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Abstract

Although recent years have been marked by
incredible advances in the whole development
process of NLP systems, there are still blind
spots in characterizing what is still hampering
real-world adoption of models in knowledge-
intensive settings. In this paper, we illustrate
through a real-world zero-shot text search case
for information seeking in scientific papers, the
masked phenomena that the current process of
measuring performance might not reflect, even
when benchmarks are, in appearance, faithfully
representative of the task at hand. In addi-
tion to experimenting with TREC-COVID and
NFCorpus, we provide an industrial, expert-
carried/annotated, case of studying vitamin B’s
impact on health. We thus discuss the misalign-
ment between solely focusing on single-metric
performance as a criterion for model choice and
relevancy as a subjective measure for meeting
a user’s need.

1 Introduction

Scientific publications are one of the primary
means by which researchers disseminate their find-
ings and discoveries to the community, but the
amount of information to go through can easily
become daunting and challenging. Exploratory
search, i.e, the process of conducting broad and
open-ended searches to gain a better understanding
of a research topic, is the type of search task that
scientists typically spend the most time on. Un-
fortunately, specialized search engines designed
for scientists only partially support this type of
task, leaving researchers with limited options for
efficiently accessing and extracting relevant infor-
mation from the vast amount of available literature.
We are however currently standing at an age of re-
defining the way we seek information as we make
great advances in the whole development cycle
of NLP technologies aiming to solve knowledge-
intensive tasks. To this end, benchmarks constitute

the backbone of this process and fundamentally in-
fluence the way we measure progress and identify
where future research efforts should be focused.
These datasets, almost solely, put the emphasis
on performance-driven comparison and create an
impression of reliable estimates of progress at a
task scale, whereas, in reality, they might not be
informative about the way the models would solve
human problems or help solve them.

In this paper, we illustrate an example of transi-
tioning from two biomedical IR benchmarks, i.e,
NFCorpus and TREC-COVID, to a practical case
of seeking information about a specific topic in
scientific publications: vitamin B’s impact on hu-
man health. In this context, we provide an expert-
annotated collection of relevance judgements on
1811 publications related to vitamin B and health.
Our goal is to assess how models’ comparison on
benchmarks is meaningful to solving/assisting the
expert seeking such information. We thus show
through a zero-shot setting that narrowing the com-
parison down to a single metric might not be rele-
vant to users’ needs, even when a real-world case
presents similarities with widely-used benchmarks.

Our contributions can be summarized as follows:
1. we provide a real-world case of information-
seeking in scientific publications that does not drift
away from prominent benchmarks’ characteristics,
2. we test in a zero-shot setting a few SOTA mod-
els reflecting the current paradigm in NLP and IR
and we give an interpretation of their behavior in
our case compared to the benchmarks, and 3. we
discuss based on our observations the masked phe-
nomena that the current process of evaluation might
not reflect.

2 Background

2.1 Information-seeking and relevance

Information-seeking strategies described by Belkin
et al. (1995) represent how a searcher might use
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different methods and resources and have differ-
ent aims. The broad information-seeking behavior
of scientists is usually regarded as an exploratory
search problem (Meho and Tibbo, 2003; Athuko-
rala et al., 2013; Nedumov and Kuznetsov, 2019).
When searching for information in scientific pub-
lications, experts have specific information needs,
and they seek information that is relevant to those
needs. Effective search systems aim to retrieve
highly relevant information and present it to the
user in a way that is easy to understand and use. To
this end, relevance refers to the degree to which a
piece of information satisfies the information need
of the seeker. There is however a certain degree
of variability in the perception of relevance for a
given task (Soufan et al., 2022). Previous work ar-
gues that there is a strong relationship between the
task singularity, the task carrier, and the type of ex-
pected relevance, leading to significant variability
of performance levels across tasks (Zhang, 2014;
Tamine et al., 2015; Hoeber and Storie, 2022). Rel-
evance can therefore be considered as a subjec-
tive measure that depends on both the information-
seeker as well as the environment they seek in.

2.2 Semantic Search on Scientific Publications

In the first steps of information seeking in scientific
papers, the user may not have a clear understanding
or ability to precisely articulate their information
need (Vakkari, 2005) thus requiring a search system
to understand the meaning behind the query and the
content of the documents, rather than just matching
the query terms with the terms in the papers. To
this end, semantic search on scientific papers refers
to the ability of a system to understand the meaning
of the query and the content of the scientific papers
and match them based on their semantic similarity.

