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Abstract

The task of product attribute value extraction
is to identify values of an attribute from prod-
uct information. Product attributes are impor-
tant features, which help improve online shop-
ping experience of customers, such as prod-
uct search, recommendation and comparison.
Most existing works only focus on extract-
ing values for a set of known attributes with
sufficient training data. However, with the
emerging nature of e-commerce, new prod-
ucts with their unique set of new attributes
are constantly generated from different retail-
ers and merchants. Collecting a large num-
ber of annotations for every new attribute is
costly and time consuming. Therefore, it is
an important research problem for product at-
tribute value extraction with limited data. In
this work, we propose a novel prompt tun-
ing approach with Mixed Prompts for few-
shot Attribute Value Extraction, namely Mix-
PAVE. Specifically, MixPAVE introduces only
a small amount (< 1%) of trainable parame-
ters, i.e., a mixture of two learnable prompts,
while keeping the existing extraction model
frozen. In this way, MixPAVE not only bene-
fits from parameter-efficient training, but also
avoids model overfitting on limited training ex-
amples. Experimental results on two product
benchmarks demonstrate the superior perfor-
mance of the proposed approach over several
state-of-the-art baselines. A comprehensive set
of ablation studies validate the effectiveness of
the prompt design, as well as the efficiency of
our approach.

1 Introduction

Product attributes are important features associ-
ated with products, which form an essential com-
ponent of e-commerce platforms (Nguyen et al.,
2020; Yu et al., 2021). These attributes contain
detailed information of the products, and provide
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Figure 1: An example of a “desktop” product from
MAVE dataset. There are multiple attributes with their
corresponding values in the product during training. We
want the model to adapt quickly to new attributes.

useful guidance for customers to compare products
and make purchasing decisions. They also facili-
tate merchants on various applications, including
product recommendations (Truong et al., 2022),
product search (Lu et al., 2021), and product ques-
tion answering (Zhang et al., 2020b; Rozen et al.,
2021). Therefore, product attribute value extrac-
tion has recently attracted a lot of interest from both
academia and industry, with a plethora of research
(Putthividhya and Hu, 2011a; Chen et al., 2019;
Zhang et al., 2022; Wang et al., 2022; Shinzato
et al., 2022) being developed to solve this problem.

Existing works (Zheng et al., 2018; Xu et al.,
2019; Yan et al., 2021; Yang et al., 2022) mostly
learn extraction models to extract values for a pre-
defined set of attributes, assuming all attributes
are covered in the training examples. However, in
real-world scenarios, new products are emerging
everyday with their unique set of new attributes. In
fact, even within the existing products, there are
new attributes being generated by the merchants.
For example, Figure 1 shows a “desktop” product,
where the values corresponding to the attributes of
“brand”, “RAM”, “Operating System” and “CPU”
are annotated in the product title and description,
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but the “Graphic Card” attribute is not included in
the training attributes. In this case, a desired model
should quickly adapt to new attributes by providing
a few examples.

One straightforward solution is to merge the new
attributes with existing ones, and retrain the extrac-
tion model. The main drawback of this approach
is that the full model needs to be retrained on all
training data every time when there are new at-
tributes, making it computational expensive and
thus impractical to use. An alternative approach is
to conduct full fine-tuning of the existing model on
the small data associated with the new attributes.
This approach is more data-efficient compared to
the retraining with all data. However, the fine-tuned
model is likely to overfit to the new attributes (due
to very few training examples) especially for large-
scale Transformer models (Wang et al., 2020; Yang
et al., 2022). Another popular approach is to fine-
tune only a subset of the parameters, such as the
extraction head (Yosinski et al., 2014) or the bias
terms (Cai et al., 2020). Prior research has also
attempted at adding extra blocks or adapters (Pfeif-
fer et al., 2020) to the existing model. However,
in general these strategies under-perform the full
fine-tuned model.

