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Abstract

While multilingual neural machine translation
has achieved great success, it suffers from the
off-target issue, where the translation is in the
wrong language. This problem is more pro-
nounced on zero-shot translation tasks. In this
work, we find that failing in encoding discrim-
inative target language signal will lead to off-
target and a closer lexical distance (i.e., KL-
divergence) between two languages’ vocabu-
laries is related with a higher off-target rate.
We also find that solely isolating the vocab
of different languages in the decoder can al-
leviate the problem. Motivated by the find-
ings, we propose Language Aware Vocabulary
Sharing (LAVS), a simple and effective algo-
rithm to construct the multilingual vocabulary,
that greatly alleviates the off-target problem
of the translation model by increasing the KL-
divergence between languages. We conduct ex-
periments on a multilingual machine translation
benchmark in 11 languages. Experiments show
that the off-target rate for 90 translation tasks
is reduced from 29% to 8%, while the overall
BLEU score is improved by an average of 1.9
points without extra training cost or sacrificing
the supervised directions’ performance. We
release the code at https://github.com/PKUnlp-
icler/Off-Target-MNMT for reproduction.

1 Introduction

Multilingual NMT makes it possible to do the
translation among multiple languages using only
one model, even for zero-shot directions (Johnson
et al., 2017; Aharoni et al., 2019). It has been
gaining increasing attention since it can greatly
reduce the MT system’s deployment cost and en-
able knowledge transfer among different transla-
tion tasks, which is especially beneficial for low-
resource languages. Despite its success, off-target
is a harsh and widespread problem during zero-
shot translation in existing multilingual models.

†Corresponding author.

cs fr de fi lv et ro hi tr gu
cs 43% 45% 21% 13% 11% 13% 12% 10% 33% 22%
fr 20% 30% 22% 18% 21% 12% 10% 15% 12% 18%
de 15% 38% 19% 13% 16% 14% 36% 28% 36% 23%
fi 14% 32% 28% 12% 9% 13% 44% 19% 64% 26%
lv 8% 34% 24% 7% 5% 10% 33% 19% 58% 22%
et 16% 32% 15% 8% 15% 23% 47% 23% 74% 28%
ro 2% 2% 3% 2% 0% 3% 10% 8% 50% 9%
hi 15% 13% 6% 13% 20% 14% 16% 54% 78% 25%
tr 2% 1% 0% 1% 0% 1% 18% 33% 70% 14%
gu 77% 60% 53% 84% 80% 74% 80% 92% 95% 77%

19% 28% 23% 19% 19% 17% 22% 35% 30% 53% 29%

Source

Ta
rg
et

AVG

AVG

OTR

Table 1: Zero-shot off-target rate of the model with
traditional vocab sharing on WMT’10 dataset. High
values are in red and low values are in blue. The average
OTR of 90 zero-shot directions is about 29%.

For the zero-shot translation directions, the model
translates the source sentence to a wrong language,
which severely degrades the system’s credibility.
As shown in Table 1, the average off-target rate on
90 directions is 29% and even up to 95% for some
language pair (tr->gu) on WMT’10 dataset.

Researchers have been noticing and working on
solving the problem from different perspectives.
For model trained on English-centric dataset, a
straight forward method is to add pseudo train-
ing data on the zero-shot directions through back-
translation (Gu et al., 2019; Zhang et al., 2020).
Adding pseudo data is effective since it directly
turns zero-shot translation into a weakly supervised
task. Despite its effectiveness, it brings a lot more
training cost during generating data and training
on the augmented corpus and the supervised di-
rections’ performance is also reported to decrease
due to the model capacity bottleneck (Zhang et al.,
2020; Yang et al., 2021). Rios et al. (2020) finds
that instead of regarding all languages as one during
the vocabulary building process, language-specific
BPE can alleviate the off-target problem, yet it still
costs the supervised directions’ performance.

In this work, we perform a comprehensive anal-
ysis of the off-target problem, finding that failure
in encoding discriminative target language signal
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will lead to off-target and we also find a strong
correlation between off-target rate of certain direc-
tion and the lexical similarity between the involved
languages. A simple solution by separating the
vocabulary of different languages in the decoder
can decrease lexical similarity among languages
and it proves to improve the zero-shot translation
performance. However, it also greatly increases the
model size (308M->515M) because a much larger
embedding matrix is applied to the decoder.

For a better performance-cost trade-off, we fur-
ther propose Language-Aware Vocabulary Sharing
(LAVS), a novel algorithm to construct the multilin-
gual vocabulary that increases the KL-divergence
of token distributions among languages by splitting
particular tokens into language-specific ones.

LAVS is simple and effective. It does not intro-
duce any extra training cost and maintains the su-
pervised performance. Our empirical experiments
prove that LAVS reduces the off-target rate from
29% to 8% and improves the BLEU score by 1.9
points on the average of 90 translation directions.
Together with back-translation, the performance
can be further improved. LAVS is also effective on
larger dataset with more languages such as OPUS-
100 (Zhang et al., 2020) and we also observe that
it can greatly improve the English-to-Many perfor-
mance (+0.9 BLEU) in the large-scale setting.

