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Abstract
Semantic tasks are rarely formally defined, and
the exact relationship between them is an open
question. We introduce a taxonomy that elu-
cidates the connection between several prob-
lems in lexical semantics, including monolin-
gual and cross-lingual variants. Our theoretical
framework is based on the hypothesis of the
equivalence of concept and meaning distinc-
tions. Using algorithmic problem reductions,
we demonstrate that all problems in the tax-
onomy can be reduced to word sense disam-
biguation (WSD), and that WSD itself can be
reduced to some problems, making them theo-
retically equivalent. In addition, we carry out
experiments that strongly support the sound-
ness of the concept-meaning hypothesis, and
the correctness of our reductions.

1 Introduction

This paper proposes a taxonomy of several prob-
lems in lexical semantics, consisting of a clear def-
inition of each task, and a theory-driven analysis
establishing the relationships between them (Fig-
ure 1). The taxonomy includes word sense disam-
biguation (WSD), word-in-context (WiC), lexical
substitution (LexSub), and word synonymy (Syn).
We consider their monolingual, cross-lingual, and
multilingual variants. With the exception of WSD,
they are all defined as binary decision problems.

Our theoretical problem formulations corre-
spond to well-studied semantic tasks. In practice,
these tasks are rarely precisely defined, and instead
depend on annotated datasets. For example, the
definitions of lexical substitution differ between
papers, and involve imprecise terms, such as “the
overall meaning of the context” or “suitable substi-
tute.” The exact relationships between these tasks
have not been rigorously demonstrated. Altogether,
the recent literature suggests that a more detailed
taxonomy is very much needed.

We start by formally defining the problems in
terms of concepts and contexts, and proceed to de-

termine their relative hardness by specifying reduc-
tion algorithms which produce a solution for one
problem by applying an algorithm for another. In
particular, we demonstrate that all problems in the
taxonomy can be reduced to WSD, which confirms
the principal role of this problem in lexical seman-
tics. Furthermore, we show by mutual reductions
that WSD and multilingual variants of WiC and
LexSub are theoretically equivalent. Finally, we
shed light on how they relate to lexical translation
and wordnets.

The soundness of the problems in the taxon-
omy hinges on the consistency of judgments of
sameness of word meaning. Hauer and Kondrak
(2022) demonstrate the theoretical equivalence of
the monolingual WiC and WSD via mutual reduc-
tion. We posit the following generalization of their
sense-meaning hypothesis to multilingual concepts:
different word instances have the same meaning
if and only if they express the same concept. This
empirically falsifiable proposition, which we refer
to as the concept-meaning hypothesis, allows us
to incorporate multilingual tasks, including lexi-
cal synonymy and substitution, into our theoretical
framework.

In addition to showing that our theoretical propo-
sitions follow directly from our definitions and as-
sumptions, we perform a series of experiments for
the purpose of testing their empirical applicability
and soundness. In particular, we test three prob-
lem reductions on standard benchmark datasets
using independently developed systems based on
pre-trained language models. Manual error anal-
ysis reveals no counter-examples to our concept-
meaning hypothesis.

Our main contribution is a novel taxonomy of
formally-defined problems, which establishes the
reducibility or equivalence relations between the
principal tasks in lexical semantics. In addition, we
carry out a series of experiments that support the
correctness of our theoretical findings.
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Figure 1: Taxonomy of problems in lexical semantics. Arrows indicate reducibility. The six wordnet-complete
problems within the dotted area are equivalent, and all other problems in the taxonomy are reducible to them.

2 Theoretical Formalization

In this section, we formally define the problems in
our proposed taxonomy, and discuss the relation-
ship between these theoretical problems and the
computational tasks addressed in prior work.

2.1 Words
All semantic problems in Figure 1 take at least one
word as a parameter. In our definitions, a word is
not necessarily an orthographic word, but rather
a triple consisting of a lemma, a part of speech,
and a language. The problems are divided into
three categories based solely on the language of the
words (rather than contexts): monolingual (same
language), cross-lingual (different languages), and
multilingual (same or different languages). Thus, a
multilingual problem can be seen as the union of
the corresponding monolingual and cross-lingual
problems. While this categorization theoretically
admits “monolingual” problem instances consist-
ing of a word in one language and a context in a
different language, such instances are rare in prac-
tice.

