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Abstract

Pre-trained encoder-only and sequence-to-
sequence (seq2seq) models each have advan-
tages, however training both model types from
scratch is computationally expensive. We ex-
plore recipes to improve pre-training efficiency
by initializing one model from the other. (1)
Extracting the encoder from a seq2seq model,
we show it under-performs a Masked Language
Modeling (MLM) encoder, particularly on se-
quence labeling tasks. Variations of masking
during seq2seq training, reducing the decoder
size, and continuing with a small amount of
MLM training do not close the gap. (2) Con-
versely, using an encoder to warm-start seq2seq
training, we show that by unfreezing the en-
coder partway through training, we can match
task performance of a from-scratch seq2seq
model. Overall, this two-stage approach is an
efficient recipe to obtain both a multilingual
encoder and a seq2seq model, matching the per-
formance of training each model from scratch
while reducing the total compute cost by 27%.

1 Introduction and Related Work

Transformer-based Pre-trained Language Models
(PLMs) have become the main building blocks
when creating models for most Natural Language
Processing (NLP) tasks. PLMs come in three
main architectures: decoder-only (e.g. GPT),
sequence-to-sequence (seq2seq, e.g. BART, T5),
and encoder-only (e.g. BERT). Multilingual mod-
els such as XLM-RoBERTa (encoder-only) and
mBART/mT5 (seq2seq) are also common.

Raffel et al. (2020b) showed that seq2seq models
can perform many NLP tasks on par with similarly-
sized encoder-only models trained via Masked Lan-
guage Modeling (MLM) by framing tasks such a
sentence classification or sequence labeling as text
generation. However, encoder models remain more
efficient at inference for sequence labeling tasks

∗ Equal Contribution.

Figure 1: Two-stage seq2seq pre-training. First (left),
we train the encoder via Masked Language Modeling
(MLM). Second (right), we attach a randomly initialized
decoder to the pre-trained MLM encoder, and train on
the same data with de-noising objective. The encoder
may remain frozen for part or all of the second stage.

like Named Entity Recognition (NER) and Part-
of-Speech tagging (POS): an encoder can label all
words in the sequence with a single forward pass,
while a seq2seq model must generate each word’s
label autoregressively.

Motivated by the need for both an encoder model
for efficient sequence labeling and a seq2seq model
for generative tasks like semantic parsing and sum-
marization, we explore recipes to pre-train both
models. Compared to training each model from
scratch, we propose two sequential training recipes
which reduce the total compute cost (Section 2.1.6).

The first recipe is to extract the encoder of a
seq2seq model as proposed in Ni et al. (2022).
Although it performs well on classification tasks,
we show that the encoder from seq2seq under-
performs a from-scratch encoder on sequence la-
beling tasks. Variations of masking during seq2seq
training and reducing the decoder size do not pro-
vide a consistent benefit to the encoder. We also
explore continuing training the extracted encoder
on MLM for a small number of updates. However,
we show it cannot consistently close the gap in
performance across different datasets.

The second recipe is to warm-start seq2seq pre-
training with an encoder pre-trained via MLM (Fig-
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ure 1). Rothe et al. (2020) proposed a similar idea
for fine-tuning. AlexaTM 20B and AlexaTM 5B ap-
plied this recipe for pre-training, by warm-starting
with Alexa Teacher Model encoders (Soltan et al.,
2022; Rosenbaum et al., 2022b; FitzGerald et al.,
2022). We add the novelty of comparing to a
seq2seq model pre-trained from scratch with the
same data and codebase. First, we observe that if
the encoder is frozen the whole time, the model
under-performs a from-scratch seq2seq model on
semantic parsing and summarization tasks. While
cross-attention fusion across different layers of the
encoder reduces the performance gap, we find that
we can match performance of a from-scratch model
by using standard cross-attention and unfreezing
the encoder partway through training.

Overall, the second recipe demonstrates a viable
approach for efficient pre-training of both a multi-
lingual encoder and a multilingual seq2seq model,
matching the performance of training each model
from scratch, while using 27% less total compute.

See Appendix A for additional related work.

2 Pre-Training Setup

We describe our pre-training objectives, models,
datasets, two recipes for initializing one model type
from the other, and compare compute costs.

2.1 Models

We pre-train ten models (Table 1): one from-
scratch encoder, five from-scratch seq2seq models,
one encoder from a seq2seq model with continued
MLM training, and three two-stage seq2seq models
warm-started with the from-scratch encoder. We re-
port the pre-training Compute Cost for each, where
“TU” (Training Units) is defined as 100k update
steps for 12 model layers with hidden dimension
1024 and batch size 1M tokens (Appendix D, E).

2.1.1 Encoder Model From Scratch

We train an encoder model (“roberta-12e” in Ta-
ble 1) following a similar recipe to XLM-RoBERTa
(Conneau et al., 2020a), using the MLM objectve
(Figure 2a) of randomly masking 15% of subword
tokens, as introduced in BERT (Devlin et al., 2019).
We use a batch size of 1M tokens and train for 500k
update steps. Notably, these settings match our
seq2seq models. We use “PreLayerNorm” (Xiong
et al., 2020), moving the layer norms to inside
residual blocks to improve training stability.

