1: sum{filter_eq{all_rows; wins; 0}; year}

Partial Path-2: avg{filter_eq{all_rows; wins; 0}; wins}

Partial Path-3: filter_not_eq{all_rows; year; 1979}

Partial Path-4: filter_eq{all_rows; points; 3}

Correct Partial Path Correct Partial Path

Incorrect Partial Paths Incorrect Partial Paths

Figure 5: Training data creation process for the saliency metric. Given a gold path, we create correct (positive)
partial paths by breaking the path at each step. From each correct partial path, we create incorrect partial paths by
doing two kinds of perturbations, one at the module level and another at the inputs level (Cont. from §4.2).

Let’s convert a triple to a sentence
###
Triple: A.S._Gubbio_1910 | league | Serie_D
Sentence: AS Gubbio 1910 plays in Serie D.
###
Triple: Italy | leader | Pietro_Grasso
Sentence: Pietro Grasso is the leader of Italy.
###
Triple: Italy | capital | Rome
Sentence: Rome is the capital of Italy.
###
Triple: A.S._Gubbio_1910 | ground | Italy
Sentence: Italy is the home ground of AS Gubbio 1910.
###
Triple: Serie_D | champions | S.S._Robur_Siena
Sentence: S.S. Robur Siena are champions of Serie D.
###
Triple: {triple}
Sentence:

Table 15: Example of the Surface Realization prompt
for MURMUR in WebNLG.

LogicNLG. Table 17 shows an example of direct
prompting for LogicNLG. Table 18 shows an ex-
ample prompt for the surface realization module
in LogicNLG. We only provide the table topic, ta-
ble header, and the reasoning path in the prompt.
We do not add the table content to the prompt be-
cause all the information needed by the model to
generate the summary is typically present in the
reasoning path. Any other contextual information
about the table can also be inferred from the table
header and topic. We observe that adding the table

content makes the model more prone to hallucina-
tions because it may not limit its generation to the
information provided in the reasoning path alone.

E Examples of MURMUR Summaries

In Fig. 6, we show representative examples of sum-
maries generated by Direct Prompting and MUR-
MUR for WebNLG. Fig. 7 shows the step-wise
summary generation process of MURMUR for
WebNLG. In Fig. 8 and 9, we show representative
examples of the reasoning paths and summaries
generated for two tables in LogicNLG.
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Input Arlington,_Texas | isPartOf | Texas # Texas | largestCity | Houston # Texas | language | English_language

Direct Prompting Texas is the second largest state in the United States of America. Its capital is Austin and the largest
city is Houston. (Omissions = 2)

MURMUR Houston is the largest city in Texas where English is the official language and Arlington , Texas is a
city in Texas. (Omissions = 0)

Input Hays_County_Texas | countySeat | San_Marcos,_Texas # Austin,_Texas | isPartOf |
Hays_County,_Texas # Texas | language | Spanish_language # Austin,_Texas | isPartOf | Texas # Texas
| largestCity | Houston

Direct Prompting Hays County, Texas is a county in the U.S. state of Texas. (Omissions = 4)

MURMUR Spanish is the official language of Texas. San Marcos is the county seat of Hays County, Texas where
Houston is the largest city in Texas where Austin, Texas is part of Texas. (Omissions = 0)

Input Vermont | largestCity | Burlington_Vermont # Alvah_Sabin | region | Vermont # Alvah_Sabin | ac-
tiveYearsEndDate | 1857-03-03

Direct Prompting Alvah Sabin was born on March 3, 1857 in Vermont. (Omissions = 2)

MURMUR Burlington is the largest city in Vermont where Alvah Sabin is from and he played from 1857-03-03 to
1857-03-03. (Omissions = 0)

Figure 6: Examples of summaries generated by Direct Prompting and MURMUR for WebNLG. Hallucinations are
marked in red, omissions are marked in olive, and disfluencies are marked in blue. Omission count of triples is
shown in brackets next to the generations.

Let’s combine two sentences
###
First Sentence: S.S. Robur Siena are champions of Serie D.
Second Sentence: AS Gubbio 1910 plays in Serie D.
Combined Sentence: S.S. Robur Siena are champions of Serie
D in which AS Gubbio 1910 also play.
###
First Sentence: Rome is the capital of Italy.
Second Sentence: Pietro Grasso is the leader of Italy.
Combined Sentence: Rome is the capital of Italy where Pietro
Grasso is the leader.
###
First Sentence: S.S. Robur Siena are champions of Serie D in
which AS Gubbio 1910 also play.
Second Sentence: Italy is the home ground of AS Gubbio
1910.
Combined Sentence: S.S. Robur Siena are champions of Serie
D in which AS Gubbio 1910 also play. This latter club have
their home ground in Italy.
###
First Sentence: S.S. Robur Siena are champions of Serie D in
which AS Gubbio 1910 also play. This latter club have their
home ground in Italy.
Second Sentence: Rome is the capital of Italy where Pietro
Grasso is the leader.
Combined Sentence: S.S. Robur Siena are champions of Serie
D in which AS Gubbio 1910 also play. This latter club have
their home ground in Italy where the capital city is Rome and
the leader is Pietro Grasso.
###
First Sentence: {sent1}
Second Sentence: {sent2}
Combined Sentence:

Table 16: Example of the Text Fusion prompt for MUR-
MUR in WebNLG.