2.2 Contexts and Concepts
Alternatively, we can categorize semantic problems
according to the number of contexts which must
be considered in each instance: zero, one, or two,
respectively, in the leftmost three columns of Fig-
ure 1. Contexts are denoted by the variable names
starting with C. We broadly define a context as a
discourse (not necessarily a sentence) with a focus,
which is a word or sequence of words that express a
specific concept. Contexts that consist of the same
discourse but differ in focus are considered distinct.

The expression “a word expresses a concept given a
context” signifies that the word can be used to refer
to the concept that corresponds to the focus of that
context. Note that the word itself is not required to
occur in the context, or even match the language of
the context.

For example, consider the context “bats live in
caves” which disambiguates the word bat to its
animal sense. The underlined word represents the
focus of the context, which can be expressed by
the words bat or its synonym chiropteran. The
languages of the word and the context need not
be the same. For example, the Spanish context
“un murciélago entro en mi casa” disambiguates
the English word bat as an animal rather than an
instrument.

A lexical concept, or simply concept, refers to
a discrete word meaning. A concept gloss, such
as “flying nocturnal rodent,” is a special type of a
context, in which the entire definition is the focus,
and which uniquely determines the concept. We
assume that the concept gloss Cs which defines the
meaning of the concept s can be expressed in any
language.

We assume the availability of complete sets of
words (i.e., lexicons) and lexical concepts. The
methods for creating such resources are beyond the
scope of this paper.

2.3 Monolexical Problems

We first define three problems that take a single
word argument. We refer to these theoretical prob-
lems by the same acronyms as their corresponding
computational tasks: WSD, TSV, and WiC.

Word sense disambiguation (WSD) is the task
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of classifying a word in context according to its
sense, given an inventory of possible senses for
each word. For each word, there is a one-to-one
mapping between its senses and the concepts that
it can express. We can therefore define the WSD
problem more generally, to return a concept rather
than a sense. This avoids the need for a predefined
sense inventory for each word.

WSD(C,w) := “the concept which is expressed
by the word w given the context C”

Note that this formulation does not require the
word to occur in the context. By convention, the re-
turn value of the WSD predicate is undefined if the
word is not meaningful given the context; for exam-
ple, the English word metre does not express any
concept given the Italian context “la metro di Roma
è efficiente.” In contrast, any binary predicate is
assumed to return FALSE in such cases.

Target sense verification (Breit et al., 2021, TSV)
is the binary classification task of deciding whether
a given word in a given context expresses a given
sense. As with WSD, we define the TSV problem
on concepts rather than senses. We assume that the
concept s is represented by its gloss Cs.

TSV(C,w, s) := “the word w expresses the con-
cept s given the context C”

The TSV problem can be viewed as a binary ana-
logue of the WSD problem, such that the following
equivalence holds:

TSV(C,w, s) ⇔ WSD(C,w) = s

The word-in-context task (WiC) is a binary clas-
sification task proposed by Pilehvar and Camacho-
Collados (2019): given a pair of sentences, decide
whether or not a word has the same meaning in
both sentences. We define the corresponding WiC
problem using concepts, on the basis of the concept-
meaning hypothesis.

WiC(Cx, Cy, w) := “the word w expresses the
same concept given the contexts Cx and Cy”

Hauer and Kondrak (2022) demonstrate the
equivalence of WiC, TSV, and WSD by pairwise
reductions, which are denoted by purple arrows
in Figure 1. In particular, the following formula
specifies the reduction of WiC to WSD:

WiC(Cx, Cy, w) ⇔ WSD(Cx, w) = WSD(Cy, w)

2.4 Word-in-Context Problems
We now introduce a set of binary predicates which
include WiC and its variants. We start with the most
general problem of the set, MultiWiC, and then de-
fine MonoWiC, and CL-WiC as its special cases,

in which the two words wx and wy are constrained
to be either in the same or different languages, re-
spectively.

MultiWiC(Cx, Cy, wx, wy) := “the words wx

and wy express the same concept given the con-
texts Cx and Cy, respectively”

The WiC problem defined in Section 2.3 is a
special case of MonoWiC, in which wx = wy.

