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Abstract
Quality Estimation (QE) is the task of eval-
uating machine translation output in the ab-
sence of reference translation. Conventional
approaches to QE involve training separate
models at different levels of granularity viz.,
word-level, sentence-level, and document-level,
which sometimes lead to inconsistent predic-
tions for the same input. To overcome this
limitation, we focus on jointly training a sin-
gle model for sentence-level and word-level
QE tasks in a multi-task learning framework.
Using two multi-task learning-based QE ap-
proaches, we show that multi-task learning
improves the performance of both tasks. We
evaluate these approaches by performing exper-
iments in different settings, viz., single-pair,
multi-pair, and zero-shot. We compare the
multi-task learning-based approach with base-
line QE models trained on single tasks and
observe an improvement of up to 4.28% in
Pearson’s correlation (r) at sentence-level and
8.46% in F1-score at word-level, in the single-
pair setting. In the multi-pair setting, we ob-
serve improvements of up to 3.04% at sentence-
level and 13.74% at word-level; while in the
zero-shot setting, we also observe improve-
ments of up to 5.26% and 3.05%, respectively.
We make the models proposed in this paper
publically available1.

1 Introduction

Quality Estimation (QE) is a sub-task in the Ma-
chine Translation (MT) field. It facilitates the eval-
uation of MT output without a reference translation
by predicting its quality rather than finding its sim-
ilarity with the reference (Specia et al., 2010). QE
is performed at different levels of granularity, viz.,
word-level QE (Ranasinghe et al., 2021), sentence-
level QE (Ranasinghe et al., 2020b), and document-
level QE (Ive et al., 2018).

In the sentence-level QE task, current models
predict the z-standardized Direct Assessment (DA)

1https://github.com/cfiltnlp/QE_MTL

score when a source sentence and its translation
are provided as inputs. The DA score is a number
in the range of 0 to 100, denoting the quality of
the translation, obtained from multiple human an-
notators. These scores are then standardized into
z-scores, which are used as labels to train the QE
model (Graham et al., 2016).

Unlike the sentence-level QE task, the word-
level QE task consists of training a model to predict
the ‘OK’ or ‘BAD’ tag for each token in a source
sentence and its translation. These tags are ob-
tained automatically by comparing the translation
with its human post-edits using a token-matching
approach. Each source sentence token is tagged as
‘OK’ if its translation appears in the output and is
tagged as ‘BAD’ otherwise. Similarly, a transla-
tion token is assigned an ‘OK’ tag if it is a correct
translation of a source sentence token, and ‘BAD’
otherwise. Apart from the tokens in the transla-
tion, the gaps between the translation tokens are
also assigned OK/BAD tags. In case of missing
tokens, the gap is tagged as ‘BAD’, and ‘OK’ oth-
erwise (Logacheva et al., 2016).

To perform each of these tasks, various deep
learning-based approaches are being used (Zerva
et al., 2022). While these approaches achieve ac-
ceptable performance by focusing on a single task,
the learning mechanism ignores information from
other QE tasks that might help it do better. By
sharing information across related tasks, one can
essentially expect the task performance to improve,
especially when the tasks are closely related as is
the case with the sentence-level and word-level QE.
Also, having a separate model for each QE task can
cause problems in practical scenarios, like having
higher memory and computational requirements.
In addition, the different models can produce con-
flicting information e.g. high DA score, but many
errors at word level.

In this paper, we utilize two multi-task learn-
ing (MTL)-based (Ruder, 2017) approaches for
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word-level and sentence-level QE tasks with the
help of a single deep neural network-based archi-
tecture. We perform experiments with existing QE
datasets (Specia et al., 2020; Zerva et al., 2022)
with both MTL approaches to combine word-level
and sentence-level QE tasks. We test the following
scenarios: a) single-pair QE, b) multi-pair QE, and
c) zero-shot QE. The code and models are made
available to the community via GitHub.

To the best of our knowledge, we introduce a
novel application of the Nash-MTL (Navon et al.,
2022) method to both tasks in Quality Estimation.
Our contributions are:

1. showing that jointly training a single model
using MTL for sentence and word-level QE
tasks improves performance on both tasks. In
a single-pair setting, we observe an improve-
ment of up to 3.48% in Pearson’s correlation
(r) at the sentence-level and 7.17% in F1-
score at the word-level.

2. showing that the MTL-based QE models are
significantly more consistent, on word-level
and sentence-level QE tasks for same input,
as compared to the single-task learning-based
QE models.