Inspired by the recent advances on prompt tun-
ing (Lester et al., 2021; Jia et al., 2022; He et al.,
2022c; Ma et al., 2022), in this paper, we pro-
pose a novel prompt tuning approach with Mixed
Prompts for few-shot Attribute Value Extraction,
namely MixPAVE. In contrast to previous fine-
tuning or partial tuning approaches, we introduce
two sets of learnable prompts, textual prompts and
key-value prompts, and augment the Transformer-
based extraction model with the mixture of these
two prompts. Specifically, textual prompts are
prepended to the input sequence of each Trans-
former layer while key-value prompts are inserted
to the key and value matrices in the self-attention
block. Then MixPAVE is then learned by only fine-
tuning the prompts (less than 1% of all parameters)
on the new attributes, while keeping the other pa-
rameters in the Transformer frozen. Therefore, our
approach not only benefits from parameter-efficient
training, but also avoids model overfitting with lim-
ited training examples. Evaluations on two prod-
uct datasets show the superior performance of our
model over several state-of-the-art methods. The
experimental results also demonstrate the effective-
ness and efficiency of the proposed prompts in the

few-shot scenarios. We summarize the main contri-
butions as follows:

• We explore a different route in this work by
proposing a novel prompt tuning approach
for product attribute value extraction. Our ap-
proach enables fast adaptation of the existing
extraction model to new attributes with just a
few annotations.

• We design two types of prompts in our model
by adding textual prompts to the input se-
quence, and inserting key-value prompts to
the self-attention computation. These two
prompts effectively and efficiently guide the
model fine-tuning in the few-shot setting.

• We conduct comprehensive experiments on
two product benchmarks, demonstrating the
effectiveness of the proposed approach over
several state-of-the-art partial model tuning
and prompt tuning methods.

2 Related Work

2.1 Attribute Value Extraction

Early works in attribute value extraction include
rule-based extraction methods (Vandic et al., 2012;
Gopalakrishnan et al., 2012) and named entity
recognition (NER) based approaches (Putthividhya
and Hu, 2011b; Brooke et al., 2016), which suffer
from limited coverage and closed world assump-
tions. With the advent of deep learning, various
neural network methods (Huang et al., 2015; Zheng
et al., 2018) are proposed, which formulate the
problem as a sequential tagging problem. SUOpen-
Tag (Xu et al., 2019) scales up these models by
jointly encoding the attribute and product context.
AdaTag (Yan et al., 2021) utilizes a mixture-of-
experts (MoE) to parameterize its decoder with
pre-trained attribute embeddings. AVEQA (Wang
et al., 2020) and MAVEQA (Yang et al., 2022)
leverage the recent Transformer (Vaswani et al.,
2017) and BERT (Devlin et al., 2019) models by
reformulating the problem as a question answering
task. Meanwhile, TXtract (Karamanolakis et al.,
2020) brings a taxonomy-aware approach to aid
attribute extraction. OA-Mine (Zhang et al., 2022)
proposes a framework that first generates attribute
value candidates and then groups them into clusters
of attributes in an open-world setting.

Several recent works (Singh et al., 2019; Tan and
Bansal, 2019; Hu et al., 2020) explore the product
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visual features for enhancing the attribute value
extraction. MJAVE (Zhu et al., 2020) introduces a
multimodal model that predicts product attributes
and extract values together from both product title
and image. PAM (Lin et al., 2021) combines prod-
uct descriptions, Optical Character Recognition
(OCR) and visual information from the product,
and fuses the three modalities into a multimodal
Transformer. SMARTAVE (Wang et al., 2022) de-
signs a structured multimodal Transformer to bet-
ter encode the correlation among different prod-
uct modalities. Despite achieving promising re-
sults, most of these methods learn to extract values
for a predefined set of attributes, assuming all at-
tributes are covered in the training examples. How-
ever, with the emerging nature of e-commerce, new
products with their unique set of new attributes are
constantly generated from different retailers and
merchants.