MonoWiC(Cx, Cy, wx, wy):= “the words wx

and wy from the same language express the same
concept given the contexts Cx and Cy, respec-
tively”

Martelli et al. (2021) extend the WiC task to
include cross-lingual instances, which consist of
a pair of contexts in different languages, in which
the two focus words have the same meaning.1 Our
definition of the corresponding theoretical problem
is similar:

CL-WiC(Cx, Cy, wx, wy): “the words wx and
wy from different languages express the same con-
cept given the contexts Cx and Cy, respectively”

Clearly, any instance of MultiWiC is either an
instance of MonoWiC or CL-WiC.

2.5 Lexical Substitution Problems

The next set of problems each involve a pair of
words in a single context. These problems for-
malize the semantic task of lexical substitution
(McCarthy and Navigli, 2007), and its different
variants and settings, such as cross-lingual substi-
tution (Mihalcea et al., 2010). Our definitions are
more precise than conventional ones, as we define
substitutes on the basis of identity of expressed
concepts. By virtue of our concept-meaning hy-
pothesis, the definitions formalize the notions of
“meaning-preserving substitutions” and “correct
translations” present in previous work. However,
they are restricted to lexical substitutions, exclud-
ing compositional compounds and phrases.

MonoLexSub(C,wx, wy) := “the words wx

and wy from the same language express the same
concept given the context C”

In other words, wx and wy are mutually sub-
stitutable given the context C. For example,
MonoLexSub returns TRUE given C = “the gist of
the prosecutor’s argument”, wx = core, and wy =
heart.

1An instance was annotated as positive “if and only if
the two target word occurrences were used with exactly the
same meaning or, in other words, if, using a dictionary, the
definition of the two target words was the same” (Martelli
et al., 2021).
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The CL-LexSub problem is a cross-lingual coun-
terpart of MonoLexSub. The definition of CL-
LexSub is the same as that of MonoLexSub, except
that the two words are required to be in different
languages. For example, MonoLexSub(“she batted
the ball”, bat, murciélago) returns FALSE.

CL-LexSub(C,wx, wy) := “the words wx and
wy from different languages express the same con-
cept given the context C”

Finally, we define a multilingual lexical substitu-
tion problem which generalizes MonoLexSub and
CL-LexSub by removing their respective language
constraints:

MultiLexSub(C,wx, wy) := “the words wx

and wy from any language(s) express the same
concept given the context C”

While the goal of many conventional lexical sub-
stitution datasets is to produce sets of substitutes,
these generative problems are reducible to the cor-
responding binary classification problems by iter-
ating over the set of substitution candidates. More
formally, the problem of generating lexical substi-
tutes reduces to MultiLexSub by returning the set:
{w | MultiLexSub(C,wx, w)}.

2.6 Word Synonymy Problems

Our final set of semantic problems are defined on a
pair of word lemmas, without any context parame-
ters.

The MonoSyn predicate formalizes the relation
of word synonymy in the monolingual setting.
Given two words in the same language, it returns
TRUE iff they are mutually substitutable in some
context.

MonoSyn(wx, wy) := “the words wx and wy

from the same language express the same concept
in some context”

For example, MonoSyn(core, heart) is TRUE

because there exist a contexts in which the two
words express the same concept (c.f., Section 2.5).
The MonoSyn problem formalizes the linguistic
Substitution Test for synonymy: wx and wy are
synonyms if the meaning of a sentence that contains
wx does not change when wy is substituted for wx

(Murphy and Koskela, 2010).
We define the cross-lingual synonymy problem

CL-Syn in a similar manner. The only difference
with MonoSyn is that the two words are required
to be from different languages.

CL-Syn(wx, wy) := “the words wx and wy

from different languages express the same concept

in some context”
The CL-Syn predicate corresponds to the rela-

tion of translational equivalence between words.
Two words in different languages are translationally
equivalent if there exists a context in which they are
literal translations. For example, CL-Syn(heart/EN,
cœur/FR) is TRUE because the two words are mu-
tual translations given the context “the heart of the
matter.”

