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Abstract

Retrieval accuracy is crucial to the performance
of open-domain question answering (ODQA)
systems. Recent work has demonstrated that
dense hierarchical retrieval (DHR), which re-
trieves document candidates first and then rel-
evant passages from the refined document set,
can significantly outperform the single stage
dense passage retriever (DPR). While effective,
this approach requires document structure in-
formation to learn document representation and
is hard to adopt to other domains without this
information. Additionally, the dense retriev-
ers tend to generalize poorly on out-of-domain
data comparing with sparse retrievers such as
BM25. In this paper, we propose Hybrid Hi-
erarchical Retrieval (HHR) to address the ex-
isting limitations. Instead of relying solely on
dense retrievers, we can apply sparse retriever,
dense retriever, and a combination of them in
both stages of document and passage retrieval.
We perform extensive experiments on ODQA
benchmarks and observe that our framework
not only brings in-domain gains, but also gen-
eralizes better to zero-shot TriviaQA and Web
Questions datasets with an average of 4.69%
improvement on recall@100 over DHR. We
also offer practical insights to trade off between
retrieval accuracy, latency, and storage cost.
The code is available on github∗.

1 Introduction

Open-domain question answering (ODQA)
(Voorhees, 1999) aims to answer questions based
on a large corpus without pre-specified context,
and enjoys a broad scope of real-world applications
such as chatbots, virtual assistants, search engines,
etc. Recent ODQA systems often follow a two
stage retrieve-then-read architecture (Zhu et al.,
2021; Chen et al., 2017; Lee et al., 2019). Given
a question, a retriever module first selects a

+The work was done during an internship at AWS AI Lab.
†These authors contributed equally to this work.
∗https://github.com/ghuhan17/HybridHierarchicalRetrieval.

Question: What is the lightest metal under standard conditions?
Answer: Lithium
DPR Passage, Electrochemical fatigue crack sensor:
Stainless steel has a density of 8000 kg/m3  and aluminum alloy has a 
density of 2700 kg/m3. EFS detects growing cracks in steel, aluminum, 
titanium alloys …
DHR Passage, Iron:
Because of the softness of iron, it is easier to work with than its heavier 
congeners. The form of iron that is stable under standard conditions …
HHR Passage, Lithium:
Lithium is a chemical element with symbol Li. It is a soft alkali metal. 
Under standard conditions, it is the lightest metal and the lightest solid …

Figure 1: An example showing the top-1 retrieved pas-
sage of DPR, DHR and HHR for a TriviaQA query. The
title of the source document is underlined. DPR finds a
passage with different metals from an irrelevant docu-
ment. DHR retrieves a better passage yet focus a single
iron metal. HHR finds the groundtruth passage.

candidate set of relevant contexts from a diversified
large corpus such as Wikipedia; afterwards, a
reader module consumes the retrieved evidence
to predict an answer. Here, retrieval performance
is crucial to the accuracy of the QA system as it
determines whether the correct context to answer
the question can be presented to the reader.

While most work in information retrieval focus
on document retrieval (Nguyen et al., 2016; Thakur
et al., 2021), existing work in ODQA often splits
documents into short passages and directly retrieve
passages for the reader (Karpukhin et al., 2020;
Izacard and Grave, 2020) to accommodate reader
models that handle shorter sequences most effec-
tively. A drawback of such single-stage passage
retrieval approaches is that they tend to be suscep-
tible to distracting passages that contain seemingly
relevant local context but not the correct answer,
since they cannot incorporate information from
other parts of the document (see Figure 1). Fur-
ther, the large number of passage candidates also
contributes negatively to system throughput. To
mitigate these issues, Liu et al. (2021) recently
proposed a two-stage hierarchical retrieval frame-
work where the retriever first retrieves relevant doc-
uments, then discern relevant passages within re-
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Figure 2: An overview of HHR. It consists of a doc-
ument retrieval followed by a passage retrieval. Each
stage uses one of three types of retrievers - sparse, dense,
and combined, leading to a total of 9 configurations.

trieved documents. This helps prune passages that
look relevant but are from irrelevant documents to
improve answer accuracy, meanwhile greatly re-
ducing the candidate set for passage retrieval and
improve the inference speed of ODQA systems.