2.1.2 Seq2Seq Objectives

Our seq2seq training follows the architecture and
de-noising task of BART and mBART (Lewis et al.,
2020; Liu et al., 2020); the only architecture change
we make is to again use PreLayerNorm.

The de-noising objective selects 15% of the to-
kens in the input (spans of length ∼ Poisson(3)),
and either (i) simply drops them, or (ii) replaces
each selected span with a single mask token. The
model is trained to reconstruct the original input
entirely. See Figures 2b and 2c, respectively. We
add a suffix “-mask” to the model names that use
masking instead of dropping the tokens. Intuitively,
adding an explicit mask token for de-noising makes
the reconstruction task easier, as the decoder knows
exactly where the missing tokens are needed.

2.1.3 Seq2Seq Models From Scratch

All of our seq2seq models use 12 encoder layers
(“12e”). The first five models are trained from
scratch starting from randomly initialized weights.
The models “bart-12e12d” and “bart-12e12d-mask”
use 12-layer decoders (same number as encoder lay-
ers) using the seq2seq de-noising training objective
without masking and with masking, respectively.
The remaining three models use a smaller decoder
of either 2 layers (“bart-12e2d” without masking,
“bart-12e2d-mask” with masking) or 1 layer (“bart-
12e1d-mask”, with masking). We hypothesize that
reducing the size of the decoder may strengthen the
encoder when it is extracted and used on its own.

2.1.4 Recipe 1: Encoder of Seq2Seq + MLM

We extract the encoder from the seq2seq model
“bart-12e12d” and continue training via MLM for
100k updates (“bart-12e12d+mlm”). We initialize
the MLM head from the input embedding and untie.

2.1.5 Recipe 2: Two-Stage Seq2Seq Models

Finally, we train three seq2seq models following
the two-stage setup (Figure 1). We initialize the en-
coder weights of the seq2seq model with the MLM
encoder “roberta-12e” (Section 2.1.1) and train via
seq2seq de-noising without masking. The first two
models train for 500k updates with the encoder al-
ways frozen: “2stage-bart-12e12d” uses standard
cross-attention, where the decoder attends to only
the final encoder layer, and “2stage-bart-12e12d-
attn-f” uses a novel application of attention fusion
(Cao et al., 2022) during cross-attention, where the
decoder attends to all encoder layers.
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Model Encoder
Layers

Decoder
Layers

Encoder
Updates

Decoder
Updates

Compute
Cost (TU)

Encoder Model From Scratch (MLM only)

roberta-12e 12 0 500k 0 5.0

Seq2Seq Models From Scratch (de-noising only)

bart-12e12d 12 12 500k 500k 10.0
bart-12e12d-mask 12 12 500k 500k 10.0

bart-12e2d 12 2 500k 500k 5.8
bart-12e2d-mask 12 2 500k 500k 5.8
bart-12e1d-mask 12 1 500k 500k 5.4

Recipe 1: Encoder of Seq2Seq + MLM

bart-12e12d+mlm 12 12 500k (s2s) + 100k 500k 10.0 (s2s) + 1.0 = 11.0

Recipe 2: Two-Stage Seq2Seq Models (warm-start with MLM encoder)

2stage-bart-12e12d 12 12 500k (MLM) 500k 5.0 (MLM) + 7.5 = 12.5
2stage-bart-12e12d-attn-f 12 12 500k (MLM) 500k 5.0 (MLM) + 7.5 = 12.5
2stage-bart-12e12d-unfrz 12 12 500k (MLM) + 150k 200k + 150k 5.0 (MLM) + 6.0 = 11.0

Table 1: Model architecture details. All models use a batch size of 1M tokens with hidden dimension of 1024,
feed-forward dimension of 4096 and 16 attention heads.

The last model, “2stage-bart-12e12d-unfrz” uses
standard cross-attention and unfreezes the en-
coder partway through training, applying 200k
update steps with the encoder frozen, then 150k
update steps with the encoder unfrozen.

In all cases, we initialize and tie the decoder
embeddings from/to the encoder embeddings and
keep them frozen as long as the encoder is frozen.
The LM head is also initialized from the encoder
embeddings, but it is untied from the embeddings
and unfrozen from the beginning of the training.

2.1.6 Compute Cost Comparison

The baseline of training both models from scratch
has a compute cost of 15.0 TU: 5.0 TU for “roberta-
12e” plus 10.0 TU for “bart-12e12d”. Our proposed
recipes reduce the total compute cost either by 17%
(to 12.5 TU) or by 27% (to 11.0 TU).

2.2 Pretraining Dataset

We pre-train on a combination of Wikipedia and
mC4 (Xue et al., 2021) data in 12 languages:
Arabic, English, French, German, Hindi, Italian,
Japanese, Marathi, Portuguese, Spanish, Tamil, and
Telugu. We pack sequences of tokens to produce
sequences of approximately 512 subword units. We
allow unrelated content to be packed together in the
same sequence, separated with a special symbol
“[DOC]”. Maintaining a relatively constant number
of subword sequences reduces padding and results
in efficient compute. We up-sample data for differ-
ent languages following Conneau et al. (2020a).