2 Related Work

Off-Target Problem in Zero-Shot Translation
Without parallel training data for zero-shot direc-
tions, the MNMT model is easily caught up in
off-target problem (Ha et al., 2016; Aharoni et al.,
2019; Gu et al., 2019; Zhang et al., 2020; Rios
et al., 2020; Wu et al., 2021; Yang et al., 2021)
where it ignores the target language signal and
translates to a wrong language. Several methods
are proposed to eliminate the off-target problem.
Zhang et al. (2020); Gu et al. (2019) resort differ-
ent back-translation techniques to generate data for
non-English directions. Back-translation method
is straight-forward and effective since it provides
pseudo data on the zero-shot directions but it brings
a lot more additional cost during generating data
and training on the augmented corpus. Gu et al.
(2019) introduced decoder pretraining to prevent
the model from capturing spurious correlations, Wu
et al. (2021) explored how language tag settings
influence zero-shot translation. However, the cause
for off-target still remains underexplored.

Vocabulary of Multilingual NMT Vocabulary
building method is essential for Multilingual NMT
since it decides how texts from different languages
are turned into tokens before feeding to the model.
Several word-split methods like Byte-Pair Encod-
ing (Sennrich et al., 2016), Wordpiece (Wu et al.,
2016) and Sentencepiece (Kudo and Richardson,
2018), are proposed to handle rare words using a
limited vocab size. In the background of multilin-
gual NMT, most current studies and models (Con-
neau et al., 2019; Ma et al., 2021; team et al., 2022)
regard all languages as one and learn a shared vo-
cabulary for different languages. Xu et al. (2021a)
adopted optimal transport to find the vocabulary
with most marginal utility. Chen et al. (2022) study
the relation between vocabulary sharing and label
smoothing for NMT. Closely related to our work,
Rios et al. (2020) finds that training with language-
specific BPE that allows token overlap can improve
the zero-shot scores at the cost of supervised direc-
tions’ performance and a much larger vocab while
our method does not bring any extra cost.

To the best of our knowledge, we are the first
to explore how vocabulary similarity of different
languages affects off-target in zero-shot MNMT
and reveal that solely isolating vocabulary in the
decoder can alleviate the off-target problem with-
out involving extra training cost or sacrificing the
supervised directions’ performance.

3 Delving into the Off-Target Problem

3.1 Multilingual NMT System Description
We adopt the Transformer-Big (Vaswani et al.,
2017) model as the baseline model. For multilin-
gual translation, we add a target language identifier
<XX> at the beginning of input tokens to combine
direction information. We train the model on an
English-centric dataset WMT’10 (Callison-Burch
et al., 2010). Zero-shot translation performance is
evaluated on Flores-101 (Goyal et al., 2021) dataset.
We use a public language detector1 to identify the
sentence-level language and compute the off-target
rate (OTR) which denotes the ratio of translation
that deviates to wrong languages. Full information
about training can be found in Section 5.1.

3.2 Off-Target Statistics Safari
Off-Target Rate Differs in Directions We first
train the multilingual NMT model in 10 EN-X di-
rections and 10 inverse directions from WMT’10

1https://github.com/Mimino666/langdetect
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An Off-Target Case
Direction: FR -> DE
Input: <DE> Un sondage effectué auprès de 1 400 personnes 
avant les élections fédérales de 2010 a révélé que le nombre 
d'opposants à la transformation de l'Australie en république 
avait augmenté de 8 % depuis 2008.
Output: A survey of 1400 people prior to the 2010 federal 
elections revealed that the number of opponents of Australia's 
transformation into a republic had increased by 8 % since 2008.
Gold: Von den 1.400 Personen, die vor den Bundeswahlen 
2010 befragt wurden, hat der Anteil derjenigen, die sich 
dagegen aussprechen, dass Australien zur Republik wird, seit 
2008 um 8 Prozent zugenommen.

Figure 1: A real Off-Target case observed in our multi-
lingual NMT system. In this case, the output is literally
English while the real target is German.

simultaneously. Then we test the model on 90 X-Y
zero-shot directions using semantic parallel sen-
tences from the previous 10 languages provided by
Flores-101. We compute the off-target rate of all
directions and list the result in Table 1.

In addition to the individual score, we next split
the languages into High (cs, fr, de, fi), Mid (lv, et),
and Low (ro, tr, hi, gu) resources according to data
abundance degree. Then we compute the average
OTR of High-to-High, High-to-Low, Low-to-High,
and Low-to-Low directions and rank the result. The
ranked result is: Low-to-Low (50.28%) > High-to-
High (27.16%) > Low-to-High (23.18%) > High-
to-Low (20.78%). Based on the observation, we
can see that language with the lowest resource (gu)
contributes to a large portion of off-target cases.
This is reasonable since the model might not be
familiar with the language identifier <GU> and the
same situation goes for Low-to-Low translations.

However, it is surprising to see that translations
between high-resource languages suffer from more
severe off-target than those directions involving
one low-resource language. There seem to be other
factors influencing the off-target phenomena.

In other words, if data imbalance is not the key
factor for off-targets between high-resource lan-
guages, what are the real reasons and possible solu-
tions? To answer these questions, we need to delve
deeper into the real off-target cases.

The Major Symptom of Off-Target When the
model encounters an off-target issue, a natural ques-
tion is which language the model most possibly de-
viates to. We find that among different directions, a
majority (77%) of the off-target cases are wrongly
translated to English, which is the centric language
in the dataset. A small part (15%) of cases copy

Figure 2: Encoder pooled output visualization using
TSNE for French-to-Many translations. The input
French sentences are the same for all directions. Note
that there are only French sentences in the encoder side.

the the input sentence as output. Our observation
also agrees with the findings of Zhang et al. (2020).
It raises our interest that why most off-target cases
deviate to English.

3.3 Failing in Encoding Discriminative Target
Language Signal Leads to Off-Target

Considering the encoder-decoder structure of the
model, we hypothesize that:

The encoder fails to encode discriminative target
language information to the hidden representations
before passing to the decoder.