In practice, given a collection of scientific pa-
pers1 C, the goal is to rank the most relevant subset
of candidate papers R ⊆ C by relatedness to q,
i.e, R = {p ∈ C|relevanceq(p)}. A common
approach to measuring the similarity between the
query q embeddings and candidate paper p embed-
dings. The papers with the highest similarity scores
are considered the most similar to the query and
are thus returned at the top of the search results.

Among the recent research directions, there has
been a focus on learning representations of sci-

1In industrial contexts, the collection is usually
searched/built beforehand, for instance by querying special-
ized databases like PubMed with keywords broadly expressing
the information need.

entific documents that can be used as rich in-
put features for downstream tasks, thus alleviat-
ing the need for further fine-tuning (Cohan et al.,
2020; Parisot and Zavrel, 2022; Singh et al., 2022).
Zero-shot robustness directions continued to show
promising results as well, with state-of-the-art be-
ing dominated by models optimized to resist to
natural dataset shifts (Yu et al., 2022).

2.3 Evaluation Paradigm

Benchmarks are designed to replicate tasks and are
useful for providing a standard method of compar-
ison, reproducibility, and a concise way of track-
ing progress. For search on scientific papers, a
widely adopted paradigm is to provide relevance
annotations and evaluate model performance with
top-k metrics, notably the Normalised Cumulative
Discount Gain @k (Wang et al., 2013) which pro-
vides a good balance suitable for tasks involving
binary and graded relevance judgements. Nonethe-
less, there are some concerns with this evaluation
methodology.

It has long been argued that information seek-
ing/retrieval is or should be considered as an in-
teractive process with human involvement (Cool
and Belkin, 2002; Järvelin, 2011; Shah and Ben-
der, 2022) where a user is more likely to navi-
gate through different information-seeking strate-
gies during a search session (Hoeber et al., 2019).
Current benchmarks are however non-interactive,
whereas the information-seeking process is or
should be considered an interactive process with
human involvement. To this end, models that are
deployed for interactive purposes should be evalu-
ated as such (Lee et al., 2022).

Further, top-k metrics assume that lower ranks
are not of interest, with benchmarks usually2 eval-
uating on k=10. This contributed to favoring speed
and convenience, but in such knowledge-intensive
settings like searching about a particular topic
in scientific papers, the priority is to fill in the
gaps of knowledge of the information-seeker (Has-
san Awadallah et al., 2014). Such small values of k
present a very strong assumption on the quantity of
information an expert requires to study their sub-
ject. We argue in the rest of the paper that such
a method may not be ideal for evaluating systems
that involve users in expert search situations, as it
may not fully account for factors such as the user’s

2https://paperswithcode.com/task/
zero-shot-text-search
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interests and expertise when assessing relevance.

3 Experimental Setup

In this section, we provide a description of
our experimental setting of transitioning from
information-seeking benchmarks on scientific pa-
pers to an industrial exploratory search about vita-
min B’s impact on health.

3.1 Datasets

TREC-COVID (Voorhees et al., 2021) is a test
collection leveraging the TREC framework that
aimed to address the search needs of clinicians and
biomedical researchers during the COVID-19 pan-
demic, thus laying the groundwork for improved
search systems in future public health emergencies.
The document set is the one provided by CORD-
19 (Wang et al., 2020), which consists of new and
historical publications on coronaviruses. TREC-
COVID aims to rank papers in response to textual
search queries and contains 50 queries with 69,318
candidate papers cumulatively judged by relevance.

NFCorpus (Boteva et al., 2016) is a Medi-
cal Information Retrieval data set on nutrition
facts where queries are harvested from Nutrition-
Facts.org site and candidate documents are medical
research papers mostly from PubMed. We use the
dataset as it is contained in the BEIR benchmark
(Thakur et al., 2021): 323 queries and 3633 candi-
date documents.

Practical case: Vitamin B’s impact on health
We present a practical case study where an expert
in immunology seeks to study the effects of vita-
min B on human health. A corpus of candidate
papers was retrieved from PubMed with the fol-
lowing query: ("vitamin B"[Title/Abstract]) AND
(health[Title/Abstract] OR growth[Title/Abstract]),
which resulted in 1811 papers3, out of which the
expert identified 598 relevant documents (33%).
Relevance judgement was carried out in two steps:
1. Search on title relevance: if a title is obviously
out of scope, the expert does not investigate the
abstract. Similarly, if the title is evidently in scope,
the abstract is not judged. 2. Search on abstract
relevance: the expert reads in detail and identifies
the type of study that was carried out.
On the models’ side, the query used for ranking is:
How do vitamins B impact health?
Our vitamin B case has some similarities in nature

3Retrieved in December 2022. All papers are in English.

with both NFCorpus and TREC-COVID (although
not identical). While identifying and analyzing
discrepancies between benchmarks and use-case
results can provide valuable insights for improving
the performance of models in practical real-world
use, it can be difficult to know for certain whether
a benchmark is representative of a real-world task,
as this requires a careful investigation of the data,
input format, expert input, and evaluation metrics.