As with the other problem families, we unify
MonoSyn and CL-Syn into a single predicate Mul-
tiSyn, which places no constraints on the language
of the given words.

MultiSyn(wx, wy) := “the words wx and wy

from any language(s) express the same concept in
some context”

MultiSyn is not only a generalization but also
the union of the relations of synonymy and trans-
lational equivalence, which are represented by
MonoLexSub and CL-LexSub, as postulated by
Hauer and Kondrak (2020).

3 Problem Reductions

Given an algorithm for a problem Q, a P-to-Q re-
duction solves an instance of a problem P by com-
bining the solutions of one or more instances of Q.
The reducibility of P to Q is denoted P ≤ Q. Mu-
tual reductions of two problems to one another, i.e.
P ≤ Q and Q ≤ P, demonstrate their equivalence.

In this section, we present several problem re-
ductions, which constitute the main contribution of
this paper. The reductions are shown in Figure 1 by
the directed arrows from P to Q. The black arrows
denote the special cases, which immediately reduce
to the more general problems. Taken together, the
reductions establish the equivalence of six prob-
lems: WSD, TSV, WiC, MonoWiC, MultiWiC,
and MultiLexSub. A method which solves any of
these problems can be used to construct methods
which solve the other problems by applying a se-
quence of reductions. As well, a method for one of
those six problems can be used to solve any of the
other problems in Figure 1, again via reductions.

3.1 *Syn ≤ *LexSub ≤ *WiC

We first present a set of six reductions, which are
denoted by blue arrows in Figure 1. Each of the cor-
responding nine problems involves comparing the
meanings of a pair of words, given some contexts.

The three lexical substitution problems defined
in Section 2.5 can be viewed as special cases of the
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corresponding word-in-context problems, in which
both contexts are identical. Succinctly:

*LexSub(C,wx, wy) ⇔ *WiC(C,C,wx, wy)

The asterisk in these and the following reductions
can be replaced on both sides by “Mono”, “CL-”,
or “Multi”. To reiterate, a cross-lingual problem
explicitly assumes that the input words are in dif-
ferent languages, while a multilingual problem can
accept inputs in the same or different languages.

The three word synonymy problems defined in
Section 2.6 are reducible to the corresponding lexi-
cal substitution problems. In particular, to reduce
MultiSyn to MultiLexSub, we search for a concept
gloss Cs in which both words express the same
concept. Succinctly:

*Syn(wx, wy) ⇔ ∃s : *LexSub(Cs, wx, wy)

The correctness of these six reductions follows
from the fact that the (infinite) set of all contexts is
partitioned into equivalence classes, each of which
corresponds to a single concept.

3.2 Reductions to WSD
The reductions in the preceding section demon-
strates that all theoretical problems defined in Sec-
tion 2 can be reduced to MultiWiC. We next demon-
strate that all those problems, including MultiWiC
itself, can also be reduced to WSD. Thus, an al-
gorithm that solves WSD would be sufficient to
solve all other problems. For clarity, the nine reduc-
tions in this section are not shown explicitly in Fig-
ure 1, with the exception of the crucial MultiWiC-
to-WSD reduction, denoted by a red arrow.

Given a method for solving WSD, we can solve
any *WiC instance by checking whether the con-
cepts expressed by the two words in the corre-
sponding contexts are the same. This set of reduc-
tions generalize the WiC-to-WSD reduction (Sec-
tion 2.3) to MonoWiC, CL-WiC, and MultiWiC:

*WiC(Cx, Cy, wx, wy) ⇔ WSD(Cx, wx) = WSD(Cy, wy)

Similarly, to solve any *LexSub instance, it is
sufficient to check the identity of the concepts ex-
pressed by the two words in the given context:

*LexSub(C,wx, wy) ⇔ WSD(C,wx) = WSD(C,wy)

Finally, the word synonymy problems can be
solved by searching for a concept which can be
expressed by both words.

*Syn(wx, wy) ⇔ ∃s : WSD(Cs, wx) = WSD(Cs, wy)

The correctness of the reductions in this section
follows directly from the concept-meaning hypoth-
esis which underlies our theory.