To test the hypothesis, we start by analyzing the
output of the trained transformer’s encoder:

1) We choose French as the source language and
conduct a French-to-Many translation (including
all languages in WMT’10) on Flores-101.

2) We collect all the pooled encoder output rep-
resentations of the French-to-Many translation and
project them to 2D space using TSNE. The visual-
ization result is shown in Figure 2.

The visualization result justifies our hypothesis.
We can tell from the distribution that only represen-
tations belonging to “fr-tr” and “fr-ro” directions
have tight cluster structures with boundaries. The
representations from high/mid-resource language
pairs are completely in chaos and they are also
mixed with fr-en representations. And those lan-
guages generally have a higher off-target rate in
French-to-Many Translation according to Table 1.

The decoder cannot distinguish the target lan-
guage signal from the encoder’s output when it re-
ceives representations from the “chaos” area. More-
over, during the training process, the decoder gen-
erates English far more frequently than other lan-
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guages and it allocates a higher prior for English.
Passing hidden representation similar to English

one will possibly confuse the decoder to generate
English no matter what the given target language is.
It could explain why most off-target cases deviate
to English. The decoder struggles to tell the correct
direction from the encoder’s output.

Now we have a key clue for the off-target is-
sue. The left question is what causes the degrada-
tion of target language signal in some directions
and whether we can make the representations of
different target languages more discriminative to
eliminate the off-target cases.

3.4 Language Proximity Correlates with
Zero-Shot Off-Target Rate

To explore how off-target occurs differently in dif-
ferent language pairs, we conduct experiments us-
ing a balanced subset of WMT’10 dataset where
we hope to preclude the influence of data size. We
randomly sampled 500k sentences from different
directions to form a balanced training set and re-
move the directions(hi, tr and gu) that do not have
enough sentences.

Language Proximity is an Important Character-
istic of Translation Direction Our motivation is
intuitive that if two languages are rather close, the
probability distribution of different n-grams in the
two languages’ tokenized corpus should be nearly
identical. Considering a large number of different
n-grams in the corpus, we only consider 1-grams to
compute the distribution. We call the result “Token
Distribution”.

We use Kullback–Leibler divergence from To-
ken Distribution of Language B to Language A to
reflect the degree of difficulty if we hope to en-
code sentence from B using A, which can also be
interpreted as “Lexical Similarity”.

DKL(A∥B) =
∑

x∈V
A(x) log

(
A(x)

B(x)

)
(1)

where V denotes the shared vocabulary, A(x) is
the probability of token x in language A. To avoid
zero probability during computing Token Distribu-
tion, we add 1 to the frequency of all tokens in the
vocabulary as a smoothing factor.

Lexical Similarity is related to Off-Target Rate
We compute the KL divergence between language
pairs with the training data. After training on the

balanced dataset, the zero-shot translation is con-
ducted on the Flores-101 dataset. We visualize the
result of the top-3 languages(fr,cs,de) with most
resources in WMT’10 dataset for analysis.

As shown in Figure 3, we can observe from the
statistics that language proximity is highly related
to the off-target rate. The Pearson correlation co-
efficients between the off-target rate and the KL-
Divergence from target to source of the three x-to-
many translations are -0.75±0.02, -0.9±0.03 and
-0.92±0.03. The average Pearson correlation of all
x-to-many directions is -0.77±0.11. It indicates that
language pair which has higher lexical similarity
from target to source may have a higher chance
to encounter off-target than those language pairs
which has less similar languages.

3.5 Shared Tokens in the Decoder Might Bias
the Zero-Shot Translation Direction

Previous section shows a correlation between the
lexical similarity and off-target rate within certain
language pair. We are more interested in whether
the lexical similarity will cause the representation
degradation in Figure 2, which further causes off-
target. In fact, larger lexical similarity suggests
more shared tokens between languages and will
let the decoder output more overlapped tokens dur-
ing supervised training. The token overlap for
different target in output space is harmful for
zero-shot translation. During training, the de-
coder might not be aware of the language it’s gen-
erating directly from the output token because of
the existence of shared tokens. In other words, the
relation between target language and output tokens
is weakened because of the shared tokens among
different target languages, which might cause rep-
resentation degradation in the encoder and further
lead to off-target in zero-shot test.

3.6 Separating Vocab of Different Languages
is Effective yet Expensive

Based on the previous discussion, we now have an
idea that maybe we can ease the off-target prob-
lem by decreasing the lexical similarity among lan-
guages, i.e. decreasing the shared tokens.

When building the vocab for multilingual NMT
model, most work regard all languages as one and
learn a unified tokenization model. We argue that
this leads to low divergence of token distribution
since many sub-words are shared across languages.

There is an easy method to decrease the shared
tokens without changing the tokenization. We can
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Figure 3: Scatter plot of off-target rate and KL-
divergence for different language pairs. We draw the
linear regression result with 95% confidence interval.

Method Size OTR BLEU

Vocab Sharing 308M 29% 10.2
Separate Vocab (Dec) 515M 5% 12.4
Separate Vocab (Enc,Dec) 722M 84% 2.1

Table 2: Average zero-shot result for models with dif-
ferent vocab. (Dec) means only the decoder uses the
separate vocab. (Enc,Dec) means both the encoder and
the decoder use the separate vocab.

separate the vocab of different languages as shown
in Figure 9 from Appendix. Under such condition,
no two languages share the same token.

As shown in Table 2, with separate decoder vo-
cab the average off-target rate in 90 directions is
reduced from 29% to 5% and the BLEU score is
raised from 10.2 to 12.4. We conduct the same
probing experiment on encoder representation with
the original WMT’10 dataset. As shown in Fig-
ure 4, representations for different target are di-
vided. The “chaos” area does not exist anymore.