3 Fine-Tuning Results

We present the results on fine-tuning our pre-
trained models. All runs are averaged over three
random seeds and reported as mean ± standard
deviation. See Appendix C for hyperparameters.

3.1 Encoder Model Results
In Table 2, we compare the performance of our en-
coder models on four datasets: (1) XNLI (Conneau
et al., 2018) sentence-pair classification, (2) mA-
TIS++ (Xu et al., 2020) joint Intent Classification
(IC) and Slot Labeling (SL), (3) WikiANN (Pan
et al., 2017) token-level Named Entity Recognition
(NER), and (4) UDPOS (Nivre et al., 2020) token-
level Part-of-Speech tagging (POS) (XTREME (Hu
et al., 2020) version). For each task, we follow the
cross-lingual zero-shot setting: train and validate
on English data only, then report on the test set in
English (“en”) and the average over the zero-shot
langauges (“avg-0s”). Appendix B shows results
on each language.

We find that the MLM encoder performs best
on all tasks except for mATIS++ IC avg-0s set-
ting. The encoder of seq2seq (“bart-12e12d”) is
only slightly behind on the sentence-level tasks,
on en/avg-0s by 0.6/1.1 points on XNLI (83.9 vs.
84.5 / 74.7 vs. 75.8), and 1.0/1.0 points on mA-
TIS++ IC (96.8 vs. 97.8 / 86.2 vs. 87.2). However,
the gap is much larger on the sequence labeling
tasks: on en/avg-0s, 3.2/17.3 points on mATIS++
SL (92.5 vs. 95.7 / 44.3 vs. 61.6), 6.4/9.0 points on
WikiANN NER (76.6 vs. 83.0 / 52.1 vs. 61.1), and
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Classification Sequence Labeling

Encoder
XNLI (acc.) mATIS++ IC (acc.) mATIS++ SL (f1) WikiANN (f1) UDPOS (f1)
en avg-0s en avg-0s en avg-0s en avg-0s en avg-0s

Encoder Model From Scratch (MLM only)

roberta-12e 84.5±0.5 75.8±0.2 97.8±0.1 87.2±4.1 95.7±0.1 61.6±0.6 83.0±0.1 61.1±0.4 95.8±0.0 73.5±0.2

Encoder of Seq2Seq Models (de-noising only)

bart-12e12d 83.9±0.2 74.7±0.3 96.8±0.1 86.2±1.5 92.5±0.3 44.3±1.3 76.6±0.2 52.1±0.9 94.3±0.7 61.5±0.4

bart-12e12d-mask 83.9±0.4 75.0±0.6 97.1±0.1 87.3±0.7 91.1±0.9 41.3±1.3 73.2±0.1 48.4±0.6 93.3±0.1 55.1±0.4

bart-12e2d 71.3±0.1 59.7±0.5 96.1±0.1 79.1±0.8 91.4±0.1 38.2±1.7 69.3±0.5 42.9±0.1 92.1±0.1 50.7±0.5

bart-12e2d-mask 82.9±0.3 73.8±0.2 96.8±0.1 88.1±0.9 92.3±0.3 48.0±1.4 76.5±0.2 54.0±0.6 93.3±0.1 54.0±0.6

bart-12e1d-mask 82.4±0.2 72.7±0.1 97.0±0.1 87.6±0.5 92.8±0.5 49.3±1.2 74.6±0.5 48.5±0.3 92.4±0.1 46.3±1.7

Recipe 1: Encoder of Seq2Seq Model + MLM

bart-12e12d+mlm 80.3±0.4 69.0±0.4 97.2±0.4 83.9±1.6 95.3±0.2 56.5±2.8 79.9±0.2 47.5±0.5 95.1±0.0 60.7±0.9

Table 2: Encoder results per task, English and avg. zero-shot. The best (second) mean result is bolded (underlined).

Seq2Seq Models mTOP (acc.) XSUM (ROUGE)
en avg-0s R-1 R-2 R-L

Seq2Seq Models From Scratch (de-noising only)

bart-12e12d 83.4±0.2 45.7±1.1 40.37±0.07 17.37±0.06 32.46±0.06

bart-12e12d-mask 83.2±0.5 46.9±0.5 40.63±0.09 17.48±0.10 32.63±0.06

Recipe 2: Two-Stage Seq2Seq Models (warm-start with MLM encoder)

2stage-bart-12e12d 82.0±1.1 46.8±1.1 40.12±0.06 17.13±0.03 32.16±0.01

2stage-bart-12e12d-attn-f 80.6±1.3 46.4±0.5 40.13±0.06 17.24±0.07 32.28±0.03

2stage-bart-12e12d-unfrz 83.3±0.2 48.2±0.5 40.63±0.11 17.58±0.03 32.65±0.05

Table 3: Seq2Seq results on mTOP cross-lingual semantic parsing and XSUM English summarization.