2.2 Parameter Efficient Models

Parameter efficient methods (Guo et al., 2021; He
et al., 2022a; Hu et al., 2022) are widely applied
in training models with limited data. It is also
commonly adopted in domain adaptation scenarios.
Among these methods, partial tuning approaches
(Yosinski et al., 2014; He et al., 2022b) fine-tune
the last few layers of the backbone while freezing
the others. Side-tuning (Zhang et al., 2020a) trains
a “side” network and linear interpolates between
pre-trained features and side-tuned features before
being fed into the head. BitFit (Zaken et al., 2022)
and TinyTL (Cai et al., 2020) fine-tune only the
bias terms of a pre-trained backbone. Adapters
(Houlsby et al., 2019; Pfeiffer et al., 2020, 2021)
insert extra lightweight MLP modules with residual
connection inside Transformer layers and only fine-
tune those added modules.

Prompting (Liu et al., 2021) has been originally
proposed for fast model adaptation in few-shot
or zero-shot settings (Brown et al., 2020), which
prepends text instruction to the input text on down-
stream tasks. Recent prompt tuning works (Lester
et al., 2021; Li and Liang, 2021; He et al., 2022c;
Ma et al., 2022) propose to treat the prompts as
task-specific continuous vectors, and directly learn
them during fine-tuning. Different from full fine-
tuning, they achieve comparable performance but
with much less parameter storage. However, most
of these methods only simply add prompts to the in-
put layer, which greatly limited their performances.

3 MixPAVE

3.1 Preliminary

Attribute Value Extraction Given product con-
text and the attribute, the goal of attribute value
extraction is to identify the value from the context.
The product context is a text sequence describing
the product, e.g., a concatenation of product title
and description, denoted as C = (c1, c2, . . . , cn).
The attribute is denoted as A = (a1, . . . , am), e.g.,
“Operating System” in Figure 1. The extraction
model seeks the best text spans from the context
that correspond to the attribute value.

There are various attribute extraction models
tackling this problem. Several recent Transformer-
based approaches (Wang et al., 2020; Yang et al.,
2022) achieve state-of-the-art performance in ex-
tracting attribute values from product text. They
formulate the problem as a question answering task
by treating each attribute as a question, and iden-
tifying the answer (attribute value) from the prod-
uct context. Specifically, as shown in Figure 2
(the frozen part), a Transformer encoder is used to
jointly encode the attribute A and the product con-
text C. Then an extraction head, e.g., sequential
tagging, is applied to the output embeddings of the
encoder to find the target spans. In this work, we
use (Yang et al., 2022) as our backbone model with
a T5 (Raffel et al., 2020) encoder.

Prompt Tuning Prompt tuning methods (Lester
et al., 2021; Li and Liang, 2021) are proposed
as a group of parameter efficient models for fast
adaptation of large-scale pre-trained language mod-
els to downstream tasks. They introduce a set
of task-specific prompts or prompt tokens, and
prepend them to the input sequence. During fine-
tuning, these prompts are learned on the data from
the downstream task while freezing the backbone.
Prompt tuning achieves promising results com-
pared to other parameter efficient methods in few-
shot settings.

3.2 Model Overview

In this section, we first define the problem of few-
shot product attribute value extraction, and then
provide an overview of the MixPAVE model. As-
suming we have a backbone extraction model, B,
which is well-trained on a large set of attributes
and values. Given a new attribute with a few anno-
tations (usually less than 100 examples), the goal
is to learn a model B̂ that can achieve good perfor-
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Figure 2: Overview of MixPAVE model on few-shot product attribute value extraction. We introduce two sets of
trainable prompts during model fine-tuning. (1) Textual prompts PT are prepended to the input sequence of each
Transformer layer. (2) Key-value prompts PK and PV are added to the key and value matrices in the multi-head
attention computation. It can be seen that most of the model parameters are frozen.

mance on the new attribute, while keeping same
performance on existing attributes (i.e., not overfit
to the new attribute). To solve this problem, we
propose a new prompt tuning approach.