We also train the model with separated en-
coder&decoder vocab and finds it suffers from
worse zero-shot performance compared to baseline.
This also agrees to Rios et al. (2020)’s findings.

We think that without any vocabulary sharing
among languages, the model will learn a wrong
correlation between input language and output lan-
guage and ignore the target language identifier dur-
ing the English-centric training process.

The experiment result justifies our assumption
in Section 3.5 that the shared tokens in the decoder
will lead to the representation problem. Though
achieving great improvement by isolating all vo-
cabulary, it is much more parameter-consuming. In
fact, in our experiment, the number of parameters
increases from 308M to 515M.

Figure 4: Encoder pooled output visualization using
TSNE for French-to-Many translation using separate
vocab. The result is comparable to Figure 2, which
shows result with shared vocab.

4 Language-Aware Vocabulary Sharing

4.1 Adding Language-Specific Tokens

Figure 5: Illustration of LAVS. Tokens with higher
shared frequency are split into language-specific ones.

Based on previous observation, lexical similarity
will cause the representation degradation problem
and further lead to off-target. Thus, our goal is to
decrease the lexical similarity. We can achieve it
without changing the original tokenizer by splitting
the shared tokens into language-specific ones.

As shown in Figure 5, instead of splitting all
shared tokens, we can choose specific tokens to

Algorithm 1 Language-Aware Vocabulary Sharing
Input: Shared vocabulary set V ′, language list L, language’s

token distributions P and the number of extra language-
specific tokens N .
Output: Vout is the output vocabulary set.
1: MaxFreqs = PriorQueue(length=N ) ▷ queue that ranks

the input elements E from high to low based on E[0].
2: for i in V ′ do
3: for m in L, n in L do
4: if m < n then
5: freq = min(PV ′

m (i),PV ′
n (i))

6: MaxFreqs.add([freq,m,n,i])
7: Vout = V ′

8: for T in MaxFreqs do
9: m,n, i = T[1], T[2], T[3]

10: Vout = Vout ∪ (V ′[i], L[m]) ∪ (V ′[i], L[n])

11: return Vout
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I love sing @@ing

I_en love_en sing @@ing_en

Vocab Corpus LAVS Vocab

1st Tokenization

2nd Token
ization

English: I, love, @@ing, …
German: I, der, …
Shared: sing

Final Tokens

I love singing

LAVS
Compute

Input Sentence: I love singing.
Sentencepiece Tokenization: I love sing @@ing .
LAVS Tokenization: I_en love_en sing @@ing_en .
Training/Inference
LAVS Detokenization: I love sing @@ing .
Sentencepiece Detokenization : I love singing.

Figure 6: Illustration of tokenization and detokenization
process with Language-Aware Vocabulary Sharing.

split. After decoding, we could simply remove
all language-specific tags to restore the literal out-
put sentence. By adding language-specific tokens,
the number of shared tokens between different lan-
guages decreases and makes the token distribution
more different thus increasing the KL Divergence.

4.2 Optimization Goal
Given original vocab set V ′ and language list L,
we aim at creating new vocab V to maximize the
average KL divergence within each language pair
under the new vocabulary with the restriction of
adding N new language-specific tokens. Thus, our
objective becomes:

V ∗ =argmax
V

1

|L|2
∑

m∈L

∑

n∈L
DKL(P

V
m ||P V

n )

s.t. V ′ ⊆ V, |V | − |V ′| = N
(2)

where P V
m denotes the m-th language’s token dis-

tribution on vocabulary V , add-one smoothing is
applied to avoid zero probability. It is a combinato-
rial optimization problem. The searching space of
V has an astronomical size of CN

|V ′|·|L|.

4.3 Greedy Selection Algorithm that
Maximizes Divergence Increment

Based on the previous discussion, we propose the
Language-Aware Vocabulary Sharing algorithm
as listed in Algorithm 1 to add language-specific
tokens. Intuitively, LAVS algorithm prefers to
split those shared tokens that have high frequency
among different languages, which directly reduces

the appearance of shared tokens in the decoder to
the maximum extent.

First, we adopt a prior queue to keep the token
candidates. Second, for each token in the shared
vocabulary, we compute the shared token frequency
in each language pair and add the (frequency, lan-
guageA, languageB, token) tuple to the queue. Last,
since the queue ranks the elements by frequency,
we create language-specific tokens for the top N
tuples and return the new vocab. We give more
details about the algorithm in Appendix B.

The whole tokenization process with LAVS is
illustrated in Figure 6. In practice, given an orig-
inal shared vocab with M tokens, we can always
first learn a vocab with M − N tokens and con-
duct LAVS to add N language-specific tokens to
maintain the vocab size M unchanged.

5 Experiments

5.1 Datasets

Following Wang et al. (2020), we collect WMT’10
datasets for training. The devtest split of Flores-
101 is used to conduct evaluation. Full information
of datasets is in Appendix C.

5.2 Vocabulary Building

Vocab Sharing We adopt Sentencepiece (Kudo
and Richardson, 2018) as the tokenization model.
We randomly sample 10M examples from the train-
ing corpus with a temperature of 5(Arivazhagan
et al., 2019) on different directions and learn a
shared vocabulary of 64k tokens.

Separate Vocab Based on the sharing vocab of
the baseline model, we separate the vocab of each
language forming a 266k vocab.

LAVS We first learn a 54k vocabulary using the
same method as the baseline model’s and add 10k
language-specific tokens using LAVS.