1.5/12.0 on UDPOS (94.3 vs. 95.8 / 61.5 vs. 73.5).
This suggests that seq2seq pre-training may give
the encoder the knowledge to perform sentence-
level tasks, while MLM pre-training may be partic-
ularly effective for sequence labeling tasks which
use the token-level representations directly.

With a 12-layer decoder, the explicit mask to-
ken during seq2seq pre-training does not seem to
improve the encoder. However, when the decoder
has only 2 layers, the mask token is crucial: “bart-
12e2d-mask” out-performs “bart-12e2d” by a wide
margin across tasks. We hypothesize that the mask
token makes de-noising easier, by signaling where
tokens should be filled in, and without this signal,
the task is too challenging for a seq2seq model
with just a 2-layer decoder. Reducing the decoder
further to only 1 layer does not benefit the encoder.

Continuing training the seq2seq-extracted en-
coder on MLM for 100k updates does not close
the gap to the from-scratch encoder across datasets.
Some tasks improve, while others degrade.

3.2 Seq2Seq Model Results

We evaluate the generation quality of our seq2seq
models on two datasets: mTOP (Li et al., 2021)
cross-lingual zero-shot semantic parsing, and
XSUM (Narayan et al., 2018) English summariza-
tion. For mTOP, following CLASP (Rosenbaum
et al., 2022a), we use space-joined tokens as in-
put, word sentinels, and SCIEM (Space- and Case-
Insensitive Exact Match) metric. For both datasets,
we generate outputs using beam search with k=3.

As shown in Table 3, the two-stage model with
encoder unfrozen partway through training is
on-par with the from-scratch seq2seq model:
compared to “bart-12e12d ”, “2stage-bart-12e12d-
unfrz” is only 0.1 points behind on mTOP en (83.3
vs. 83.4) yet 2.5 points ahead on cross-lingual zero-
shot (48.2 vs. 45.7). On XSUM, the two-stage
model is on-par or slightly better than the from-
scratch seq2seq models.

Masking during seq2seq pre-training does not
greatly impact generation quality. When the en-
coder is frozen (“2stage-bart-12e12d”), the results
are slightly behind; attention fusion (“2stage-bart-
12e12d-attn-f”) does not provide a clear benefit.
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Overall, our proposed two-stage seq2seq pre-
training recipe provides both a multilingual en-
coder and a seq2seq model on-par with the two
models trained from scratch, while reducing
compute cost by 27% (from 15.0 to 11.0 TU).

4 Conclusion and Future Work

In this work, we studied recipes to efficiently pre-
train both a multilingual encoder and a seq2seq
model by re-using the weights from one model for
the other. We found that the most effective recipe
is to start training of a seq2seq model from a pre-
trained encoder and unfreeze it partway through the
training. Future work can explore even more effi-
cient pre-training strategies such as jointly training
on MLM and sequence-level de-noising objectives,
and probe further why the encoders trained as part
of a seq2seq model do not do well on sequence
labeling tasks.

5 Limitations

Our proposed two-stage training recipe is beneficial
under the assumption that a pre-trained model is
needed for generative as well as sequence labeling
tasks. We believe that is typically the case, as one
tries to offset the pre-training investment by using
the model for as many tasks as possible, but this
assumption might not apply in all cases. While
we assess the effect of randomness on fine-tuning
results by using multiple seeds, we have not done
that for the pre-training itself. Even at our medium-
size scale, it is already prohibitively expensive to do
so. The evidence for the effectiveness of the two-
stage approach is also limited by the number of
tasks evaluated (2 sequence classification tasks, 2
sequence labeling tasks, 2 generation tasks), but we
believe it is a reasonable trade-off between robust
results and compute investment.
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A Additional Related Work

Pre-trained Transformer models (Vaswani et al., 2017) are commonly used in Natural Language Processing
(NLP) for both transfer learning in downstream tasks (Devlin et al., 2019; Liu et al., 2019; Radford and
Narasimhan, 2018; Radford et al., 2019) and for in-context learning (Brown et al., 2020). Transformers
were originally designed as sequence-to-sequence (seq2seq) models with an encoder and a decoder
component (Vaswani et al., 2017). However, all three obvious variants of this architecture are now
common: encoder-only (Devlin et al., 2019), decoder-only (Radford and Narasimhan, 2018; Radford
et al., 2019; Brown et al., 2020; Chowdhery et al., 2022; Zhang et al., 2022; Thoppilan et al., 2022) and
seq2seq (Lewis et al., 2020; Raffel et al., 2020b; Sanh et al., 2021; Dong et al., 2019; Bao et al., 2020).

Commonly, encoder transformer models are pre-trained using the MLM objective (Devlin et al., 2019).
Decoders are pre-trained using a next-token left-to-right prediction (causal) language modeling objective
(Radford and Narasimhan, 2018) or some version of autoregressive de-noising (Lewis et al., 2020).
Seq2seq models often combine these objectives (Lewis et al., 2020; Bao et al., 2020).