3.2 Models & Frameworks
Transformer-based models have gained widespread
popularity as retrieval models, due to their capa-
bility of acquiring semantic representations. We
use BM25 as a generalizable baseline (Thakur
et al., 2021) and test two sets of neural models
that we port to sentence-transformers (Reimers and
Gurevych, 2019) format known for its efficiency in
semantic search tasks (Muennighoff, 2022):
1. LMs pre-trained for scientific text similarity:
SPECTER (Cohan et al., 2020), SciNCL (Osten-
dorff et al., 2022), and ASPIRE (Mysore et al.,
2022). All three have been trained with the intu-
ition that learned scientific document representa-
tions can be substantially improved through con-
trastive learning objectives.
2. Robust models in zero-shot settings, COCO-
DR (Yu et al., 2022) and monoT5 (Nogueira et al.,
2020), both transferred from MS-MARCO4.

Finally, we use Haystack5 as a framework and
ElasticSearch to index embeddings along the pa-
pers. We did not alter the original trainings of
models.

4 Results & Discussion

We report in Table 1 the average nDCG@10 of
the different models on both NFCorpus and TREC-
COVID, as well as our use case. We experiment
with three strategies of searching: based on title
relevance, on abstract relevance, and titles and ab-
stracts appended6.

NFCorpus BM25 is leading on the three strate-
gies, followed by scientific LMs mostly dominat-
ing the general robust models. The low scores
(compared to the other datasets) can be partially
explained with the fact that the percentage of rele-
vant articles is smaller for most queries (≤1-2%).
All models, with the exception of BM25 and

4https://microsoft.github.io/msmarco/
5https://github.com/deepset-ai/haystack
6Separated with [SEP] token.
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NFCorpus TREC-COVID Vitamin B & Health
Search on Title Abstract T+Abs Title Abstract T+Abs Title Abstract T+Abs
Lexical

BM25 0.335 0.375 0.380 0.579 0.646 0.659 0.496 0.06 0.066
Learned Representations on Scientific Text
SPECTER 0.155 0.156 0.161 0.654 0.631 0.66 0.621 0.402 0.77

SciNCL 0.207 0.182 0.195 0.68 0.635 0.657 0.534 0.637 0.70
ASPIRE 0.216 0.188 0.193 0.688 0.672 0.685 0.536 0.445 0.546

Transferred from MS MARCO
COCO-DR 0.209 0.127 0.139 0.72 0.654 0.714 1.0 0.748 0.848

monoT5 0.114 0.044 0.046 0.468 0.512 0.513 0.538 0.863 0.87

Table 1: Average NDCG@10, - denotes the best score while - denotes the worst performance.

SPECTER, perform better on titles rather than as-
sessing abstracts’ relevance.

TREC-COVID On titles and titles+abstracts,
COCO-DR is the best-performing model, whereas
ASPIRE slightly outperforms it on abstracts. Mod-
els’ performances are quite consistent on this
benchmark, with scientific LMs having close scores
and mostly best performing on titles. TREC-
COVID’s queries are more detailed than the other
two datasets. This might explain the coherence
of results between models; there is more relevant
information to judge on.

Vitamin B & health Models’ performance in
our case seems to be divergent from what can be
observed on the other two benchmarks. BM25’s
performance entirely drops with abstracts, which
might be caused by the nomenclature of vitamin B
(Appendix A) present in titles and abstracts. On
the other hand, monoT5 outperforms all other mod-
els on strategies that include abstract relevance,
whereas COCO-DR achieves perfect nDCG@10
on titles.