5.3 Training Details of MNMT

Architecture We use the Transformer-big
model (Vaswani et al., 2017) implemented by
fairseq (Ott et al., 2019) with dmodel = 1024,
dhidden = 4096, nheads = 16, nlayers = 6.
We add a target language identifier <XX> at the
beginning of input tokens to indicate the translation
directions as suggested by Wu et al. (2021).

Optimization We train the models using
Adam (Kingma and Ba, 2015), with a total batch
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Method Size
Zero-Shot Off-Target Rate BLEU Score

x-y H-H L-L H-L L-H x-y H-H L-L H-L L-H en-x x-en

Vocab Sharing 308M 29% 27% 50% 21% 23% 10.2 11.26 5.03 9.18 9.95 24.8 30.2
Separate Vocab (Dec) 515M 5% 4% 19% 1% 1% 12.4 14.69 6.54 10.10 12.22 24.6 30.5
LAVS (Enc, Dec) 308M 12% 3% 33% 13% 6% 12.5 15.90 6.26 9.91 12.14 24.8 30.3
LAVS (Dec) 308M 8% 13% 14% 3% 4% 12.1 13.33 7.81 9.80 12.01 24.9 30.3

Table 3: Overall performance comparison. x-y denotes all zero-shot directions. H and L denotes High/Low-
resources. All evaluation are done with Flores-101 dataset. (Dec) suggests vocab only changes in decoder and
(Enc, Dec) suggests changing in both encoder and decoder. LAVS outperforms baseline in zero-shot setting on both
BLEU and OTR by a large margin while maintaining the en-x and x-en performance.

Metric Method cs-x fr-x de-x fi-x lv-x et-x ro-x hi-x tr-x gu-x

OTR
Vocab Sharing 18.8% 28.3% 22.6% 19.5% 19.2% 17.1% 22.0% 35.2% 30.1% 52.8%
LAVS(Dec) 4.2% 14.4% 11.5% 6.2% 3.7% 4.7% 2.9% 9.7% 10.2% 6.1%
∆ ↓ -14.6% -13.9% -11.1% -13.3% -15.5% -12.4% -19.1% -25.5% -19.9% -46.7%

BLEU
Vocab Sharing 10.9 10.5 11.3 9.0 9.4 10.0 11.7 6.9 7.3 4.7
LAVS(Dec) 12.0 12.0 12.2 9.6 10.9 11.0 14.0 9.3 9.1 8.4
∆ ↑ +1.1 +1.5 +0.9 +0.6 +1.5 +1.0 +2.3 +2.4 +1.8 +3.7

BERT Score
Vocab Sharing 0.781 0.808 0.787 0.766 0.783 0.774 0.791 0.771 0.643 0.677
LAVS(Dec) 0.799 0.829 0.806 0.786 0.790 0.798 0.796 0.777 0.660 0.713
∆ ↑ 0.018 0.021 0.019 0.020 0.007 0.024 0.005 0.006 0.017 0.036

Metric Method x-cs x-fr x-de x-fi x-lv x-et x-ro x-hi x-tr x-gu

OTR
Vocab Sharing 22.4% 17.8% 23.9% 26.0% 21.9% 28.1% 8.9% 25.4% 14.0% 77.0%
LAVS(Dec) 8.7% 5.9% 6.6% 9.2% 8.4% 7.8% 3.0% 1.7% 7.0% 15.4%
∆ ↓ -13.7% -11.9% -17.3% -16.8% -13.5% -20.3% -5.9% -23.7% -7.0% -61.6%

BLEU
Vocab Sharing 11.0 17.9 13.2 8.3 12.2 9.9 14.0 8.3 8.8 3.3
LAVS(Dec) 12.5 20.1 15.7 9.4 13.3 11.7 14.2 9.9 9.0 6.7
∆ ↑ +1.5 +2.2 +2.5 +1.1 +1.1 +1.8 +0.2 +1.6 +0.2 +3.4

BERT Score
Vocab Sharing 0.772 0.776 0.781 0.749 0.757 0.759 0.771 0.743 0.750 0.723
LAVS(Dec) 0.791 0.799 0.796 0.770 0.777 0.774 0.797 0.756 0.768 0.726
∆ ↑ 0.019 0.023 0.015 0.021 0.020 0.015 0.026 0.013 0.018 0.003

Table 4: The zero-shot translation performance (Off-Target Rate, BLEU and BERT-Score) on average x-to-many
and many-to-x directions using LAVS (Dec) compared to baseline.

size of 524,288 tokens for 100k steps in all
experiments on 8 Tesla V100 GPUs. The sampling
temperature, learning rate and warmup steps are
set to 5, 3e-4 and 4000.

Back-Translation Back-Translation method is
effective in improving zero-shot performance by
adding pseudo parallel data generated by the
model (Gu et al., 2019; Zhang et al., 2020). For sim-
plicity, we apply off-line back-translation to both
the baseline and LAVS. With the trained model, we
sample 100k English sentences and translate them
to other 10 languages, which creates 100k parallel
data for every zero-shot language pair and results
in a fully-connected corpus of 9M sentence pairs.
We add the generated data to the training set and
train the model for another 100k steps.

Evaluation We report detokenized BLEU using
sacrebleu2. We also report the Off-Target rate with
language detector3 and conduct model-based eval-
uation using Bert-Score4 (Zhang* et al., 2020).