We follow the multilingual approach of models such as XLM-RoBERTa (Conneau et al., 2020b)
(encoder-only) and mT5/mBART (Xue et al., 2021; Liu et al., 2020) (seq2seq), where the model is
pre-trained on data from multiple languages. This enables cross-lingual zero-shot fine-tuning, where the
model is fine-tuned on task data only from a single language (usually English), then evaluated on multiple
languages.

Previous literature has explored using a pre-trained encoder to initialize a larger encoder (Chen
et al., 2022) or a seq2seq model (Rothe et al., 2020). The latter was applied to large-scale models, e.g.
AlexaTM 20B and AlexaTM 5B (Soltan et al., 2022; Rosenbaum et al., 2022b; FitzGerald et al., 2022).
Our work provides the first direct comparison of warm-starting vs. from-scratch seq2seq pre-training
using the same data and codebase.

Recently, Sentence-T5 (Ni et al., 2022) studied the opposite direction, showing that extracting the
encoder from T5 (Raffel et al., 2020a) can out-perform BERT on several sentence-level tasks. We also
explore extracting the encoder from a seq2seq model, adding the novelty of the first explicit comparison
with MLM encoders using the same pre-training data and codebase. Furthermore, whereas Sentence-T5
studies only sentence level tasks in English, we study both sentence-level and token-level (e.g. sequence
labeling) multilingual tasks. We show that the encoder extracted from a seq2seq model under-performs on
token-level tasks, motivating our proposed sequential pre-training recipes.

EncT5 (Liu et al., 2022) proposes an alternative method to fine-tune the encoder from a seq2seq model
for classification and sequence labeling tasks, by attaching a randomly initialized one-layer decoder with
cross-attention. They report substantial improvements on UDPOS (Part-of-Speech tagging, a sequence
labeling task) compared to an mBERT (MLM encoder) model of similar encoder size, however the
comparison is between models pre-trained on different data and codebases. For a cleaner comparison, we
would need to implement and evaluate the EncT5 framework with our models, which is challenging since
no reference implementation is available, and also because Liu et al. (2022) provide only the average
number across languages for UDPOS and do not report per language. Therefore, we defer a more thorough
study of EncT5 vs. standard feed-forward layer classification heads to future work.

B Results by Language

Our main results in Section 3 (Tables 2 and 3) show only the English and average zero-shot results for
brevity. Here, for completeness, we show the results on each langauge for XNLI (Table 4), mATIS++
Intent Classification (IC) (Table 5), mATIS++ Slot Labeling (SL) (Table 6), WikiANN NER (Table 7),
UDPOS (Table 8), and mTOP semantic parsing (Table 9).

C Fine-tuning Hyperparameters

Table 10 shows the hyperparameters for fine-tuning the pre-trained models. For encoders, we first
performed a single run with learning rates among 1e-6, 3e-6, 1e-5, 3e-5, 1e-4 for each task and model,
and found that the best learning rate was nearly always 1e-5 or 3e-5, with only small differences between
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Encoder en ar de es fr hi avg-0s

Encoder Model From Scratch (MLM only)

roberta-12e 84.5±0.5 72.9±0.2 76.9±0.3 79.9±0.2 78.7±0.3 70.5±0.8 75.8±0.2

Encoder of Seq2Seq Models (de-noising only)

bart-12e12d 83.9±0.2 71.6±0.6 76.0±0.5 79.2±0.8 77.8±0.1 68.9±0.3 74.7±0.3

bart-12e12d-mask 83.9±0.4 71.9±0.7 76.3±0.2 79.5±0.6 78.5±0.5 68.5±1.3 75.0±0.6

bart-12e2d 71.3±0.1 56.7±0.7 60.3±0.3 64.2±0.7 63.9±0.6 53.3±0.2 59.7±0.5

bart-12e2d-mask 82.9±0.3 70.9±0.4 74.7±0.5 78.1±0.3 76.9±0.4 68.2±0.5 73.8±0.2

bart-12e1d-mask 82.4±0.2 69.6±0.3 73.5±0.3 77.0±0.1 76.3±0.4 66.9±0.2 72.7±0.1

Recipe 1: Encoder of Seq2Seq Model + MLM

bart-12e12d+mlm 80.3±0.4 65.6±0.4 70.6±0.2 72.9±0.8 72.6±0.2 63.4±0.8 69.0±0.4

Table 4: Encoder model results by language on XNLI test sets: accuracy.

Encoder en de es fr hi ja pt avg-0s

Encoder Model From Scratch (MLM only)

roberta-12e 97.8±0.1 92.7±2.2 96.2±0.5 94.6±1.4 79.5±4.5 65.6±17.1 94.3±2.4 87.2±4.1

Encoder of Seq2Seq Models (de-noising only)

bart-12e12d 96.8±0.1 91.0±2.5 91.0±0.4 93.1±1.5 77.7±3.6 72.1±4.5 92.2±1.8 86.2±1.5

bart-12e12d-mask 97.1±0.1 89.7±1.1 94.2±0.4 94.0±0.8 78.6±0.7 75.0±3.4 91.9±1.1 87.3±0.7

bart-12e2d 96.1±0.1 80.4±8.1 84.7±3.5 86.1±3.0 74.3±1.3 64.4±5.6 84.6±2.6 79.1±0.8

bart-12e2d-mask 96.8±0.1 92.4±0.6 94.5±0.5 94.7±0.5 79.1±1.5 73.9±5.1 94.4±0.4 88.1±0.9

bart-12e1d-mask 97.0±0.1 90.1±0.8 94.8±0.4 93.3±0.4 79.4±0.8 76.5±3.0 91.6±0.4 87.6±0.5