Despite its success, Liu et al.’s (2021) approach
(dense hierarchical retrieval, DHR) relies on dense
neural retrievers (Lee et al., 2019; Karpukhin et al.,
2020) for both document retrieval and passage re-
trieval, which suffers from two key weaknesses.
First, neural encoders used in retrieval are often
limited in context length for effectiveness and effi-
ciency, which is too short to encompass most docu-
ments. As a result, DHR needs to make use of the
structure of Wikipedia documents, and represents
the documents succinctly with title, abstract and
table of contents, which is not always available for
non-Wikipedia text. Second, dense retrievers have
been shown to suffer from poor generalization on
out-of-domain data (Thakur et al., 2021), whereas
sparse retrievers like BM25 (Robertson et al., 2009)
excel with lexical matches (Sciavolino et al., 2021).

In this work, we propose a hybrid hierarchical
retrieval (HHR) framework to alleviate these is-
sues. Specifically, we investigate the tradeoffs and
complementary strengths of sparse retrievers and
dense retrievers at both the document retrieval and
passage retrieval stages for ODQA (see Figure 2).
We find, among other things, that sparse retrievers
can complement dense retrievers at both retrieval
stages with a simple approach to aggregate results
from both. Besides in-domain evaluation on the
dataset that neural models are trained on, we also
perform zero-shot evaluation on unseen datasets
to compare the generalization of these retriever ar-
chitectures. We find that sparse retrievers can help
HHR generalize better to unseen data and poten-
tially replace dense retrievers in document retrieval.
In addition, we also study the accuracy, storage

cost, and latency tradeoff for these architectures
under the HHR framework, and offer practical in-
sights to real-world ODQA systems that often need
to factor these into consideration.

Our main contributions are as follows. First,
we propose a hybrid hierarchical retrieval frame-
work on ODQA, and extensively study tradeoffs
and complementary strengths of sparse and dense
retrievers in both document and passage retrieval.
Second, we perform both in-domain and out-of-
domain evaluation to provide insight into the gen-
eralization performance of different model choices.
Finally, we present the accuracy-storage-latency
landscape for HHR architectures and offer practi-
cal insights to real-world applications.

2 Background & Related Work

Open-domain question answering (ODQA).
ODQA is a task that takes a question, such as “Who
got the first Nobel prize in physics?”, and aims to
find the answer from a large corpus. ODQA sys-
tems often rely on efficient and accurate retrievers
to find relevant context to answer questions (Chen
et al., 2017), where retrieval performance is usually
critical to QA accuracy (Karpukhin et al., 2020).

Passage retrieval. Since most reader models in
ODQA systems struggle to effectively handle long
contexts, ODQA retrieval is often performed at
the passage level (usually around 100 words long).
Earlier work (Chen et al., 2017; Yang et al., 2019)
relied on bag-of-words-based sparse retrievers such
as BM25 (Robertson et al., 2009). More recent
work showed that neural retrievers can generate
effective dense representations for retrieval when
trained on ODQA (Lee et al., 2019; Karpukhin
et al., 2020; Liu et al., 2021). Sciavolino et al.
(2021) showed, however, that these dense retriev-
ers tend to generalize worse to unseen entities dur-
ing training since they lack the capacity for lexical
matching, which is a strong suit for sparse retriev-
ers and important for out-of-domain generalization.

Hierarchical retrieval. Passage retrievers are
limited by the context available in each passage,
and can retrieve spurious passages to hurt answer
performance. A remedy is to incorporate document-
level relevancy during passage retrieval. Qi et al.
(2021) explored combining document and passage
relevancy scores in a BM25 retriever for ODQA.
Liu et al. (2021) applied this idea to dense retriev-
ers with a hierarchical retrieval framework (DHR),
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where a document retriever first retrieves docu-
ments of high relevancy, followed by a passage re-
triever to rerank passages within those documents,
and our work extends this approach.