We discuss the existing literature in Section 2
and the datasets used in Section 3. The MTL-based
QE approach is presented in Section 4. The experi-
mental setup is described in 5. Section 6 discusses
the results in detail, including a qualitative analysis
of a few sample outputs. We conclude this article
in Section 7, where we also propose future research
directions in the area.

2 Related Work

During the past decade, there has been tremendous
progress in the field of machine translation quality
estimation, primarily as a result of the shared tasks
organized annually by the Conferences on Machine
Translation (WMT), since 2012. These shared
tasks have produced benchmark datasets on var-
ious aspects of quality estimation, including word-
level and sentence-level QE. Furthermore, these
datasets have led to the development and evaluation
of many open-source QE systems like QuEst (Spe-
cia et al., 2013), QuEst++ (Specia et al., 2015),
deepQuest (Ive et al., 2018), and OpenKiwi (Kepler
et al., 2019). Before the neural network era, most
of the quality estimation systems like QuEst (Spe-
cia et al., 2013), and QuEst++ (Specia et al., 2015)

were heavily dependent on linguistic processing
and feature engineering to train traditional machine-
learning algorithms like support vector regression
and randomized decision trees (Specia et al., 2013).

In recent years, neural-based QE systems such
as deepQuest (Ive et al., 2018), and OpenKiwi (Ke-
pler et al., 2019) have consistently topped the
leaderboards in WMT quality estimation shared
tasks (Kepler et al., 2019). These architectures
revolve around an encoder-decoder Recurrent Neu-
ral Network (RNN) (referred to as the ‘predictor’),
stacked with a bidirectional RNN (the ‘estimator’)
that produces quality estimates. One of the dis-
advantages of this architecture is they require ex-
tensive predictor pre-training, which means it de-
pends on large parallel data and is computation-
ally intensive (Ive et al., 2018). This limitation
was addressed by TransQuest (Ranasinghe et al.,
2020b), which won the WMT 2020 shared task on
sentence-level DA. TransQuest eliminated the re-
quirement for predictor by using cross-lingual em-
beddings (Ranasinghe et al., 2020b). The authors
fine-tuned an XLM-Roberta model on a sentence-
level DA task and showed that a simple architecture
could produce state-of-the-art results. Later the
TransQuest framework was extended to the word-
level QE task (Ranasinghe et al., 2021).

A significant limitation of TransQuest is that it
trains separate models for word-level and sentence-
level QE tasks. While this approach has produced
state-of-the-art results, managing two models re-
quires more computing resources. Furthermore,
since the two models are not interconnected, they
can provide conflicting predictions for the same
translation. To overcome these limitations, we pro-
pose a multi-task learning approach to QE.

Multitask architectures have been employed in
several problem domains, such as those in com-
puter vision (Girshick, 2015; Zhao et al., 2018) and
natural language processing (NLP). In NLP, tasks
such as text classification (Liu et al., 2017), natu-
ral language generation (Liu et al., 2019), part-of-
speech tagging and named entity recognition (Col-
lobert and Weston, 2008) have benefited from MTL.
In QE too, Kim et al. (2019) has developed an MTL
architecture using a bilingual BERT model. How-
ever, the model does not provide results similar to
or better than state-of-the-art QE frameworks such
as TransQuest (Ranasinghe et al., 2021). Some
of the recent WMT QE shared task submissions
also use MTL to develop QE systems (Specia et al.,
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2020, 2021; Zerva et al., 2022). As all these sub-
missions are not evaluated under the same experi-
mental settings and use different techniques along
with MTL, the improvements due to MTL alone
are difficult to assess. In this paper, we introduce
a novel MTL approach for QE that outperforms
TransQuest in both word-level and sentence-level
QE tasks, in various experimental settings.

3 Datasets: WMT 2022

We use data provided in the WMT21 (Specia
et al., 2021), and WMT22 (Zerva et al., 2022)
Quality Estimation Shared tasks for our exper-
iments. We choose language pairs for which
word-level and sentence-level annotations are avail-
able for the same source-translation pairs. The
data consists of three low-resource language pairs:
English-Marathi (En-Mr), Nepali-English (Ne-
En), Sinhalese-English (Si-En); three medium-
resource language pairs: Estonian-English (Et-En),
Romanian-English (Ro-En), Russian-English (Ru-
En); and one high-resource language pair: English-
German (En-De). For the English-Marathi lan-
guage pair, the data consists of 20K training in-
stances and 1K instances each for validation and
testing2. The training set consists of 7K instances
for all other language pairs, and validation and test
sets consist of 1K samples each.