Recipe 1: Encoder of Seq2Seq Model + MLM

bart-12e12d+mlm 97.2±0.4 86.1±4.2 92.0±0.8 91.1±1.5 76.1±2.7 70.1±4.4 88.2±3.3 83.9±1.6

Table 5: Encoder model results by language on mATIS++ test sets, Intent Classificaiton (IC) accuracy.

those two options by model. For consistency, we then fixed the learning rate for each task and ran each
model on each task with three random seeds. We use Adam (Kingma and Ba, 2015) optimization. We
freeze the embedding layer which we find generally slightly improves the cross-lingual zero-shot results.

For XNLI, we follow the standard practice established in BERT (Devlin et al., 2019) to attach the
classification head to the first token (“<s>” for all of our models). We also explored max pooling across
all tokens and did not observe a significant difference in performance.

For mATIS++, following Chen et al. (2019), we use two separate classification heads, one for Intent
Classification (IC) attached to the encoder output of the first subword token of the sequence, and the
second for Slot Labeling (SL) attached to the first subword of each whole word in the sequence.

Similarly, for WikiANN NER and UDPOS, we again use a single classification head attached to the
first subword of each whole word in the sequence. When computing f1 score for sequence labeling tasks
(mATIS++ SL and WikiANN NER), we ignore the “O” (“Outside”) tag, using the seqeval (Nakayama,
2018) implementation which takes into account the BIO tags present in WikiANN.

D Details on Compute Cost

We provide details on the compute cost reported in Table 1. The unit “TU” (Training Updates) is defined as
the compute cost for 100k updates (forward and backward pass) of 12 model layers with hidden dimension
1024 and batch size 1M tokens. The encoder-only MLM model trains for 500k updates, for Compute Cost
5.0 TU. The Seq2Seq Models From Scratch have more layers, and therefore a larger Compute Cost for
500k updates. For example, “bart-12e12d” has 12 layers each for encoder and decoder, resulting in a
compute cost of 10.0 for 500k updates. As a baseline, training both the MLM encoder and the seq2seq
models from scratch would incur a compute cost of 5.0 + 10.0 = 15.0 TU.
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Encoder en de es fr hi ja pt avg-0s

Encoder Model From Scratch (MLM only)

roberta-12e 95.7±0.1 82.8±1.2 81.8±0.6 72.3±1.7 31.8±1.3 20.9±1.2 79.8±0.8 61.6±0.6

Encoder of Seq2Seq Models (de-noising only)

bart-12e12d 92.5±0.3 57.0±4.8 52.6±0.9 58.5±0.4 25.1±1.3 12.6±1.5 60.0±3.1 44.3±1.3

bart-12e12d-mask 91.1±0.9 54.7±2.6 52.9±2.4 52.5±0.9 23.2±2.9 10.5±1.5 53.9±1.7 41.3±1.3

bart-12e2d 91.4±0.1 52.0±4.1 53.2±2.3 50.3±1.7 11.4±0.8 3.9±1.5 58.3±2.2 38.2±1.7

bart-12e2d-mask 92.3±0.3 63.7±2.5 60.7±1.1 60.8±1.8 26.0±1.5 10.4±0.9 66.4±2.1 48.0±1.4

bart-12e1d-mask 92.8±0.5 65.6±4.8 59.5±0.4 61.7±0.3 24.7±1.7 16.3±1.8 68.0±1.6 49.3±1.2

Recipe 1: Encoder of Seq2Seq Model + MLM

bart-12e12d+mlm 95.3±0.2 70.5±7.6 79.7±1.2 67.3±1.4 33.5±3.9 15.9±3.8 72.2±0.6 56.5±2.8

Table 6: Encoder model results by language on mATIS++ test sets, Slot Labeling (SL) f1 score.

Encoder en ar de es fr hi it ja mr pt ta te avg-0s

Encoder Model From Scratch (MLM only)

roberta-12e 83.0 45.7 73.5 68.9 75.4 71.5 76.7 28.0 57.5 74.7 53.9 46.5 61.1
±0.1 ±2.1 ±0.7 ±0.5 ±0.4 ±0.5 ±0.7 ±1.0 ±2.0 ±0.2 ±0.3 ±0.7 ±0.4