5.4 Results

LAVS improves zero-shot translation by a large
margin. Table 3 and 4 list the overall results on
both zero-shot and supervised directions. Accord-
ing to Table 3, we can see that LAVS improves
all the x-to-many and many-to-x directions with a
maximum average improvement of -61.6% OTR,
+3.7 BLEU and +0.036 Bert-Score compared to
the baseline vocab. It gains an average of -21%

2nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|version:2.1.0
3https://github.com/Mimino666/langdetect
4https://github.com/Tiiiger/bert_score
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Data OTR x-y en-x x-en Extra Cost

Vocab Sharing 29% 10.2 24.8 30.2 -
+ B.T. 1% 16.4 23.4 30.0 24 GPU Days

LAVS (Dec) 8% 12.1 24.9 30.3 0
+ B.T. 0% 16.8 23.7 30.4 24 GPU Days

Table 5: Results with Back-Translation.

OTR, +1.9 BLEU and +0.02 Bert-Score improve-
ment on 81 zero-shot directions. Compared with
the Separate Vocab (Dec) method which also leads
to significant improvement in x-y directions, LAVS
does not increase any model size.

LAVS with Back-Translation further improves
the zero-shot performance. As shown in Ta-
ble 5, as expected, our back-translation method
can improve the zero-shot performance by a large
margin. Under such setting, LAVS also outper-
forms Vocab Sharing by 0.4 average BLEU score
on zero-shot directions.

We also observe performance degradation in
English-to-Many directions for both models com-
paring to not using back-translation, which also
agrees to the result of Zhang et al. (2020); Rios
et al. (2020). We think a possible reason is that the
English-to-Many performance will be interfered
with the increase of translation tasks. Back Transla-
tion also brings much extra cost. The total training
time for the model with Back-Translation is almost
twice as long as the model with vanilla training.
Only applying LAVS brings no extra training cost
and does not influence the supervised performance.

6 Discussion

6.1 How does LAVS calibrate the direction?

We visualize the encoder-pooled representations
for model with LAVS(dec) in Figure 7. The repre-
sentations’ distribution is similar to Figure 4 where
representations for different target are almost di-
vided, suggesting that LAVS work similarly to sep-
arating all the vocabulary for different languages.
We also give a case study as shown in Section 6.2.

We further visualize the language identifiers’ hid-
den output during among high-resource languages
and compare the results of the original Vocabulary
Sharing and LAVS. As shown in Figure 10 from
Appendix, it turns out that LAVS encodes more
discriminative target language information into the
<XX> token’s hidden output.

Figure 7: The encoder-pooled representations learned
by multilingual NMT with LAVS on fr-x directions.

6.2 Case Study
We compare different model’s outputs as shown in
Figure 8. The baseline output has off-target prob-
lem while LAVS output generates in the correct lan-
guage. From the direct token output of LAVS, we
can see that many of which are language-specific
tokens. Models with LAVS could learn the rela-
tion between the target language signal and corre-
sponding language-specific tokens, which further
decreases the probability of off-target.

Direction: DE-> FR
Input: <FR> Apia wurde in den 50ern des 18. 
Jahrunderts gegründet und ist seit 1959 die 
offizielle Hauptstadt von Samoa.
Output(baseline): Apia was founded in the 50s of 
the 18th century and is the official capital of 
Samoa since 1959. (Off-Target to English)
Gold: Apia a été fondée dans les années 1850 et 
est la capitale officielle des Samoa depuis 1959.

Output(LAVS-token): Apia_fr a_fr été fondée 
dans les_fr 50 ans_fr du_fr 18e siècle et_fr est_fr 
depuis 1959 la_fr capitale officielle de_fr Samoa.
Output(LAVS-literal): Apia a été fondée dans les 
50 ans du 18e siècle et est depuis 1959 la capitale 
officielle de Samoa.

Figure 8: Case study of DE->FR zero-shot translation.
The baseline model off-target to English. Tokens in blue
belong to language-specific tokens.

6.3 Scalability of LAVS
As shown in Table 6, we explore how the number
of language specific(LS) tokens influence the zero-
shot performance. The result shows that the OTR
keeps decreasing when the number of LS tokens
increases. It suggests that more LS tokens can
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Shared Tokens(M) LS Tokens(N) OTR↓ Sup. BLEU↑

64k 0 29.4% 27.5
54k 0 33.1% 26.9
54k 10k 8.2% 27.6
54k 20k 7.4% 27.8
54k 50k 5.9% 27.6
54k 212k 5% 27.6

Table 6: Exploration in number of Language-Specific
tokens in LAVS(dec) and the Off-Target Rate on Flores-
101. We report the average OTR on zero-shot directions
and average BLEU on supervised directions.

Data OTR↓ x-y↑ en-x↑ x-en↑
Vocab Sharing 72% 1.9 12.6 19.8
LAVS (Dec) 58% 2.3 13.5 20.1

Table 7: Results in OPUS dataset. We evaluate 1722
zero-shot directions and 84 supervised-directions.

better relieve the off-target issue without harming
the supervised performance.

To test how LAVS generalizes in dataset with
more languages, we compare LAVS and VS on
OPUS-100 (Zhang et al., 2020). More details of
the experiment can be found in Appendix D To
alleviate the inference burden, we select all 42
languages with 1M training data for evaluation,
which results in 1722 zero-shot directions and 84
supervised directions (en-x and x-en). As shown
in Table 7, it turns out that LAVS can improve the
zero-shot performance(-14% OTR, detailed results
in Table 12 from appendix) under such setting. Yet,
the overall performance is much lower comparing
to training on WMT’10. With more languages,
the lack of supervision signal would become more
problematic for zero-shot translation. LAVS im-
proves the en-x performance by a large margin
(+0.9 BLEU, detailed scores in Table 13 from ap-
pendix), we think separate the vocab of different
languages on decoder might have positive influence
on general en-x performance.