3 Methodology

Our hybrid hierarchical retrieval (HHR) framework
extends DHR, a hierarchical retriever built on dense
retrievers that first retrieves top-kd documents and
then top-kp passages from those documents. We
follow DHR to build the dense retrievers in HHR,
and expand both document and passage retrievers
to work with sparse retrievers to address limita-
tions of the DHR approach (Figure 2). Specifically,
in DHR, to make documents amenable to neural
encoders with limited context length, the authors
proposed to leverage the document structure of
Wikipedia articles to construct a document sum-
mary that contains the document abstract and table
of contents. While effective, this also potentially
limits the applicability of this approach to corpora
where this information is not available. In contrast,
a sparse retriever can easily handle documents of
arbitrary lengths efficiently without the need of
structure information. Besides, dense retrievers
tend to generalize poorly to out of domain data.
We extend each of the document retrieval and pas-
sage retrieval stages with the option to use sparse
retrievers to help alleviate this issue, and to help us
understand the tradeoff between the two.

Besides switching between sparse and dense re-
trievers in HHR, we also introduce a simple heuris-
tic to combine results from both retrievers at the
same stage by simply interleaving their top-k/2
results for top-k retrieval to better understand the
complementary strengths of sparse and dense re-
trievers. This yields a total of 9 possible config-
urations for HHR for our extensive studies. Fi-
nally, for both sparse and dense passage retrievers
in HHR, we implement on-the-fly passage rerank-
ing for all passages in the top retrieved documents
with pre-computed passage representations. This
helps reduce the latency of the passage retrievers
in our implementation and provide more realistic
insights into the accuracy-storage-latency tradeoff
of different HHR settings in real-world systems.

4 Experimental Setup

Data Three commonly used ODQA datasets are
considered: Natural Questions (NQ) (Kwiatkowski
et al., 2019), Web Questions (WebQ) (Berant et al.,

2013), and TriviaQA (Joshi et al., 2017). Following
Liu et al. (2021), we use the Wikipedia dump from
Dec. 20, 2018 as the source corpus. When splitting
documents into passages, the text under same sec-
tions are split into non-overlapping passages with
a maximum of 100 words.

Training and evaluation We followed the same
configuration as DHR to train the document and
passage encoders up to 40 epochs on 8 V100 Ten-
sor Core GPUs. In order to measure the retriever
framework in both in-domain and zero-shot set-
tings, the dense encoders are trained only on NQ
dataset and tested on all three datasets.

5 Experiments and Results

5.1 Main Results

We present the in-domain and zero-shot evaluation
results for all datasets in Table 1. Following DHR,
we retrieve 100, 500, 500 documents in the first
stage for NQ, WebQ, and TriviaQA, respectively.
We compare HHR against DHR and single stage
sparse and dense passage retrievers. In addition, we
also study the effect of retrieving varying numbers
of documents in HHR (see Figure 3). We find that:

First, dense retrievers are crucial for in-
domain performance, yet sparse retrievers bring
gains with complementary strengths. We see that
replacing either or both components in the DHR
baseline (Dense+Dense) with sparse retriever leads
to noticeable drops in recall@100 on NQ, with
1.7% for replacing the document retriever, 2.3%
for the passage retriever, and 7.2% for both. How-
ever, adding sparse retriever to document, passage
or both retrievers brings 2.0%, 0.9% and 2.4% gain.

Second, sparse retrievers significantly im-
prove HHR’s generalization on zero-shot
datasets. We corroborate previous work’s (Sci-
avolino et al., 2021) finding that dense retrievers
struggle to generalize in zero-shot settings. Like-
wise, DHR underperforms the optimal setting by
3.79% on WebQ, and leads to the worst perfor-
mance on TriviaQA per recall@100. Adding sparse
retrievers to both stages, Combined+Combined
brings an average of 4.69% recall@100 improve-
ment on WebQ and TriviaQA.