Each sample in the word-level QE data for any
language pair except English-Marathi consists of a
source sentence, its translation, and a sequence of
tags for tokens and gaps. For the English-Marathi
pair, the WMT22 dataset does not contain tags for
gaps in tokens. Therefore, we used the QE corpus
builder3 to obtain annotations for translations using
their post-edited versions.

4 Approach

In this section, we briefly discuss the TransQuest
framework, explain the architecture of our neural
network, and then discuss the MTL approaches
we used for the experimentation, along with the
mathematical modeling.

4.1 TransQuest Framework

We use the MonoTransQuest (for sentence-level
QE model) (Ranasinghe et al., 2020b) and Mi-
croTransQuest (for word-level QE model) (Ranas-

2https://github.com/surrey-nlp/IndicQE-PE
3https://github.com/deep-spin/

qe-corpus-builder

inghe et al., 2021) architectures to perform the
single-task-based QE experiments. The MonoTran-
sQuest architecture (1) uses a single XLM-R (Con-
neau et al., 2020) transformer model. The input of
this model is a concatenation of the original sen-
tence and its translation. Both these sequences are
separated by a special [SEP] token. The inputs are
passed to an embedding layer to obtain embeddings
for each token. The Direct Assessment (DA) scores
are produced by passing the output of the [CLS]
token through a softmax layer.

Figure 1: Architecture of the MonoTransQuest
sentence-level QE Model.

Similarly, the MicroTransquest architecture pre-
sented in figure 2 also uses the XLM-R transformer.
The input to this model is a concatenation of the
original sentence and its translation, separated by
the [SEP] token. Additionally, the [GAP] tokens
are added between the translation tokens. Finally,
an output of each token is passed through a softmax
layer to obtain the OK or BAD tag for each token.

Figure 2: Architecture of the MicroTransQuest word-
level QE Model.
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Figure 3: Architecture of the MTL QE model.

4.2 Model Architecture
Considering the success that transformers have
demonstrated in translation quality estima-
tion (Ranasinghe et al., 2020a; Wang et al., 2021),
we chose to employ the transformer as a base
model for our MTL approach. Our approach learns
two tasks jointly: sentence-level and word-level
quality estimation.

Figure 3 depicts the model’s architecture used
in our approach. The implemented architecture
shares hidden layers between both sentence-level
and word-level QE tasks. The shared portion in-
cludes the XLM-Roberta (Conneau et al., 2020)
model that learns shared representations (and ex-
tracts information) across tasks by minimizing
a combined/compound loss function. The task-
specific heads receive input from the last hidden
layer of the transformer language model and pre-
dict the output for each task (details provided in
the next two sections).

Sentence-level Quality Estimation Head By uti-
lizing the hidden representation of the classifica-
tion token (CLS) within the transformer model, we
predict the DA scores by applying a linear transfor-
mation:

ŷda = W[CLS] · h[CLS] + b[CLS] (1)

where · denotes matrix multiplication, W[CLS] ∈
RD×1, b[CLS] ∈ R1×1, and D is the dimension of
input layer h (top-most layer of the transformer).

Word-level Quality Estimation Head We pre-
dict the word-level labels (OK/BAD) by applying
a linear transformation (also followed by the soft-
max) over every input token from the last hidden

layer of the model:

ŷword = σ(Wtoken · ht + btoken) (2)

where t marks which token the model is to la-
bel within a T -length window/token sequence,
Wtoken ∈ RD×2, and btoken ∈ R1×2. This
part is similar to the MicroTransQuest architecture
in Ranasinghe et al. (2021).

4.3 Multi-Task Learning
We use two MTL approaches to train the QE mod-
els. In the first approach, task-specific losses are
combined into a single loss by summing them. The
second approach considers the gradient conflicts
and follows a heuristic-based approach to decide
the update direction.

Linear Scalarization (LS) We train the system
by minimizing the Mean Squared Error (MSE) for
the sentence-level QE task and cross-entropy loss
for the word-level QE task as defined in Equation 3
and Equation 4, where yda and yword represent
ground true labels. These particular losses are:

Lda = MSE
(
yda, ŷda

)
(3)

Lword = −
2∑

i=1

(
yword ⊙ log(ŷword)

)
[i] (4)

where v[i] retrieves the ith item in a vector v
and ⊙ indicates element-wise multiplication. For
combining the above two losses into one objective,
α and β parameters are used to balance the impor-
tance of the tasks. n this study, we assign equal
importance to each task in our experiments, there-
fore we set α = β = 1 in this study. The final loss
is shown in Equation 5.