3.3 MultiWiC ≤ MultiLexSub

We close this section by demonstrating that Multi-
WiC is reducible to MultiLexSub, which is denoted
by a red arrow in Figure 1. This reduction, along
with the reverse reduction presented in Section 3.1,
establishes the equivalence between the two prob-
lems. Formally:

MultiWiC(Cx, Cy, wx, wy) ⇔
MultiLexSub(Cx, wx, wy) ∧ MultiLexSub(Cy, wy, wx) ∧
∀w : MultiLexSub(Cx, wx, w) ⇔ MultiLexSub(Cy, wy, w)

The first two terms on the right-hand side of the
reduction formula test whether the two words are
mutually substitutable in their respective contexts.
The universal quantifier ensures that every substi-
tute in one of the contexts is also an appropriate
substitute in the other context, and vice versa.

The correctness of this reduction hinges on the
assumption that there are no universal colexifica-
tions (Bao et al., 2021), which states that for any
pair of concepts, there exists some language which
lexifies but does not colexify them. In other words,
there exists a language in which no word can ex-
press both concepts. Therefore, if the sets of con-
textual synonyms of wx in Cx and wy in Cy are
identical, the concept expressed by the two word
tokens must be the same.

In theory, the universal quantifier in the reduc-
tion formula is defined over all words in all lan-
guages. In practice, only the synonyms and transla-
tions of the two words need to be checked, and a
smaller set of diverse languages may be sufficient
to obtain good accuracy.

4 Relationship to Synsets

A wordnet is a theoretical construct which is com-
posed of synonym sets, or synsets, such that each
synset corresponds to a unique concept, and each
sense of a given word corresponds to a different
synset. Actual wordnets, such as Princeton Word-
Net (Miller, 1995), are considered to be imperfect
implementations of the theoretical construct.

We define the following monolexical problem,
which decides whether a given word can express a
given concept:

Sense(w, s) := “the word w expresses the con-
cept s in some context”

An algorithm for the Sense problem could be
used to decide whether a given word belongs to the
synset that corresponds to a given concept.
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4.1 *Syn ≤ Sense ≤ WSD
The word synonymy problems defined in Sec-
tion 2.6 are reducible to the Sense problem. Two
words are synonyms if they both express the same
concept in some context. In particular, to reduce
MultiSyn to Sense, we search for a concept which
can be expressed by both words.

MultiSyn(wx, wy) ⇔ ∃s : Sense(wx, s) ∧ Sense(wy, s)

A monolingual wordnet can be converted into
a thesaurus, in which the entry for a given word
consists of all of its synonyms. A bilingual wordnet
can be converted into a translation dictionary, in
which the entry for a given word consists of all its
cross-lingual synonyms possibly grouped by sense,
and accompanied by glosses.

Given a method for solving WSD, we can solve
a Sense instance by checking whether the word
expresses the concept given the context of its gloss.
Formally:

Sense(w, s) ⇔ WSD(Cs, w) = s

The correctness of this reduction follows from
the assumption that a concept gloss uniquely de-
termines the concept. Under our definitions, given
a concept gloss, the WSD predicate can only re-
turn the corresponding concept, and does so if and
only if the given word can express that concept;
otherwise the return value is undefined.

The reducibility of Sense to WSD implies that
implementing the WSD predicate as it is defined
in Section 2.3 would make it possible to construct
synsets from nothing more than a list of concept
glosses, as well as correct and expand existing
wordnets to new domains and languages. In fact,
any of the set of six WSD-equivalent problems (Fig-
ure 1) could be used for these tasks; we therefore
refer to them as wordnet-complete (WN-complete).

4.2 Substitution Lemma
The final proposition formalizes the relationship
between synsets, senses, and lexical translations. It
follows directly from the previously stated defini-
tions, reductions, and assumptions.

MultiLexSub(Cx, wx, wy) ⇔ Sense(wy,WSD(Cx, wx))

The lemma provides a theoretical justification
for methods that associate contextual lexical trans-
lations and synonyms with the synset identified
by a WSD model. For example, BabelNet synsets
are populated by translations of word instances
that correspond to a given concept (Navigli and
Ponzetto, 2010). Specifically, the existence of a

translation pair (wx, wy) in a context Cx implies
that wy lexicalizes the concept expressed by wx in
Cx. Another example is the method of Luan et al.
(2020), which leverages contextual translations to
improve the accuracy of WSD.