The overall model architecture of MixPAVE is
shown in Figure 2. Essentially, our model only
allows the extraction head (very light-weight) in
the backbone to be trained during fine-tuning while
freezing all other parameters. To maximize the
model performance, we introduce two sets of train-
able prompts and insert them into the backbone.
(1) Textual prompts, PT , are inserted to the input
sequence of each encoder layer, which learns the
extraction task for the new attribute. (2) Key-value
prompts, PK and PV , are concatenated with the
key and value parameter matrices in the attention
module respectively, which learn the new attention
pattern from the new data.

3.3 Textual Prompt

Textual prompts are a set of d-dimensional embed-
ding vectors that have the same dimensionality with
the input tokens. They are prepended to the input
sequence of each Transformer encoder layer and
interact with all the input tokens. Textual prompts
play a similar role to those prompt tokens in tradi-
tional prompt tuning methods (Lester et al., 2021;
Li and Liang, 2021), which learn task-specific em-
beddings to guide the model performing extraction
task on the new attribute.

Formally, these textual prompts are defined as
PT = {P 1

T , P
2
T , . . . , P

M
T }, where P i

T denotes the

learnable textual prompts in the ith encoder layer,
and M is the total number of layers. Then the
encoder layers are represented as:

Z1 = L1(P
1
T , A, C)

Zi = Li(P
i
T , Z

i−1) i = 2, 3, . . . ,M
(1)

where Zi represents the contextual embeddings of
the attribute and product context computed by the
ith encoder layer. The different colors indicate
trainable and frozen parameters, respectively. For
the embeddings of the attribute and context tokens,
A and C, they are initialized with token embed-
dings from the backbone.

3.4 Key-value Prompt

Textual prompts effectively learn the knowledge
about the extraction task on the new attribute. How-
ever, they are not able to guide the information
interaction within each encoder layer. When fine-
tuning on new attributes with new data, the word
distribution could be very different from those ex-
amples for training the backbone model. For in-
stance, the fine-tuning data contains new values
corresponding to the new attribute, with different
sentence structures and presentations. Therefore,
we need to increase the model capability to cap-
ture new information in the fine-tuning data, and
conduct better attention among the input tokens for
learning the new patterns.

To this end, we propose a novel set of key-value
prompts, which are inserted to the attention block
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Splits
AE-110K MAVE

Lenses Color Wheel Material Product Type REST Device Type Boot Style Resolution Compatibility REST

Train 10 10 10 109K 100 100 100 100 2.6M
Test 165 118 368 - 20,273 16,459 14,437 6,728 -

Table 1: Statistics of the training and test examples within different few-shot attributes.

inside each encoder layer. Specifically, these key-
value prompts, PK and PV , are small matrices
(with a few columns) that have the same number of
rows as the original key and value matrices in the
attention block. They are then concatenated respec-
tively to perform the new attention computations:

L(·) = FFN (MHA (·))

MHA(·) = concat(softmax(
QjK

′
j
T

√
d

)V
′
j )

(2)

where FFN is the feed-forward network and MHA
is the multi-head attention inside the encoder layer.
j represents the jth head. K

′
and V

′
are the new

key and value embedding matrices defined as:

K
′
= concat(K, PK)

V
′
= concat(V , PV )

(3)

where K and V represent the original key and value
matrices in the backbone. In this way, the key-value
prompts can help guide the model adaptation to the
new data.

3.5 Extraction Head

The extraction layer is essentially a sequen-
tial tagging (Xu et al., 2019) module, which
extracts the final text span by assigning the
{Begin, Inside,Outside,End} tags to each tokens
based on their embeddings obtained from the en-
coder, followed by a CRF layer (Yan et al., 2021):

T = CRF(softmax(WTZ
M )) (4)

where ZM is the output embedding from the top
layer of the encoder. WT is the parameter matrix
that projects the embeddings to the output logits,
which is trainable in our model.