Third, sparse document retriever can com-
pletely replace dense document retriever. While
this leads to performance drop in-domain, we see
that dense passage retrievers can help make up for
the performance gap, and that the gap diminishes
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Retriever NQ WebQ TriviaQA
R@20 R@100 EM R@20 R@100 EM R@20 R@100 EM

BM-25* 60.19 75.98 — 56.45 73.77 — 72.78 81.03 —
DPR* (DHR impl.) 82.87 89.16 42.4† 73.87 81.64 35.5† 80.43 85.40 56.9†

DHR* 85.07 89.92 43.6† 73.98 82.69 36.6† 80.81 85.69 57.0†

BM-25 61.19 76.68 32.83 56.45 73.77 17.52 75.13 82.98 41.17
DPR (DHR impl.) 82.35 88.92 41.77 69.19 79.63 19.29 70.72 80.42 37.91

Sparse+Sparse 65.21 81.11 36.04 60.04 76.87 18.75 75.38 83.17 41.77
Sparse+Dense 80.30 86.68 38.48 72.19 82.19 19.83 77.13 84.76 41.09
Sparse+Combined 79.75 86.07 38.50 72.10 78.64 19.83 80.30 85.76 42.54
Dense+Sparse 73.88 86.07 39.97 64.67 73.28 18.85 74.54 81.80 39.57
Dense+Dense (DHR) 83.05 88.34 41.52 69.98 79.92 18.95 70.86 79.72 37.89
Dense+Combined 83.93 89.22 41.66 71.95 80.71 19.64 76.96 82.72 39.93
Combined+Sparse 66.12 84.24 38.78 57.78 76.62 18.90 74.56 83.20 41.91
Combined+Dense 84.40 90.33 41.86 72.10 82.19 20.42 73.99 83.42 40.10
Combined+Combined 84.02 90.75 41.97 72.29 82.97 20.62 79.87 86.04 43.14

Table 1: Passage retrieval and end-to-end QA accuracy on test sets (R@k for recall at top-k passages and EM for
answer exact match). BM25 and DPR are passage retriever baselines. * indicates referenced numbers from Liu et al.
(2021) without iterative retriever training except for QA results (indicated with †). DHR demonstrates about 1% EM
gain in QA performance for NQ and WebQ from applying iterative training to DPR. Grayed out values correspond
to in-domain performance on WebQ and TriviaQA and are not directly comparable.

Retriever Storage (GB) Latency (s)

Sparse Document 5 0.310 / 0.389
Dense Document 16 0.131 / 0.135
Sparse Passage 23 0.004 / 0.018
Dense Passage 75 0.012 / 0.057

Table 2: Storage cost and retrieval latency on Wikipedia
corpus. The two latency results for the document retriev-
ers correspond to the time taken to retrieve 100 and 500
documents in the first stage respectively. The latency
numbers for the passage retrievers show the time taken
to retrieve 100 passages using a pool of 100 and 500
documents from the first stage respectively.

as more documents are retrieved in the first stage
(Figure 3). Further, in the zero-shot setting, re-
placing dense document retrievers with sparse ones
can actually lead to gains (of 1.26% and 3.15%
recall@100 on WebQ and TriviaQA, respectively).
This helps HHR generalize better to out-of-domain
data not only lexically, but also removes the require-
ment of document structure information needed by
the dense document retriever.

5.2 Accuracy-Storage-Latency Landscape

We report the trade off between retrieval accuracy,
latency and storage cost for different HHR config-
urations based on inference on a single CPU core.
Figure 4, presents the accuracy-storage-latency plot
of different retriever configurations for the NQ,
WebQ and TriviaQA datasets. We find that in
the in-domain case of NQ, all settings involving
dense document retrievers are Pareto-efficient on

accuracy and latency, while the passage retriever
presents a tradeoff among accuracy, latency, and
storage. In contrast, in zero-shot settings the sparse
document retrievers can be Pareto-efficient when
complemented with dense passage retrievers. Table
2 presents the storage cost and retrieval latency for
the four essential components in HHR framework,
namely, sparse and dense retrievers in document
and passage retriever stages. Sparse retrievers are
storage efficient compared to the dense retrievers at
the same level as they use inverted index to repre-
sent the text whereas dense retrievers use the dense
embeddings. We also observe that the PyLucene’s
sparse document retriever is slower than the FAISS
dense document retriever whereas our implemen-
tation of the on-the-fly sparse passage retriever is
faster than its dense counterpart. Dense passage
retrieval takes the most storage cost to store the
embedding dictionary among others.