5 Empirical Validation

In this section, we implement and test three prin-
cipal reductions: MultiWiC to WiC, MultiWiC to
WSD, and MultiLexSub to WSD. For each reduc-
tion, we reiterate its theoretical basis, describe our
implementation, and discuss the results. We em-
phasize that the goal of our experiments is not chal-
lenging the state of the art, but rather empirically
testing the reductions, and, by extension, the hy-
pothesis they are based on. Since the resources
used for the implementations are necessarily im-
perfect, and the systems are each designed and
optimized for a different target task, the reductions
are expected to produce much less accurate predic-
tions on the existing benchmark datasets compared
to state-of-the-art methods.

Our primary interest is in identifying any possi-
ble counter-examples to our concept-meaning hy-
pothesis. However, it must be noted that the pres-
ence of a small number of such exceptions in the
existing datasets does not invalidate the theory. On
the other hand, the scarcity of counter-examples
should not be interpreted as a proof, but rather as
supporting evidence for the correctness of our the-
oretical claims.

5.1 Solving MultiWiC with WiC

We first empirically test the counter-intuitive propo-
sition that a multilingual semantic task can be re-
duced to a set of monolingual instances. In particu-
lar, given a method for solving WiC, we can solve
any MultiWiC instance by deciding whether there
exists a concept such that both given words express
the concept given their corresponding contexts and
the concept gloss. Formally:

MultiWiC(Cx, Cy, wx, wy) ⇔
∃s : WiC(Cx, Cs, wx) ∧ WiC(Cy, Cs, wy)

The correctness of this reduction follows from
the assumption that a concept gloss uniquely disam-
biguates every word that can express the concept.

5.1.1 Implementation of the Reduction
In practice, instead of checking all possible con-
cepts, we limit our search to concepts that can be
expressed by either of the two words. For each
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such concept, we create two WiC instances, one
in each language, using a gloss retrieved from a
lexical resource, and translated, as needed, into the
language of each instance. We then solve each of
the created WiC instances using a model trained
exclusively on WiC data in that language. The re-
duction returns TRUE iff both WiC instances are
classified as positive.

We test the reduction on the English-French test
set of the MCL-WiC shared task (Martelli et al.,
2021), which contains 1000 MultiWiC instances.
The dataset is agnostic toward WordNet sense dis-
tinctions and annotations. We train the English
WiC model on the English training and develop-
ment sets (8k and 1k instances, respectively), and
the French WiC model on the French development
set (1k instances). The latter set is quite small, but
we are not aware of any larger dedicated French
WiC training data.

We create each WiC instance by prepending the
input word, followed by a separator token, to each
input context, including concept glosses. We re-
trieve concept glosses from BabelNet (Navigli and
Ponzetto, 2010), using the Python API.2 While En-
glish lemmas are provided in the dataset, French
lemmas are not. We therefore lemmatize French
words using the SpaCy FR CORE NEWS MD model.
Since BabelNet does not contain French glosses
for all concepts, we generate them by translating
the first English gloss in BabelNet using the OPUS-
MT-EN-FR model from Helsinki NLP.3

We train our English and French WiC models
using LIORI (Davletov et al., 2021). All train-
ing was completed in under eight hours on two
NVIDIA GeForce RTX 3090 GPUs. With the
default hyper-parameter settings, the models ob-
tain the accuracy of 87.0% and 73.3% on the En-
glish and French monolingual test sets, respectively.
This is lower than the 91.1% and 86.4% results re-
ported by Davletov et al. (2021). We attribute this
to our use of smaller, purely monolingual training
data, which is in line with our theoretical reduction.
Based on these numbers, we estimate the probabil-
ity of a pair of WiC instances being both correctly
classified as 0.870 ∗ 0.733 = 0.638.

5.1.2 Results and Discussion
Our implementation correctly classifies 631 out of
the 1000 instances in the test set. This is very close
to the estimate computed in the previous section,

2https://babelnet.org/guide#python
3https://huggingface.co/Helsinki-NLP

which suggests that our reduction is approximately
as reliable as our imperfect resources and systems
allow.