3.6 Discussion

MixPAVE is a parameter efficient approach for few-
shot attribute value extraction. We only need to
store the two sets of learned prompts with the pa-
rameters in classification head, and re-use the copy
of the pre-trained Transformer backbone (Yang

et al., 2022), which significantly reduces the stor-
age cost and improves the training speed of fine-
tuning. In our implementation, the backbone T5
encoder has 110M parameters and d = 768. For
24 textual prompts, 12 key prompts and 12 value
prompts, they need additional 12 x (24 + 12 + 12)
x 768 = 0.442M parameters. The classification ma-
trix has 768 x 4 = 0.003M parameters. Therefore,
the total number of trainable parameters in Mix-
PAVE is 0.445M, amounting to only 0.4% of all
the parameters.

4 Experiments

4.1 Datasets

We evaluate our model on two product benchmarks,
AE-110K (Xu et al., 2019) and MAVE (Yang et al.,
2022).

AE-110K1 is collected from AliExpress Sports &
Entertainment category, which contains over 110K
data examples, i.e., product triples of {context, at-
tribute, value}, with more than 2.7K unique at-
tributes and 10K unique values. We select three
attributes with relatively low occurrences, ‘Lenses
Color’, ‘Wheel Material’ and ‘Product Type’, and
treat them as new attributes in our experiments. 10
examples from each attribute are randomly selected
as few-shot training examples.

MAVE2 is a large and diverse dataset for product
attribute extraction study, which contains 3 mil-
lion attribute value annotations across 1257 fine-
grained categories created from 2.2 million cleaned
Amazon product profiles (Ni et al., 2019). In our
experiments, we select four attributes as few-shot
attributes, including ‘Device Type’, ‘Boot Style’,
‘Resolution’, and ‘Compatibility’. We randomly se-
lect 100 examples in each attribute for fine-tuning.
All other attributes are used in training the back-
bone. The details on the datasets are provided in
Table 1.

1https://raw.githubusercontent.com/
lanmanok/ACL19_Scaling_Up_Open_Tagging/
master/publish_data.txt

2https://github.com/
google-research-datasets/MAVE
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Models Paras
AE-110K MAVE

Lenses Color Wheel Material Product Type Device Type Boot Style Resolution Compatibility

MAVEQA-FT (Yang et al., 2022) 100% 79.58 ± 0.39 85.59 ± 0.45 92.41 ± 0.36 91.06 ± 0.54 92.23 ± 0.51 90.88 ± 0.47 95.19 ± 0.42

Partial-1 (Yosinski et al., 2014) 8.21% 72.36 ± 0.44 79.93 ± 0.47 85.38 ± 0.62 83.69 ± 0.78 84.31 ± 0.65 84.15 ± 0.73 85.57 ± 0.59
Adapter (Pfeiffer et al., 2020) 2.53% 74.61 ± 0.55 81.84 ± 0.39 86.78 ± 0.56 85.51 ± 0.55 86.12 ± 0.47 83.22 ± 0.57 87.56 ± 0.48

BitFit (Zaken et al., 2022) 2.04% 74.95 ± 0.41 82.37 ± 0.38 87.44 ± 0.48 87.34 ± 0.58 87.67 ± 0.71 85.56 ± 0.43 88.30 ± 0.54

Prompt-Tuning (Lester et al., 2021) 0.40% 81.32 ± 0.46 84.69 ± 0.35 90.67 ± 0.40 91.43 ± 0.46 90.36 ± 0.35 92.37 ± 0.47 95.25 ± 0.41
Prefix-Tuning (Li and Liang, 2021) 0.40% 81.12 ± 0.42 84.95 ± 0.44 90.30 ± 0.45 91.79 ± 0.42 89.56 ± 0.51 92.08 ± 0.43 94.86 ± 0.45