6.4 LAVS’s Compatibility with Masked
Constrained Decoding

We propose another method to prevent off-target,
which is through masked constrained decoding
(MCD). During decoding, the decoder only consid-
ers tokens that belong to the target vocab in soft-
max. The target vocab could be computed using
the training corpus. We implement MCD for both
original vocab sharing and LAVS. We list the detail
of the size of different target vocabs in Table 11

Method
DE->CS FR->DE

OTR BLEU OTR BLEU

Vocab Sharing 45.1% 9.7 38.3% 12.7
w/ MCD 30.9% 11.4 36.4% 12.8

LAVS (Dec) 18.9% 13.0 15.4% 17.2
w/ MCD 11.1% 14.2 11.3% 17.8

Table 8: The results of masked constrained decoding
(MCD) combined with LAVS. Constrained decoding
could further improve the performance of LAVS.

from appendix.
As shown in Table 8, it turns out that the method

can further improve the zero-shot performance for
LAVS (+1.2 BLEU for de-cs, +0.6 BLEU for fr-
de). It is worth noticing that, in some direction
like FR->DE, the benefit of MCD is rather small
for the baseline model (+0.1 BLEU). We think the
reason is that the original vocab sharing generates
many shared tokens between languages, which will
weaken the influence of the constraint. Thus, with
more language-specific tokens, LAVS can work
better with constrained decoding.

7 Conclusion

In this paper, we delve into the hidden reason for
the off-target problem in zero-shot multilingual
NMT and propose Language-Aware Vocabulary
Sharing (LAVS) which could significantly alleviate
the off-target problem without extra parameters.
Our experiments justify that LAVS creates a better
multilingual vocab than the original Vocabulary
Sharing method for multiple languages.

8 Limitation

LAVS is proposed to overcome the off-target prob-
lem among languages that share alphabets because
those languages tend to have more sharing tokens
after the sub-word tokenization process. As for lan-
guage pair that does not have shared tokens, LAVS
might not have a direct influence on the zero-shot
translation though it can also increase the over-
all performance for those languages, which might
need further exploration.
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A Method for Completely Separating
Vocab

It is easy to turn a shared vocabulary into a separate
vocabulary for different languages. As shown in
Figure 9, we can split the shared token into lan-
guage specific token if it appears in more than one
language.

Figure 9: Illustration of completely separating vocab-
ulary of different languages. Note that we don’t need
to learn a new vocab. Given the original shared vocab,
we can split those tokens that are shared by two or more
languages into language-specific ones and get a fully
separate vocab for each language.

B Separating Tokens by Frequency

We can also view LAVS from the optimization
goal’s perspective. We start from only two lan-
guages J and Q and compute KL-divergence’s
change if we only split one shared token to two
language-specific tokens.

∆Di
KL = −J(i)log

J(i)

Q(i)
−Q(i)log

Q(i)

J(i)
+ λ

= [J(i)−Q(i)]log
Q(i)

J(i)
+ λ

(3)
where we will have two i-th tokens for the different
languages from the original vocabulary. λ is the
smoothing factor that can be seen as a constant. Ac-
cording to equation 3, splitting token that has more
similar occurrence probability in the two languages
will lead to higher increment in language’s KL-
Divergence (If J(i)! = Q(i), either the J(i)−Q(i)
term or the log term will be negative, and the mul-
tiply result will also be negative. If J(i) = Q(i)
it will be zero, thus reaching the maximum). Also
considering the fact that the tokens with high fre-
quency influence the training process much more
than the near-zero ones, we should first split the
tokens that appear in two or more languages all
with high frequency.

C Datasets

C.1 WMT’10

Following Wang et al. (2020); Yang et al. (2021);
Xu et al. (2021b), we collect data from freely-
accessible WMT contests to form a English-Centric
WMT10 dataset.

Direction Train Test Dev

Fr↔En 10.00M newstest15 newstest13
Cs↔En 10.00M newstest18 newstest16
De↔En 4.60M newstest18 newstest16
Fi↔En 4.80M newstest18 newstest16
Lv↔En 1.40M newstest17 newsdev17
Et↔En 0.70M newstest18 newsdev18
Ro↔En 0.50M newstest16 newsdev16
Hi↔En 0.26M newstest14 newsdev14
Tr↔En 0.18M newstest18 newstest16
Gu↔En 0.08M newstest19 newsdev19

Table 9: Description for WMT’10 Dataset.

C.2 Flores-101

Flores-101 (Goyal et al., 2021; Guzmán et al.,
2019) is a Many-to-Many multilingual translation
benchmark dataset for 101 languages. It provides
parallel corpus for all languages, which makes
it suitable to test the zero-shot translation perfor-
mance of multilingual NMT model. We use the
devtest split of the dataset, and only test on the
languages that appear during supervised training.

Language Code Split Size

French Fr devtest 1012
Czech Cs devtest 1012

German De devtest 1012
Finnish Fi devtest 1012
Latvian Lv devtest 1012
Estonian Et devtest 1012

Romanian Ro devtest 1012
Hindi Hi devtest 1012

Turkish Tr devtest 1012
Gujarati Gu devtest 1012

Table 10: Description for Flores-101 Dataset.