We manually analyzed a random sample of 50
MultiWiC classification errors. For each of the 25
false negatives, LIORI returned FALSE for all sen-
tence pairs in either English (12 instances), French
(8 instances), or both languages (5 instances). Each
instance could be explained by either a LIORI er-
ror, or a missing sense in BabelNet. For the 25
false positives, we identified one or more incorrect
positive WiC classifications. The final false posi-
tive was caused by an incorrect tokenization of the
target word in the MCL-WiC dataset: disordered
instead of mentally disordered.

Since all errors can be attributed to the systems
and resources, they constitute no evidence against
the correctness of our reduction. On the other hand,
these results support our theoretical finding that
multilingual problems can be reduced to monolin-
gual problems. This in turn supports our methodol-
ogy of grounding lexical semantics in the expres-
sion of language-independent concepts.

5.2 Solving MultiWiC with WSD

In this section, we test our MultiWiC-to-WSD re-
duction. In doing so, we generalize the WiC-to-
WSD reduction of Hauer and Kondrak (2022) to
multiple words and languages. Given a MultiWiC
instance, we apply a WSD system to each context-
word pair, and classify it as positive iff both words
are tagged with the same BabelNet synset:

MultiWiC(C,C′, w, w′) ⇔ WSD(C,w) = WSD(C′, w′)

5.2.1 Implementation of the Reduction
Our system of choice is AMuSE-WSD (Orlando
et al., 2021). It provides pre-trained WSD mod-
els for a diverse set of languages, and handles all
stages of the WSD pipeline, including tokenization,
lemmatization, and part-of-speech tagging. We ap-
ply the provided AMUSE-LARGE-MULTILINGUAL-
CPU model, with all other parameters left at their
default values.

Following Hauer and Kondrak (2022), we esti-
mate an upper-bound on the performance of our
reduction, using analogous notation and formu-
lae. For the expected accuracy of English and
non-English WSD, we use the English-ALL and
XL-WSD accuracy results reported by the AMuSE-
WSD authors, 0.739 and 0.673. This estimation
method also depends on the average number of
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senses per target word. Per the BabelNet API4, an
average MCL-WiC target word has 14 senses. The
resulting overall accuracy estimate is 0.752, which
is the average of 0.539 and 0.965 for the positive
and negative MultiWiC instances, respectively.

5.2.2 Results and Discussion
The results on the MCL-WiC test sets range from
51.8% on English-Arabic to 55.1% on English-
French. While the estimate in the previous section
is substantially higher, it does not take into account
tokenization errors and missing senses in BabelNet.
On the English-French dataset, we found that false
negatives outnumber false positives by a factor of
six; the accuracy is 22.8% and 87.4% on the posi-
tive and negative MultiWiC instances, respectively.

For our manual analysis, we randomly selected
25 false positives and 25 false negatives produced
by our implementation on the English-French test
set. In 41 of the 50 cases, we determined the cause
of the incorrect MultiWiC classification to be an
incorrect sense returned by AMuSE-WSD for one
or both target words. In addition, 7 of the 50 cases
represent tokenization errors. One MultiWiC in-
stance, which involves English reflected and French
consignée, is most likely a MCL-WiC annotation
error. The final error is attributable to a sense miss-
ing from BabelNet, which prevents AMuSE-WSD
from considering it as a candidate. Specifically, it
is the “administer” sense of the verb dispense (as
in “dispense justice”), which can be found in the
Merriam-Webster Online Dictionary.5

Since manual analysis yields no counter-
examples to our theory, we interpret the results
as empirical support for this reduction, and, by ex-
tension, our taxonomy of semantic tasks, and the
hypothesis on which it is based.

5.3 Solving MultiLexSub with WSD
In the final experiment, we test the MultiLexSub-
to-WSD reduction derived in Section 3.2:

MultiLexSub(C,w,w′) ⇔ WSD(C,w) = WSD(C,w′)

The overall method is similar to that of Guo and
Diab (2010), but using our precise binary formula-
tion of lexical substitution.