Let’s generate a logically entailed statement from the table
###
Table Topic: 1938 U.S. Open (golf)
Table Header: place # player # country # score # to par #
money
Table Content: 1 # ralph guldahl # united states # 74 + 70 + 71
+ 69 = 284 # e # 1000 | ... | 10 # gene sarazen # united states #
74 + 74 + 75 + 73 = 296 # + 12 # 106
Generation: The majority of the players in the 1938 US Open
scored at least 9 over par or above .
###
Table Topic: {table_topic}
Table Header: {table_header}
Table Content: {table_content}
Generation:

Table 17: Example of Direct Prompting for LogicNLG.
Each row in the table is separated by a ‘|’ and each
entry in a row is separated by a ‘#’. The table content is
truncated for conciseness.

Let’s generate a logically entailed statement from the table for
the reasoning path
###
Table Topic: 1938 U.S. Open (golf)
Table Header: place # player # country # score # to par #
money
Reasoning Path: most_greater_eq { all_rows ; to par ; 9 }
Generation: The majority of the players in the 1938 US Open
scored at least 9 over par or above .
###
Table Topic: {table_topic}
Table Header: {table_header}
Reasoning Path: {reasoning_path}
Generation:

Table 18: Example of Surface Realization Prompt for
MURMUR in LogicNLG.
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Input Graph: Antwerp_International_Airport | operatingOrganisation | Flemish_Government # Antwerp_International_Airport
| elevationAboveTheSeaLevel_(in_metres) | 12.0 # Antwerp_International_Airport | owner | Flemish_Region #
Antwerp_International_Airport | runwayLength | 600.0

#Step Module Input Output

1 Surface Realization Antwerp_International_Airport | runwayLength |
600.0

The runway at Antwerp International Airport
is 600.0 metres long.

2 Surface Realization Antwerp_International_Airport | elevation-
AboveTheSeaLevel_(in_metres) | 12.0

Antwerp International Airport is 12.0 metres
above sea level.

3 Surface Realization Antwerp_International_Airport | operatingOrgan-
isation | Flemish_Government

Antwerp International Airport is operated by
the Flemish Government.

4 Text Fusion Antwerp International Airport is owned by the
Flemish Region.; Antwerp International Airport
is operated by the Flemish Government.

Antwerp International Airport is owned by
the Flemish Region and operated by the Flem-
ish Government.

5 Text Fusion Antwerp International Airport is 12.0 metres
above sea level.; Antwerp International Airport
is owned by the Flemish Region and operated by
the Flemish Government.

Antwerp International Airport is 12.0 metres
above sea level and is owned by the Flemish
Region and operated by the Flemish Govern-
ment.

6 Text Fusion The runway at Antwerp International Airport is
600.0 metres long.; Antwerp International Air-
port is 12.0 metres above sea level and is owned
by the Flemish Region and operated by the Flem-
ish Government.

The runway at Antwerp International Airport
is 600.0 metres long and is 12.0 metres above
sea level and is owned by the Flemish Region
and operated by the Flemish Government.

Figure 7: Illustration of the step-wise summary generation process of MURMUR for WebNLG. Each step consists
of a module (Surface Realization or Fusion), the input to the module (a triple or a pair of texts) and the output
summary (Cont. from §3.3).
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Date Opponent Score Loss Attendance Record