XPrompt (Ma et al., 2022) 0.33% 82.14 ± 0.32 85.72 ± 0.48 90.50 ± 0.33 91.34 ± 0.48 90.67 ± 0.52 92.31 ± 0.46 95.10 ± 0.44

MixPAVE 0.40% 82.58 ± 0.53 85.36 ± 0.42 91.63 ± 0.38 92.51 ± 0.44 91.75 ± 0.53 93.47 ± 0.42 96.86 ± 0.39

Table 2: Performance comparison results with standard deviation on all few-shot attributes. MAVEQA-FT denotes
full fine-tune of the model. “Paras” represents the number of trainable parameters in each method. Prompt length is
set to 24 for both textual and key-value prompts.

4.2 Baselines

Our model is compared with seven state-of-the-
art baselines, including full fine-tune over the
backbone MAVEQA (Yang et al., 2022), three
parameter-efficient partial tuning methods, Partial-
1 (Yosinski et al., 2014), BitFit (Zaken et al.,
2022) and Adapter (Pfeiffer et al., 2020), and three
prompt tuning methods, Prompt-Tuning (Lester
et al., 2021), Prefix-Tuning (Li and Liang, 2021)
and XPrompt (Ma et al., 2022). For Partial-1,
we only fine-tune the top layer of the backbone.
For Prompt-Tuning and Prefix-Tuning, we use 48
prompt tokens to ensure the same number of tun-
able parameters.

4.3 Settings

MixPAVE is implemented using PyTorch, and is
trained on 64 NVIDIA Tesla V100 GPUs. Dur-
ing training, we use the gradient descent algorithm
with Adam (Kingma and Ba, 2015) optimizer. The
backbone uses a T5-base encoder with 12 layers
and 12 heads. The embedding size is 768. The max-
imal input sequence lengths are set to 128 and 1024
for AE-110K and MAVE dataset respectively, since
the product context in MAVE has large length. The
lengths of the textual, key and value prompts are
24, 12 and 12 respectively by default. We fine-
tune 1k steps, with constant learning rate 1e−2

and batch size 128. Following previous works, we
use F1 score as evaluation metrics and use Exact
Match (Rajpurkar et al., 2016) criteria to compute
the scores. Each experiment is repeated 5 times
and average scores are reported.

5 Results

5.1 Main Results

We compare our MixPAVE with several state-of-
the-art methods on the two product benchmarks.

Figure 3: Ablation study on the impact of different
trainable components on both datasets.

The performance comparison results are reported
in Table 2. There are several key observations from
these results. First, MixPAVE is able to catch
up with the full fine-tuned backbone model (i.e.,
MAVEQA-FT) and even achieves better perfor-
mances on certain attributes, e.g., Lenses Color and
Device Type. This observation demonstrates the
effectiveness of our approach for few-shot attribute
value extraction. On the other hand, our model only
trains 0.4% parameters in the backbone, which is
much more parameter efficient than the full fine-
tuned model. Second, it is not surprising to see
that the prompt tuning based approaches generally
outperform the other parameter efficient methods,
such as partial fine-tuning (Partial-1) and bias fine-
tuning (BitFit), indicating the superior adaptability
of prompt tuning methods on large scale language
models. Again, the number of tunable parameters
in prompt tuning methods is also smaller compared
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Length Device Type Boot Style Resolution Compatibility

4 80.31 94.27 93.15 96.25
8 86.84 93.16 93.24 95.89
12 90.63 92.29 93.12 96.34
24 92.51 91.75 93.47 96.86
48 93.73 92.20 93.22 96.98
96 92.86 92.86 93.41 97.14

Table 3: Performance comparison with different prompt
lengths on MAVE dataset.