6 Conclusion

In this paper, we study a Hybrid Hierarchical Re-
trieval (HHR) framework for ODQA that integrates
sparse and dense retrievers through a simple aggre-
gation strategy in document and passage retrievers.
We demonstrate that sparse retrievers complement
dense retrievers in-domain and greatly improve the
poor generalization from dense encoders to zero-
shot data. Our framework addresses the limitation
of DHR by achieving better zero-shot performance
without relying on document structure information.
We also study the accuracy-storage-latency land-

10683



Figure 3: Effect of retrieving different number of documents in the document retriever stage for the (a) NQ (b)
WebQ (c) TriviaQA datasets. For all the settings, we retrieve 100 passages in the second stage.

Figure 4: Accuracy-storage-latency landscape of different retriever settings for the (a) NQ (b) WebQ (c) TriviaQA
datasets. The storage cost is indicated by the size of the markers. For all the settings, we retrieve 100, 500, 500
documents in the 1st stage for the NQ, WebQ and TriviaQA datasets respectively and 100 passages in the 2nd stage
for all the datasets.

scape. We believe these findings are critical to the
real-world adoption of HHR to ODQA systems.

7 Limitations

Our HHR framework uses a simple combination
strategy to take top-k/2 documents (or passages)
from dense and sparse retrievers for top-k retrieval
in the combined setting. The overlap between
dense and sparse results can lead to less than k
retrieved results to be consumed by next stage. Fu-
ture work might improve the aggregation strategy
by: 1) developing a more advanced combination
strategy that is not solely based on rank but also re-
trieval scores, and 2) accounting document retriever
scores in the passage retrieval stage to rerank the
passages according to both the global document
relevancy and local passage relevancy. Futhermore,
we only evaluate against Wikipedia ODQA datasets
due to its presence of document structure informa-
tion to be used in the dense document retriever.
However, future work can extend the evaluation to
other ODQA corpus.
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A Implementation details of sparse and
dense retrievers in HHR

Sparse Retrieval For the document level re-
triever, we used PyLucene∗ to build an inverted doc-
ument index offline and perform BM25 based re-
trieval. Comparing with dense document retriever,
it can run efficiently without document structure
information. For the passage level retriever, the
TF and IDF of all passage tokens are computed
and pre-stored in a dictionary offline. During infer-
ence time, the BM25 score is computed on-the-fly.
Due to the refined passage candidates, the passage
retriever does not require construction of a huge
passage index and can run faster than single-stage
passage retrievers.

Dense Retrieval We follow the same dense re-
trieval set up as DHR with a small change. While
DHR applies an iterative training strategy to per-
form a second step training from hard-negatives
grounded from first step retriever, we train both
the document and passage level retrievers without
any iteration. While the document embeddings
are indexed using FAISS (Johnson et al., 2017) to
perform document retriever, the passage retrieval
is performed on-the-fly with the cached passage
embedding dictionary.

B Similarities and Differences between
different HHR configurations

In this section, we analyze pairwise HHR config-
urations to understand their similarities and differ-
ences. Table 3 shows the percentage of queries in
the NQ, WebQ and TriviaQA datasets respectively
for which the correct evidences are retrieved exclu-
sively by the row HHR configuration but not by the
column HHR configuration. Higher percentage for
a given pair of HHR configuration indicates that
the row configuration is more exclusive and is able
to answer a different set of queries when compared
to the column configuration.

We can observe the following high-level take-
aways: 1) Observing the Sparse+Sparse row in
all the 3 tables indicate that Sparse retrievers
are more effective and exclusively retrieve cor-
rect evidence for more queries in zero-shot set-
tings as the percentages are more for WebQ and
TriviaQA compared to NQ dataset. 2) Observ-
ing the Combined+Combined column shows that
there are only few percentage of queries that

∗https://lucene.apache.org/pylucene/
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other HHR configurations are able to answer over
Combined+Combined. This is expected as Com-
bined+Combined leverages both sparse and dense
retrievers in both the stages. Out of other HHR
configurations, Sparse+Dense seems to have the
highest percentage over Combined+Combined. En-
sembling the results of these two configuration
might result in an improved performance over Com-
bined+Combined and can be an interesting future
work.