Overall, our results show that models perform
differently on datasets and suggest that there is
an inconsistency in performance and difficulty in
identifying the best model for seeking biomedical
information in publications: if starting from NF-
Corpus, one would suggest using BM25 as a decent
model for the vitamin B case, whereas if compar-
ing on TREC-COVID, one would prefer COCO-
DR and entirely leave out monoT5. In reality, the
perfect nDCG@10 on titles of COCO-DR might
suggest the best fit, but the model is not actually
placing all the relevant documents at the smallest
ranks: Figure 1 illustrates this and shows that the
nDCG@10 metric is not reflecting how "early"

relevant documents are suggested to the user (the
tendency is the same on TREC-COVID (Appendix
B) for SciNCL, COCO-DR, and monoT5). The
differences of scores in Table 1 suggest a big gap
in the performance of models, however, if we con-
sider the entire set of relevant papers in the vita-
min B case, SciNCL (ndcg@10=0.534) is cumu-
latively suggesting the relevant elements "faster"
than COCO-DR (ndcg@10=1.0), making it a better
assistance to the expert seeking information.

5 Discussion

We further discuss in this section the misalignment
between performance measures from the perspec-
tive of an expert seeking information in papers.

Expert search strategy preferences Our expert
expressed that they sort on titles for more speed, but
abstract relevance remains the reference. The rea-
son for this is that titles usually provide information
on the study domain as a whole, and can be used to
classify into big categories. The abstracts however
are used when the title does not allow for imme-
diate classification, since they contain the main
question of the paper, the methodology, and the
main results. Intuitively, models would find more
relevance "hints" in abstracts, and thus have greater
performance on search strategies that include them.
This was rarely the case for all datasets, suggest-
ing that many models might be better at matching
shorter contexts (titles being closer to query length
compared to abstracts).

The success of information-seeking is a process
As we previously mentioned, tasks that are com-
plex, such as learning about a new topic, often re-
quire multiple search queries and may extend over
multiple sessions. It has to be noted that our ex-
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Figure 1: Count of relevant papers in different ranges of k as ranked by titles’ relevance on Vitamin B use-case. For
example, COCO-DR, sciNCL, monoT5 respectively return 64, 65, and 56 relevant documents among their first
100 retrieved documents.

pert encountered 18 different themes out-of-scope
(Appendix A) when annotating the entire collec-
tion of papers. These themes are discovered during
the exploration process, emphasizing the fact that
information-seeking is an interactive process and
that the reported metric (designed for speed and
convenience of ranking systems) is neither informa-
tive about the presence of such themes nor about
the corresponding response of the different models.
As we mentioned in Section 2.1, relevance is a sub-
jective measure. Our expert investigated the ranked
lists returned by different models on the vitamin B
use case and categorized the first 100 irrelevant
documents for each. We observed that the mod-
els’ sensitivity to different topics is not the same
when measuring similarity. For instance, on ti-
tles, COCO-DR (best performance) struggled most
with practice recommendations, while SciNCL mis-
judged the prevalence of B vitamin deficiencies
the most. Further, this was also the case on ab-
stracts (Appendix A) as monoT5 struggled most
with the vitamin content of food/diet, while BM25
suggested irrelevant studies the most. We illustrate
these differences in Figure 2: no agreement whatso-
ever between models about (ir)relevance of topics,
which cannot be reflected by the NDCG@k mea-
sure. Such a disagreement further complicates the
process of identifying the sources of differences,
which are important to determine which model
may be better suited for specific scenarios, given
that such differences might have roots in the train-
ing data, model architectures, hyperparameters, or
other factors.

6 Conclusion

In this paper, we illustrated the misalignment be-
tween single-metric performance and relevancy in
practical expert information seeking. Through a
transition from two biomedical IR benchmarks to

Figure 2: Count of first 100 irrelevant papers by cat-
egories for search on titles on Vitamin B case. The
IN SCOPE category corresponds to papers that were
initially annotated as irrelevant but after careful inves-
tigation should have been in scope. Labels were not
modified after observation therefore performance met-
rics are not altered.

a case of an expert seeking information about vita-
min B’s impact on human health, we showed that
the current process of measuring performance may
not fully capture the challenges of the task at hand.
Our observations emphasized the misalignment be-
tween relying on top-k ranking metrics and the true
nature of the information-seeking process’ success.
To this end, we provide an extensive description of
the use-case creation and relevance judgements to
foster future reconciliation between corpus-based
evaluations and users’ search experience.
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Limitations