Position Device Type Boot Style Resolution Compatibility

All 92.51 91.75 93.47 96.86

Input 78.56 85.48 90.87 92.61
Bottom 6 88.35 88.64 92.70 94.17
Output 75.82 84.37 87.74 88.16
Top 6 82.55 88.49 91.52 92.63

Alternative 90.31 90.14 92.88 94.93

Table 4: Performance comparison with different prompt
positions on MAVE dataset.

to the other methods. Third, our approach achieves
the best performance among those prompt tuning
methods in most cases, demonstrating the effective
design of the mixed prompts. For example, the F1
score of MixPAVE increases over 1.76% and 1.61%
compared with XPrompt and Prompt-Tuning, re-
spectively, on the ‘Product Type’ attribute. These
existing prompt tuning methods only focus on de-
sign input prompt tokens, which fail to capture the
accurate interactions between tokens in the new
data. In contrast, the key-value prompts in Mix-
PAVE effectively bridge this gap.

6 Analysis and Discussion

To better understand the effectiveness of MixPAVE,
we further conduct a series of ablation studies.

6.1 Impact of Different Trainable Modules
To understand the impact of different trainable com-
ponents in our model, i.e., textual prompts, key-
value prompts and extraction head, we conduct
an ablation study by removing each component
from MixPAVE individually. Concretely, remov-
ing textual prompts or key-value prompts means
not adding these prompts to the model. Removing
the extraction head essentially means freezing its
parameters during fine-tuning. The results of F1
scores on all attributes are illustrated in Figure 3.
It can be seen that the model performances drop
when removing any of the trainable modules, which
is consistent with our expectation. Moreover, we
observe that both textual prompts and key-value
prompts are crucial in few-shot extraction. For

Figure 4: Performance comparison of four models with
different numbers of fine-tuning examples. We select
‘Lenses Color’ from AE-110K and ‘Device Type’ from
MAVE for illustration.

example, the F1 score decreases 1.8% and 2.1%
when removing the key-value prompts and textual
prompts respectively on ‘Boot Style’, validating the
importance of these two prompts in the few-shot
attribute value extraction task.

6.2 Impact of Prompt Length

Prompt length is the only hyper-parameter needed
to tune in MixPAVE. To further analyze the impact
of different prompt lengths on different attributes,
we conduct another ablation study on the prompt
length by modifying the prompt length from a set
of values {4, 8, 12, 24, 48, 96}. Note that we simul-
taneously adjust the lengths of both textual prompts
and key-value prompts. More discussion on how
to balance these two prompts will be provided in
later experiments. The model performance results
on different prompt lengths are reported in Table 3.
It is clear that there is no universal optimal prompt
length that can achieve the best performance across
all attributes. For example, on ‘Boot Style’, Mix-
PAVE with prompt length 4 obtains the highest
F1 score, while our model with prompt length 96
gains the best performance on ‘Compatibility’. Our
hypothesis is that different attributes contain differ-
ent data distributions, where attribute value extrac-
tion is more difficult on certain attributes than oth-
ers. These “hard” attributes usually require longer
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Figure 5: Performance comparison of different mixes
of the two prompts on MAVE dataset.

prompts in order to better capture the patterns and
knowledge from the data, with the cost of more
trainable parameters.

6.3 Impact of Different Prompt Positions

In this ablation study, we evaluate the impact of dif-
ferent prompt positions to the model performance.
Concretely, we train five additional models with dif-
ferent prompt locations, including only input layer,
output layer, top 6 layers, bottom 6 layers and al-
ternative layers (i.e., layers 1, 3, 5, 7, 9 and 11).
The performance comparison results on MAVE are
reported in Table 4. It is not surprising to see that
inserting prompts to all encoder layers achieves the
best performance. We can also observe that only
putting the prompts to the input or output layer
results in large performance drops, which is consis-
tent with the observations in other prompt tuning
works (Jia et al., 2022; Ma et al., 2022).