D Experiment on OPUS-100 dataset

OPUS-100(Zhang et al., 2020) is an English-
centric dataset consisting of parallel data between
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English and 100 other languages. We removed
5 languages (An, Dz, Hy, Mn, Yo) from OPUS,
since they are not paired with a dev or testset and
train the models with all remaining data. The train-
ing configuration is the same as our experiment on
WMT’10 dataset. The baseline vocab size is 64k.
We also implement the baseline model with a larger
vocab (256k) but the performance is much lower
than the 64k version so we keep the vocab size to
64k. For LAVS, We set the number of language-
specific token to 150k instead of 10k because of the
increase of languages. We evaluate the supervised
and zero-shot performance on Flores-101 dataset.
To alleviate the inference burden, we select all 42
languages with 1M training data to conduct zero-
shot translation, which forms 1722 zero-shot direc-
tions at all. The ISO code of the evaluated lanu-
gages are "ar, bg, bn, bs, ca, cs, da, de, el, es, et, fa,
fi, fr, he, hr, hu, id, is, it, ja, ko, lt, lv, mk, ms, mt,
nl, no, pl, pt, ro, ru, sk, sl, sr, sv, th, tr, uk, vi, zh".

E Visualize the language identifiers’
representation

During zero-shot translation, the language iden-
tifier token “<XX>” is the only element indicat-
ing the correct direction. Similar to the visual-
ization in Section 3.3, as shown in Figure 10, we
visualize the <XX> tokens’ hidden output(instead
of the pooled result from all input tokens) during
French-to-Many translation among high-resource
languages and compare the results of the original
Vocabulary Sharing and LAVS. It turns out that
LAVS encodes more discriminative target language
information into the <XX> token’s hidden output,
while the original Vocabulary Sharing fails on that.

In original Vocabulary Sharing the mapping be-
tween the target language identifier <XX> and out-
put token is Many-to-One since different language
could share output tokens. While for LAVS, the
mapping becomes One-to-One for a part of tokens,
impulsing the encoder to learn more discriminative
representations for the target language identifier.

Vocabulary Sharing

Language-Aware Vocabulary Sharing

Figure 10: Encoder’s hidden output for language identi-
fier token <XX>, visualized using TSNE.
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Language Code LAVS VS

French Fr 28k 33k
Czech Cs 25k 30k

German De 29k 35k
Finnish Fi 23k 28k
Latvian Lv 24k 29k
Estonian Et 15k 18k

Romanian Ro 14k 20k
Hindi Hi 10k 11k

Turkish Tr 11k 12k
Gujarati Gu 7k 9k

Table 11: Size of different target vocab for LAVS and
VS vocab. Both vocabs have 64k tokens at all. Origi-
nal VS generally has more tokens in each target vocab,
which would weaken the effect of the constrain mask.
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ar bg bn bs ca cs da de el es et fa fi fr he hr hu id is it ja ko lt lv mk ms mt nl no pl pt ro ru sk sl sr sv th tr uk vi zh AVG
VS 0.96 0.87 0.39 0.56 0.53 0.92 0.61 0.92 0.91 0.80 0.73 0.61 0.86 0.76 0.69 0.58 0.89 0.42 0.85 0.83 0.58 0.64 0.81 0.65 0.78 0.43 0.43 0.87 0.64 0.91 0.71 0.87 0.85 0.85 0.78 0.85 0.75 0.63 0.48 0.83 0.47 0.72 0.72
LAVS 0.93 0.67 0.30 0.35 0.51 0.66 0.48 0.76 0.96 0.73 0.49 0.47 0.63 0.69 0.68 0.37 0.78 0.27 0.80 0.74 0.51 0.68 0.50 0.49 0.57 0.27 0.43 0.64 0.50 0.75 0.63 0.74 0.60 0.54 0.52 0.66 0.57 0.74 0.21 0.67 0.47 0.77 0.58

Table 12: Detailed zero-shot OTR of X-to-Many experiment on OPUS-100. Each score denotes the average OTR
from X to other 41 languages.

ar bg bn bs ca cs da de el es et fa fi fr he hr hu id is it ja ko lt lv mk ms mt nl no pl pt ro ru sk sl sr sv th tr uk vi zh AVG
VS 7.3 17.5 6.4 12 24.7 12.7 25.5 16.5 9.7 17.2 10.2 4.2 7.4 27.7 6.8 12.2 8.6 20.2 5.3 15.8 2.0 1.6 11.1 13.7 17.2 18.5 21.1 14 19.9 7.5 26.1 15.8 12 13.6 12 0.3 22.3 3 6.3 5.6 13.3 6.7 12.6
LAVS 7.7 18.7 6.7 13.6 25.7 12.9 26.2 18.5 11.0 18.0 10.9 4.6 8.3 29.1 7.4 12.0 9.4 21.9 6.2 17.4 2.5 2.3 12.0 14.1 17.5 20.5 22.0 14.7 17.5 8.1 27.2 16.2 12.5 14.6 12.7 0.5 23.5 3.7 7.4 8.0 15.3 7.5 13.5

Table 13: Detailed BLEU scores of English-to-Many experiment on OPUS-100.

9556



ACL 2023 Responsible NLP Checklist

A For every submission:
� A1. Did you describe the limitations of your work?

Left blank.

� A2. Did you discuss any potential risks of your work?
Left blank.

� A3. Do the abstract and introduction summarize the paper’s main claims?
Left blank.

� A4. Have you used AI writing assistants when working on this paper?
Left blank.

B � Did you use or create scientific artifacts?
Left blank.

� B1. Did you cite the creators of artifacts you used?
Left blank.

� B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
Left blank.

� B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
Left blank.

� B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
Left blank.

� B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Left blank.

� B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
Left blank.

C � Did you run computational experiments?
Left blank.

� C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
Left blank.

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

9557

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/


� C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Left blank.

� C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
Left blank.

� C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Left blank.

D � Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
Left blank.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
Left blank.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
Left blank.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
Left blank.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
Left blank.

9558