June 1 giants 5 - 4 hernández (5 - 5) 40893 30 - 26

June 2 giants 9 - 2 thomson (6 - 4) 40651 30 - 27

June 3 dodgers 11 - 5 jiménez (1 - 3) 30150 30 - 28

June 4 dodgers 10 - 4 jones (0 - 1) 30195 30 - 29

June 5 dodgers 8 - 6 daal (4 - 2) 31793 31 - 29

June 7 blue jays 8 - 0 hampton (3 - 7) 20032 31 - 30

June 8 blue jays 3 - 1 thomson (6 - 5) 21298 31 - 31

June 9 blue jays 3 - 2 jiménez (1 - 4) 20328 31 - 32

June 10 red sox 7 - 3 neagle (4 - 3) 33508 31 - 33

June 11 red sox 3 - 1 fossum (2 - 1) 32340 32 - 33

June 12 red sox 7 - 5 hampton (3 - 8) 31583 32 - 34

June 14 indians 5 - 3 thomson (6 - 6) 40156 32 - 35

June 15 indians 7 - 4 paronto (0 - 2) 41870 33 - 35

June 16 indians 5 - 4 neagle (4 - 4) 40792 33 - 36

June 18 yankees 10 - 5 jennings (8 - 3) 48738 33 - 37

June 19 yankees 20 - 10 white (1 - 5) 48821 33 - 38

June 20 yankees 14 - 11 (10) karsay (3 - 3) 48916 34 - 38

June 21 devil rays 8 - 7 (10) yan (3 - 3) 30284 35 - 38

June 22 devil rays 6 - 5 (11) kent (0 - 2) 31190 36 - 38

June 23 devil rays 6 - 5 kennedy (5 - 6) 31043 37 - 38

June 24 dodgers 4 - 1 ishii (11 - 3) 34641 38 - 38

June 25 dodgers 4 - 0 thomson (6 - 7) 23635 38 - 39

June 26 dodgers 5 - 3 chacón (3 - 5) 25083 38 - 40

June 27 dodgers 7 - 1 neagle (4 - 5) 41279 38 - 41

June 28 mariners 6 - 2 jennings (8 - 4) 45118 38 - 42

June 29 mariners 8 - 1 hampton (4 - 9) 45790 38 - 43

June 30 mariners 4 - 3 sasaki (2 - 2) 45928 39 - 43

Table Topic: 2002 Colorado Rockies Season

Reasoning Path-1: eq { hop { argmax { all_rows ; attendance } ; date } ; june 20 }

Summary-1: The game on June 20 drew the highest attendance of the 2002  
Colorado Rockies season .

Reasoning Path-2: eq { count { filter_eq { all_rows ; opponent ; indians } } ; 3 }

Summary-2: The Colorado Rockies played against the indians 3 times in 
 the 2002 season .

Reasoning Path-3: eq { hop { argmin { all_rows ; attendance } ; loss } ; hampton (3 - 7) }

Summary-3: Hampton (3 - 7 ) was the game with the lowest attendance 
 in the 2002 Colorado Rockies season .

Reasoning Path-4: eq { count { all_rows } ; 27 }

Summary-4: The Colorado Rockies played 27 games in the 2002 season .

Reasoning Path-5: eq { max { all_rows ; attendance } ; 48916 }

Summary-5: The highest attendance for the 2002 colorado rockies season was 48916 .
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Figure 8: Sample table from LogicNLG dataset and five diverse logical summaries generated by MURMUR. Each
color code in the table cells highlights parts of the table relevant to a MURMUR summary. All generated summaries
are logically correct.
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year
(ceremony)

film title used in
nomination original title director result

1992 (65th) the child of man cilvēka bērns jānis streičs not nominated

2008 (81st) defenders of riga rīgas sargi aigars grauba not nominated

2010 (83rd) hong kong
confidential amaya māris martinsons not nominated

2012 (85th) gulf stream under the
iceberg

golfa straume zem
ledus kalna

yevgeni
pashkevich not nominated

2013 (86th) mother , i love you mammu , es tevi mīlu jānis nords tbd

Table Topic: List of Latvian submissions for the academy award  
for best foreign language film

Reasoning Path-1: eq { count { filter_eq { all_rows ; result ; not nominated } } ; 4 }

Summary-1: Four of the films submitted by Latvia for the Academy Award for 
 Best Foreign Language Film were not nominated .

Reasoning Path-2: eq { count { filter_not_eq { all_rows ; result ; not nominated } } ; 1 }

Summary-2: 1 film was not nominated for the academy award for best 
 foreign language film .

Reasoning Path-3: eq { count { all_rows } ; 5 }

Summary-3: There were 5 films submitted from Latvia for the Academy Award  
for Best Foreign Language Film .

Reasoning Path-4: eq { count { filter_all { all_rows ; year (ceremony) } } ; 5 }

Summary-4: There have been 5 Latvian submissions for the Academy Award  
for Best Foreign Language Film .

Reasoning Path-5: only { filter_eq { all_rows ; film title used in nomination ;  
defenders of riga } }

Summary-5: defenders of riga was the only latvian submission for the  
academy award for best foreign language film .
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Figure 9: Sample table from LogicNLG dataset and five diverse logical summaries generated by MURMUR. Each
color code in the table cells highlights parts of the table relevant to a MURMUR summary. The red marked blocks
are incorrect summaries generated by MURMUR.
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