Encoder of Seq2Seq Models (de-noising only)

bart-12e12d 76.6 44.4 64.8 61.1 70.7 62.2 69.7 10.2 41.0 69.7 42.0 37.0 52.1
±0.2 ±1.8 ±1.2 ±1.7 ±0.8 ±2.2 ±0.7 ±0.6 ±1.9 ±0.4 ±0.2 ±2.3 ±0.9

bart-12e12d-mask 73.2 30.6 57.7 59.8 67.4 60.7 66.1 8.1 41.3 68.9 37.6 33.8 48.4
±0.1 ±0.8 ±0.3 ±0.5 ±0.5 ±0.1 ±0.5 ±0.7 ±2.9 ±1.5 ±1.1 ±1.9 ±0.6

bart-12e2d 69.3 31.0 53.5 54.9 61.2 48.7 62.0 7.1 33.2 61.9 31.1 28.0 42.9
±0.5 ±1.7 ±1.0 ±0.5 ±0.5 ±0.8 ±0.8 ±0.4 ±3.3 ±0.2 ±0.8 ±1.0 ±0.1

bart-12e2d-mask 76.5 45.2 63.5 65.0 70.8 64.0 69.9 10.3 44.4 71.5 47.7 41.4 54.0
±0.2 ±1.9 ±0.5 ±2.4 ±0.5 ±1.0 ±0.3 ±0.7 ±3.3 ±0.5 ±2.4 ±3.1 ±0.6

bart-12e1d-mask 74.6 40.9 54.5 64.0 64.3 54.3 65.4 9.4 43.0 67.3 37.8 32.1 48.5
±0.5 ±2.5 ±1.6 ±2.0 ±0.6 ±1.0 ±0.3 ±0.8 ±0.4 ±0.5 ±0.9 ±2.3 ±0.3

Recipe 1: Encoder of Seq2Seq Model + MLM

bart-12e12d+mlm 79.9 29.8 62.8 60.9 68.9 58.7 68.7 13.6 29.4 69.5 33.7 27.0 47.5
±0.2 ±1.0 ±0.6 ±0.5 ±0.3 ±1.4 ±0.4 ±0.3 ±0.8 ±0.7 ±1.1 ±0.9 ±0.5

Table 7: Encoder model results by language on WikiANN Named Entity Recognition (NER) test sets, f1 score.

Recipe 1 (Encoder of Seq2Seq + MLM), first pays compute cost 10.0 TU for the seq2seq training, then
1.0 TU for 100k MLM updates on the extracted encoder, for a total of 11.0 TU.

For Recipe 2 (Two-Stage Seq2Seq Models warm-started with MLM encoder), we first pay a compute
cost of 5.0 TU from MLM pre-training of the encoder, then add compute cost for the second stage seq2seq
pre-training. When the encoder is frozen, we only need to compute the forward pass for the encoder, not
the backward pass. We estimate that when the encoder is frozen, its forward pass uses 1/2 the compute as
a forward and backward pass would use. (In reality, the ratio is likely less, as we also save memory by not
needing to store the optimizer states.) Therefore, when the encoder is frozen for “2stage-bart-12e12d”
and “2stage-bart-12e12d-attn-f”, the 500k decoder updates incur a compute cost of 2.5 on the encoder
side and 5.0 on the decoder side. Adding this to the 5.0 for MLM initialization gives a total compute cost
of 5.0 + 7.5 + 12.5 TU.

For “2stage-bart-12e12d-unfrz”, the 200k updates with frozen encoder incur a compute cost of 1.0 TU
on the encoder side and 2.0 TU on the decoder size for a total of 3.0 TU. During the final 150k updates,
the encoder is unfrozen, so the compute cost is 3.0. Adding the 5.0 compute cost for MLM Encoder
initialization, the total compute cost for this model is 5.0 + 3.0 + 3.0 = 11.0 TU.
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Encoder en ar de es fr hi it ja mr pt ta te avg-0s

Encoder Model From Scratch (MLM only)

roberta-12e 95.8 65.9 86.2 85.6 77.6 67.5 88.0 44.9 74.4 86.1 55.1 76.8 73.5
±0.0 ±0.2 ±0.2 ±0.5 ±0.2 ±0.6 ±0.4 ±1.3 ±1.7 ±0.3 ±0.1 ±1.2 ±0.2

Encoder of Seq2Seq Models (de-noising only)

bart-12e12d 94.3 54.0 75.0 70.7 66.7 57.0 71.2 32.1 61.5 72.8 47.4 68.6 61.5
±0.7 ±0.4 ±3.9 ±5.5 ±1.1 ±1.4 ±2.4 ±7.9 ±9.7 ±3.0 ±4.5 ±7.8 ±0.4

bart-12e12d-mask 93.3 49.0 62.4 58.9 56.4 50.6 60.9 27.3 60.0 64.3 47.3 69.0 55.1
±0.1 ±1.3 ±1.2 ±0.5 ±0.4 ±1.4 ±0.6 ±1.1 ±1.1 ±0.5 ±0.5 ±0.9 ±0.4

bart-12e2d 92.1 43.5 60.8 58.4 54.6 42.3 58.5 16.8 57.2 63.2 41.4 61.1 50.7
±0.1 ±0.9 ±1.5 ±1.7 ±1.4 ±0.3 ±1.3 ±0.3 ±3.0 ±0.9 ±0.3 ±1.2 ±0.5

bart-12e2d-mask 93.3 48.9 61.7 52.8 52.9 48.8 58.1 27.1 63.3 59.3 48.1 73.4 54.0
±0.1 ±0.6 ±2.6 ±0.9 ±1.8 ±0.5 ±1.2 ±1.2 ±1.5 ±1.6 ±1.0 ±2.2 ±0.6

bart-12e1d-mask 92.4 44.8 52.5 43.8 43.8 43.0 47.9 19.8 58.4 53.0 42.1 60.0 46.3
±0.1 ±1.4 ±3.4 ±1.6 ±2.8 ±2.6 ±3.2 ±1.7 ±1.9 ±1.5 ±1.1 ±1.9 ±1.7