Table 4 shows for a given pair of HHR configura-
tions, the percentage of of queries, out of the total
correctly retrieved queries by the row configuration,
for which the column configuration also retrieves
the correct evidence. Higher percentage indicates
that the column HHR configuration is also able
to correctly retrieve evidences for the queries as
the row configuration. In case of NQ dataset, we
observe that configurations that have dense retriev-
ers in both the stages are able to correctly retrieve
evidences for most of the queries of the other con-
figurations. However, this percentage decreases in
the case of WebQ and TriviaQA datasets.
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Configuration Sparse+
Sparse

Sparse+
Dense

Sparse+
Comb

Dense+
Sparse

Dense+
Dense

Dense+
Comb

Comb+
Sparse

Comb+
Dense

Comb+
Comb

Average

NQ

Sparse+Sparse 0 1.2 0.8 3.5 3.5 2.6 1.2 1.6 0.7 1.7
Sparse+Dense 9.3 0 1.5 6.6 3.7 3.3 3.9 1.6 1.4 3.5
Sparse+Comb 8.1 0.8 0 6.3 3.7 3.2 3.2 1.4 0.9 3.1
Dense+Sparse 9.4 4.4 4.9 0 1.6 0.5 3.3 1.2 0.9 2.9
Dense+Dense 13.2 5.4 6 5.5 0 0.6 6.1 0.5 0.9 4.2
Dense+Comb 13 5.7 6.2 5 1.2 0 6 1.2 0.8 4.3
Comb+Sparse 8.4 3.1 3 4.7 3.6 2.8 0 1.7 0.6 3.1
Comb+Dense 13.3 5.2 5.8 7.1 2.5 2.5 6.3 0 0.7 4.8
Comb+Comb 13 5.7 5.9 7.3 3.5 2.8 5.7 1.4 0 5.0

WebQ

Sparse+Sparse 0 2.7 1.5 4.6 5.7 4.5 3 3.7 2.5 3.1
Sparse+Dense 10.7 0 2.2 7.6 5.1 4.7 5.7 2.7 2.5 4.6
Sparse+Comb 9.1 1.8 0 7.3 5.8 4.7 4.9 3.3 2.2 4.3
Dense+Sparse 8 2.9 3.1 0 3.8 1.6 3.5 3.3 2 3.1
Dense+Dense 11.5 2.9 4 6.3 0 1.7 6.3 0.7 1.9 3.9
Dense+Comb 11.2 3.3 3.8 4.9 2.6 0 5.9 2.2 1.4 3.9
Comb+Sparse 7.7 2.3 2 4.9 5.3 3.9 0 3.6 1.6 3.5
Comb+Dense 11.8 2.7 3.8 8 3 3.6 7 0 1.8 4.6
Comb+Comb 11.3 3.2 3.3 7.4 4.8 3.5 5.6 2.5 0 4.6

TriviaQA

Sparse+Sparse 0 2.4 0.8 5.2 7.8 4.8 1.7 4.3 1.6 3.2
Sparse+Dense 4.1 0 1.1 5.4 6.8 4.6 3.2 3 1.7 3.3
Sparse+Comb 3.3 2 0 6 7.8 5.2 2.8 4 1.7 3.6
Dense+Sparse 3.6 2.1 1.8 0 4.4 1 2.4 2.7 1.3 2.1
Dense+Dense 4.4 1.7 1.9 2.6 0 1 3.2 0.5 0.9 1.8
Dense+Comb 4.2 2.3 2 2 3.7 0 3.2 2.4 0.9 2.3
Comb+Sparse 2.4 2.2 0.9 4.7 7.3 4.5 0 4 1 3.0
Comb+Dense 4.6 1.6 1.8 4.7 4.1 3.3 3.6 0 1.1 2.8
Comb+Comb 4.2 2.6 1.7 5.5 6.9 4.2 2.9 3.4 0 3.5

Table 3: This table presents the percentage of queries within datasets, where only the row HHR configuration
successfully retrieves correct evidence while the column HHR configuration fails, for a given pair of HHR
configurations. For all the numbers shown, we retrieve 100, 500, 500 documents for NQ, WebQ and TriviaQA
respectively in the first stage and 100 passages in the second stage for all the datasets.