We presented in this paper a real-world annotated
example of seeking information in scientific publi-
cations. Even if the number of instances presented
here is of the same order of magnitude as what
is present in benchmarks, we presented only one
query and its correspondent relevance judgements,
provided by one expert, due to resource constraints.
As we noted above, building a corpus dedicated to
the exploration of a single information need does
however correspond to a real industrial use case.
Further, we favored the use of sentence-
transformers format for all neural models for the
sake of efficiency. We did not dive into provid-
ing the best-known performing models and did not
consider optimizing them in our case, as overfit-
ting to our data might induce errors in conclusions
and low confidence in the generalizability of our
observations. However, we do not guarantee that
other models will not display more robustness to
the transition presented in our paper.
Finally, we did not conduct an extensive exami-
nation of the characteristics of the benchmarks as
well as the real-world case that may be impacting
performance such as the diversity of data. We be-
lieve that such investigations, in conjunction with
the models’ examination, might help better explain
the models’ behaviors and areas of weakness.
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Figure 3: Average count of relevant papers across queries in different ranges of k as ranked by titles relevance on
TREC-COVID. Black vertical lines show standard deviation through all queries for each range.

A Vitamin B & Health

We provide in this appendix further details about
our real-world case that were partially discussed in
the paper.

Out-of-scope themes We list hereafter the out-
of-scope themes that were encountered during the
annotation process:

• Yeast, bacteria and plants

• Measurement methods of vitamin B.

• Prevalence of deficiencies.

• Which foods bring which vitamin B and in
which amounts.

• Recommendations of public health policies.

• Genetic polymorphism leading to different
uses of B vitamins.

• Cobalt (essential component of vitamin B12).

• Farm animals (chicken, swine, cattle, fish).

• Interaction of B vitamins with other drugs
(such as oral contraceptives).

• B vitamin derivatives (such as Pyridoxal 5’-
phosphate, a derivative of B6).

• Nutrient intake from different diets (vegan,
vegetarian, omnivorus).

• Effect of surgery on the levels of B vitamins.

• Use of B vitamins to improve an in vitro pro-
cess (such as in vitro growth of follicules).

• Physicians targeted, about how to supplement
patients.

• Supplementing people and only looking at
biomarkers in response.

Vitamin Associated name
B1 Thiamin
B2 Riboflavin
B3 Niacin / Nicotinamide
B5 Pantothenic acid / Pan-

tothenate
B6 Pyridoxine
B7 Biotin
B9 Folic acid / Folate
B12 Cobalamin

Table 2: Nomenclatures for the different types of B
vitamins.

• Situations where B vitamins were given as
placebo.

• Microbial vitamin B metabolites; not related
to human health.

• Vitamin B17 (amygdalin).

Nomenclatures The different names encoun-
tered in titles and abstracts associated with vitamin
B are detailed in table 2.

Irrelevant categories The out-of-scope themes
are grouped into the categories described in table
3. The count per category discussed in section 5 is
shown on figure 4.

B TREC-COVID

Figure 3 shows the count of relevant papers in dif-
ferent ranges of k as ranked by titles’ relevance.
In TREC-COVID, ranges of k differ for different
queries, so we illustrate on the minimum range, i.e,
1842 documents.
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Category Definition
Vitamin B re-
quirement

Studies on the requirement of
B vitamins in populations, for
instance pregnant women or
elderly people. Evolution of
the requirements depending on
health situation or medication,
for example contraceptive pill
intake.

Practice recom-
mendations

Papers on how to manage B
vitamin intake or deficiencies,
public policies of vitamin rein-
forcement in food, or specific
food intake to cover vitamin re-
quirements.

Vitamin
content of
food/diet

Papers measuring or estimating
the vitamin content of different
foods or diets, for instance the
vegetarian or vegan diets.

Effect of an-
other vitamin

Studies on the effect of vita-
mins that are not B vitamins.

Effect in plants Studies on B vitamins require-
ments, or effects, or supple-
mentation in terrestrial plants,
algae, or plankton.

Irrelevant
model

Effects of B vitamins on health
of animal models that are not
relevant (all animals except pre-
clinical in vivo studies on mice
or rats). Studies on farm ani-
mals are excluded.

Prevalence of
B vitamin de-
ficiencies/ mea-
surement of B
vitamin in pop-
ulations

Studies measuring B vitamins
in populations.

Methodology
for measure-
ment

Papers describing B vitamin
direct measurement tools, or
extrapolation methods to infer
B vitamin concentration from
other parameters.

Methodology
for production

Papers describing production
tools, such as genetically mod-
ified yeast or bacteria, fermen-
tation, chemical synthesis, and
other methods.

Irrelevant
study

Irrelevant but not categoriz-
able.

Table 3: Categories of wrong predictions encountered
when analyzing the first 100 irrelevant papers

Figure 4: Count of first 100 irrelevant papers by cate-
gories for search on abstracts on Vitamin B case
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