5.3.1 Implementation of the Reduction
We use the dataset from the SemEval 2010 shared
task on cross-lingual lexical substitution (Mihalcea

4https://babelnet.org/guide#python
5https://www.merriam-webster.com/

dictionary/dispense

et al., 2010), which consists of a trial set of 300
instances, and a test set of 1000 instances. Each
instance consists of an English sentence which in-
cludes a single target word and a list of Spanish
gold substitutes provided by annotators.

Since our formulation of lexical substitution is
binary rather than generative or ranking-based, we
convert each of the SemEval instances into a pair
of binary instances: one positive and one negative.
For the positive instance, we take the first Spanish
substitute, the one that was most frequently sug-
gested by the annotators. For the negative instance,
we randomly select a Spanish word from the set of
all substitutes in the dataset for that English target
word, provided that it is not among the gold substi-
tutes for that specific instance. If there is no such
substitute, we instead choose a random Spanish
word from the dataset.

For each binary instance created in this way, we
create two WSD instances using a simple template:

‘w’ as in ‘C’, where w is the target word, and C is
the context. We obtain the context for the Spanish
word by translating the English context via Helsinki
NLP’s OPUS-MT-EN-ES model. We return a posi-
tive MultiLexSub classification iff AMuSE-WSD
assigns the same BabelNet synset ID to both En-
glish and Spanish target words.

Our procedure for estimating the expected ac-
curacy of our reduction is the same as in Section
5.2.1. The only difference is the average number of
senses per word, which in this case is 23, yielding
an estimated accuracy of 75.8%.

5.3.2 Results and Discussion
The binary classification accuracy of our implemen-
tation on 2000 MultiLexSub instances created from
the SemEval test set is 63.2%, which is substan-
tially below the estimate in the previous section.
This can be partially explained by a relatively high
number of tokenization errors in the test set. We
again observe a strong bias toward negative clas-
sification: the results on the positive and negative
instances are 27.1% and 99.3% accuracy, respec-
tively. Because of this, we selected only positive
instances for our error analysis.

We manually analyzed a sample of 50 randomly-
selected false negatives from the test set. In 44
of the 50 cases, the cause of the misclassification
was an AMuSE-WSD error (on English in 30 cases,
on Spanish in 14). Some of those errors may be
caused by an imperfect translation of the English
context, or a missing BabelNet sense of the Spanish
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gold substitute. In 5 cases, the English input was
incorrectly tokenized; for example, the compound
noun key ring was split into two word tokens, with
one instance having ring as its focus. The final case
likely involves an annotation error in the SemEval
dataset: campo as a translation of field given the
context of “effective law enforcement in the field.”

We conclude that all incorrect classifications can
be attributed to a resource or system used by our
implementation, and thus none of them represents
a counter-example to our hypothesis.

6 Conclusion

Starting from basic assumptions about the expres-
sion of concepts by words in context, we have de-
veloped consistent formulations of thirteen differ-
ent problems in lexical semantics. We have shown
that a “wordnet-complete” subset of these tasks
can each be used to solve any of the others via re-
duction. These problems can be used to construct,
correct, or expand multilingual synonym sets, the
building blocks of important linguistic resources
such as WordNet and BabelNet. We believe that
this work will lead to a greater understanding of
lexical semantics and its underlying linguistic phe-
nomena, as well as new applications and better
interpretation of empirical results. Based on our
theory, we intend to develop methods for construct-
ing fully explainable and interpretable linguistic
resources.

Limitations

While we do include multilingual datasets in our ex-
periments, our error analysis is limited to languages
of the Indo-European family, specifically English,
French, and Spanish, as these are the languages cov-
ered by our datasets which we can confidently ana-
lyze. In addition, it is possible to question some of
the assumptions made in our theory, which should
be kept in mind when considering our work. For ex-
ample, we assume that, for each content word token
in a discourse, there exists a single concept which
that word is intended by the sender to express, re-
gardless of whether it appears unambiguous to the
receiver. However, unlike in mathematics, theoreti-
cal assumptions may not always hold in practice;
for example, puns often exploit multiple meanings
of a word for humorous effect. While such cases
are not frequently considered in lexical semantics,
we can expect exceptions to almost any assumption
or conclusion regarding human languages.
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