Configuration Sparse+
Sparse

Sparse+
Dense

Sparse+
Comb

Dense+
Sparse

Dense+
Dense

Dense+
Comb

Comb+
Sparse

Comb+
Dense

Comb+
Comb

Average

NQ

Sparse+Sparse 100 98.5 99 95.5 95.6 96.7 98.4 98 99.2 97.9
Sparse+Dense 89.3 100 98.2 92.4 95.7 96.2 95.5 98.2 98.4 96.0
Sparse+Comb 90.5 99.1 100 92.6 95.7 96.3 96.3 98.3 99 96.4
Dense+Sparse 88.9 94.8 94.2 100 98.1 99.4 96.1 98.5 99 96.6
Dense+Dense 85.1 93.9 93.2 93.8 100 99.3 93.1 99.5 99 95.2
Dense+Comb 85.4 93.7 93 94.3 98.6 100 93.3 98.7 99.1 95.1
Comb+Sparse 90.2 96.4 96.4 94.6 95.8 96.7 100 98 99.4 96.4
Comb+Dense 85.3 94.2 93.6 92.1 97.3 97.2 93.1 100 99.2 94.7
Comb+Comb 85.7 93.8 93.5 91.9 96.2 97 93.7 98.5 100 94.5

WebQ

Sparse+Sparse 100 96.4 98 93.8 92.4 93.9 95.9 95 96.6 95.8
Sparse+Dense 86.9 100 97.3 90.7 93.8 94.3 93.1 96.8 96.9 94.4
Sparse+Comb 88.9 97.8 100 91 92.9 94.2 94 95.9 97.3 94.7
Dense+Sparse 89.7 96.3 96.1 100 95.1 98 95.4 95.7 97.5 96.0
Dense+Dense 85.7 96.4 95 92.2 100 97.9 92.1 99.1 97.7 95.1
Dense+Comb 86.1 95.9 95.3 93.9 96.8 100 92.8 97.3 98.2 95.1
Comb+Sparse 90.2 97.1 97.4 93.8 93.3 95.1 100 95.4 98 95.6
Comb+Dense 85.6 96.8 95.4 90.2 96.4 95.6 91.5 100 97.8 94.4
Comb+Comb 86.4 96.1 96 91.1 94.2 95.8 93.2 97 100 94.4

TriviaQA

Sparse+Sparse 100 97.1 99.1 93.8 90.7 94.2 97.9 94.9 98.1 96.2
Sparse+Dense 95.2 100 98.7 93.6 92 94.5 96.2 96.5 98 96.1
Sparse+Comb 96.1 97.6 100 93 90.9 94 96.7 95.3 98.1 95.7
Dense+Sparse 95.6 97.4 97.8 100 94.6 98.8 97 96.6 98.4 97.4
Dense+Dense 94.5 97.8 97.6 96.7 100 98.7 95.9 99.4 98.9 97.7
Dense+Comb 94.9 97.2 97.6 97.6 95.5 100 96.2 97.1 98.9 97.2
Comb+Sparse 97.2 97.4 98.9 94.4 91.3 94.7 100 95.3 98.9 96.5
Comb+Dense 94.5 98.1 97.9 94.4 95 96 95.6 100 98.7 96.7
Comb+Comb 95.1 96.9 98 93.6 92 95.1 96.6 96.1 100 95.9

Table 4: This table shows the percentage of queries, out of the total correctly retrieved queries datasets by the
row configuration, for which the column configuration also retrieves correct evidence, for a given pair of HHR
configurations. For all the numbers shown, we retrieve 100, 500, 500 documents for NQ, WebQ and TriviaQA
respectively in the first stage and 100 passages in the second stage for all the datasets.
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