6.4 Impact of Fine-tuning Data Size

To further understand the model behaviors on few-
shot extraction, we conduct another set of ex-
periments on two attributes by varying the num-
ber of fine-tuning examples. Specifically, for
‘Lenses Color’, we evaluate our model performance
with {0, 1, 5, 10, 15, 20} annotations. For ‘Device
Type’, we vary the number of fine-tuning examples
from {0, 1, 5, 10, 50, 100}. We show the few-shot
extraction results of four different models in Fig-
ure 4. There are two main observations. First, we
see that our approach consistently outperforms the
full fine-tuned backbone under different few-shot
settings on both attributes, which further validates
the effectiveness of our model. Second, when there
are no annotations (equivalent to zero-shot extrac-
tion), the backbone model does not perform well.
However, the performances of all compared mod-

Model Device Type Boot Style Resolution Compatibility

Encoder-2L 91.45 92.12 92.96 96.49
Encoder-6L 91.82 92.13 93.35 97.11

Encoder-12L 92.51 91.75 93.47 96.86
Encoder-24L 92.87 89.78 92.85 96.41

Table 5: MixPAVE performances with different back-
bones on MAVE dataset.

els dramatically improve with a few fine-tuning
examples, and then saturate at a certain point.

6.5 Effect of Different Mixing Strategies

There are two sets of prompts in MixPAVE, which
contribute differently to improve the model per-
formance. To further investigate their correlation
and effectiveness, we conduct an experiment by
fixing the total number of trainable parameters,
and adjusting the ratio of textual prompts from
{0, 0.25, 0.5, 0.75, 1}. Note that 0.5 is our default
setting (24 textual prompts with 12 key prompts
and 12 value prompts). The model performances at
different ratios on MAVE are illustrated in Figure 5.
We observe slightly different patterns on different
attributes. For example, on ‘Resolution’, textual
prompts with 0.25 ratio achieves the best F1 score,
while textual prompts with 0.75 ratio gives the best
performance on ‘Boot Style’. Nevertheless, Mix-
PAVE with ratio 0 (no textual prompts) or 1 (no
key-value prompts) underperforms other prompt
combinations, indicating the effectiveness of the
prompt mixing strategy.

6.6 Impact of Different Backbone Scales

We conduct a performance-scale study on different
model configurations of the backbone. In particular,
our base model uses a 12-layer encoder. We evalu-
ate the model performance with a different number
of encoder layers in {2L, 6L, 12L, 24L}. The F1
scores of different models on MAVE are reported
in Table 5. It is interesting to see that Encoder-
24L does not always yield the best performance on
all attributes. This observation is consistent with
the experimental results in Table 3. The reason is
that large models or models with large trainable
parameters might overfit to certain attributes, espe-
cially in few-shot settings, resulting in worse model
performances.

7 Conclusions

Product attribute value extraction on new attributes
is an important problem in many real-world appli-
cations. In this work, we propose a novel prompt
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tuning approach with Mixed Prompts for few-shot
Attribute Value Extraction (MixPAVE). In partic-
ular, our model introduces only a small amount
of trainable parameters, consisting of two sets of
learnable prompts, while keeping the backbone ex-
traction model frozen. Our MixPAVE not only
benefits from parameter-efficient training, but also
avoids model overfitting on limited training exam-
ples. Experimental results on AE-110k and MAVE
demonstrate the effectiveness and efficiency of the
proposed approach.

Limitations

There are two limitations of the current MixPAVE
model. First, although MixPrompt can achieve
comparable extraction performance with full fine-
tuning, how to identify the optimal combination of
the two prompts is challenging and remains unan-
swered. We conduct grid search in our experiments
to empirically find the best prompts length. In fu-
ture, we plan to investigate a systematic solution
for identifying the optimal or a suboptimal combi-
nation. Second, our model learns attribute-specific
prompts for a new attribute. We plan to explore a
parametric network that could guide the learning
of attribute-agnostic prompts.
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