Recipe 1: Encoder of Seq2Seq Model + MLM

bart-12e12d+mlm 95.1 53.5 78.2 76.1 68.2 56.0 72.8 39.6 49.4 74.9 41.9 57.5 60.7
±0.0 ±1.3 ±1.1 ±0.7 ±1.8 ±2.0 ±0.7 ±1.4 ±1.0 ±1.0 ±0.3 ±1.9 ±0.9

Table 8: Encoder model results by language on UDPOS Part-of-Speech tagging (POS) test sets, f1 score.

Model en fr de es hi avg-0s

Seq2Seq Models From Scratch (de-noising only)

bart-12e12d 83.4 ±0.2 54.3 ±1.2 48.5 ±1.7 51.6 ±1.6 28.4 ±0.5 45.7 ±1.1
bart-12e12d-mask 83.2 ±0.5 53.9 ±0.6 51.0 ±0.4 53.2 ±0.9 29.3 ±0.2 46.9 ±0.5

Recipe 2: Two-Stage Seq2Seq Models (warm-start with MLM encoder)

2stage-bart-12e12d 82.0 ±1.1 52.3 ±.06 49.6 ±1.4 54.4 ±0.5 28.8 ±0.3 46.3 ±0.3
2stage-bart-12e12d-attn-f 80.6 ±1.3 52.6 ±0.7 49.8 ±0.7 53.7 ±0.8 29.7 ±0.4 46.4 ±0.5
2stage-bart-12e12d-unfrz 83.3 ±0.2 55.2 ±1.1 51.3 ±1.6 55.3 ±1.2 31.1 ±0.2 48.2 ±0.5

Table 9: Seq2Seq model results by language on mTOP semantic parsing test sets, SCIEM.

E Pre-Training Details

We show an example sentence for each of our pre-training objectives in Figure 2.
Models were pre-trained (8 or 16 machines) and fine-tuned (1 machine) on AWS p3dn.24xlarge

instances. For MLM pre-training, we use a peak learning rate of 1.5e-4 (1e-4 for the second stage of
Recipe 1) warmed up over 5k update steps (1k for the second stage of Recipe 1) and decayed linearly
down to 5e-6 over the total number of updates (500k or 100k, respectively). For seq2seq pre-training, we
use the same learning rate as MLM pre-training: peak of 1.5e-4, warmed up over 5k updates, and linearly
decayed down to 5e-6 for the duration of pre-training. For all pre-training runs, we use dropout of 0.1.

Our code is derived from HuggingFace (Wolf et al., 2020). We use DeepSpeed (Rasley et al., 2020)
ZeRO Stage 1 to accelerate training.

F Dataset Sources

We show in Table 11 the source locations of the datasets we use for fine-tuning evaluation.
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Parameter Encoder tasks Seq2Seq tasks
XNLI mATIS++ WikiANN UDPOS mTOP XSUM

Peak Learning Rate (LR) 1e-5 3e-5 3e-5 3e-5 5e-6 5e-6

LR warmup type linear
from 0

linear
from 0

linear
from 0

linear
from 0

exponential
from 1e-7

exponential
from 1e-7

LR warmup num steps 1000 500 300 1000 1000 1000
LR decay type linear to 0 linear to 0 linear to 0 linear to 0 linear to 1e-7 linear to 1e-7
Batch size 128 128 128 128 32 32
Epochs 5 200 20 56 200 200
Validation Metric Accuracy Slot Labeling f1 Slot Labeling f1 Slot Labeling f1 Exact Match Perplexity
Max number of updates 30k 7k 3k 9k ∼50k ∼50k

Classification head(s) [512] gelu
[256,256] gelu

each for
IC and SL

[512] gelu [512] gelu – –

Table 10: Hyperparameters for fine-tuning. All models use AdamW with betas (0.9, 0.99), weight decay 0.1, and
dropout 0.1. For each run, we select the checkpoint with the best value of the target metric on the validation set.

(a) Masked Language Modeling (MLM). (b) Seq2Seq de-noising. (c) Seq2Seq de-noising with masking.

Figure 2: The training objectives we explore, with the example sentence “The Toronto Maple Leafs won today”.

Dataset Source

XNLI https://huggingface.co/datasets/xnli
mATIS++ https://github.com/amazon-science/multiatis
WikiANN https://huggingface.co/datasets/wikiann
UDPOS https://huggingface.co/datasets/xtreme
mTOP https://fb.me/mtop_dataset
XSUM https://huggingface.co/datasets/xsum

Table 11: Source Locations for the fine-tuning datasets we evaluate on.
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