LMultiTransQuest =
αLda + βLword

α+ β
(5)

We set up two baselines – single-task learning-
based sentence-level QE and word-level QE mod-
els. The sentence-level QE model takes a source
sentence and its translation as input and predicts the
DA score. We use the MonoTransQuest implemen-
tation in Ranasinghe et al. (2020b) for this sentence-
level QE model. The word-level QE model predicts
whether each token (word) is OK or BAD using a
softmax classifier as well. We use the MicroTran-
sQust implementation in Ranasinghe et al. (2021)
as the word-level QE model.
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Nash Multi-Task Learning (Nash-MTL) Joint
training of a single model using multi-task learning
is known to lower computation costs. However,
due to potential conflicts between the gradients of
different tasks, the joint training typically results
in the jointly trained model performing worse than
its equivalent single-task counterparts. Combining
per-task gradients into a combined update direction
using a specific heuristic is a popular technique for
solving this problem. In this approach, the tasks
negotiate for a joint direction of parameter update.

Algorithm 1 Nash_MTL

Input: θ0 - initial parameter vector, {li}Ki=1 -
differentiable loss functions, η - learning rate
Output: θT
for t = 1,..., T do

Compute task gradients gti = ∇θ(t−1)li

Set G(t) the matrix with columns g(t)i

Solve for α : (Gt)T (Gt)α = 1/α to obtain
αt

Update the parameters θ(t) = θ(t) − ηG(t)α(t)

end for
return θT

For the MTL problem with parameters θ, the
method assumes a sphere Bϵ, with a center at zero
and a radius ϵ. The update vectors ∆θ are searched
inside this sphere. The problem is framed as a
bargaining problem by considering the centre as
the point of disagreement and the Bϵ as an agree-
ment set. For every player, the utility function is
ui(∆θ) = gTi ∆θ where gi denotes the gradient
vector at θ of the loss of task i. Additional details,
theoretical proof and empirical results on various
tasks can be followed from Navon et al. (2022),
who proposed this gradient combination.

5 Experimental Setup

This section describes the different experiments
we perform and the metrics we use to evaluate
our approach. We also discuss the training details
and mention the computational resources used for
training the models.

Experiments We perform our experiments un-
der three settings: single-pair, multi-pair, and zero-
shot. For each setting, we train one sentence-level,
one word-level, and two MTL-based QE models.
The first two models are the Single-Task Learning
(STL)-based QE models (STL QE), and we use

their performance as baselines. The TransQuest
framework (Ranasinghe et al., 2020b) contains the
MonoTransQuest model for the sentence-level QE
task and the MicroTransQuest model (Ranasinghe
et al., 2021) for word-level QE task which helped
us reproduce baseline results over all the language
pairs investigated for this paper. The next two
models are the MTL-based QE models (MTL QE)
trained using two different MTL approaches ex-
plained in Section 4. For training LS models, we
use the Framework for Adapting Representation
Models (FARM)4, while for training Nash-MTL
models, we used implementation5 shared by the
authors. All the experiments use all seven language
pairs introduced in Section 3.

In the single-pair setting, we only use the data
of one particular language pair for training and
evaluation. However, in the multi-pair setting, we
combine training data of all the language pairs and
evaluate the model using test sets of all language
pairs. For the transfer-learning experiments (zero-
shot setting), we combine training data of all lan-
guage pairs except the language pair on which we
evaluate the model.

Evaluation We use the Pearson Correlation (r)
between the predictions and gold-standard annota-
tions for evaluating the sentence-level QE as it is a
regression task. Similarly, for the word-level QE,
which is treated as a token-level classification task,
we consider the F1-score as an evaluation metric.
We perform a statistical significance test consider-
ing primary metrics using William’s significance
test (Graham, 2015).

Training Details To maintain uniformity across
all the languages, we used an identical set of set-
tings for all the language pairings examined in this
work. For the STL and LS-MTL models, we use
a batch size of 16. We start with a learning rate of
2e − 5 and use 5% of training data for warm-up.
We use early stopping and patience over the 10
steps. The Nash-MTL models are trained using the
configuration outlined in (Navon et al., 2022). Con-
sidering the availability of computational resources,
the STL QE models are trained using the NVIDIA
RTX A5000 GPUs, and the MTL QE models us-
ing the NVIDIA DGX A100 GPUs. Additional
training details are provided in Appendix A.

4https://github.com/deepset-ai/FARM
5https://github.com/AvivNavon/nash-mtl
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LP Word-Level Sentence-Level
STL LS-MTL +/- % Nash-MTL +/- % STL LS-MTL +/- % Nash-MTL +/- %

En-Mr 0.3930 0.4194 2.64% 0.4662 7.32% 0.5215 0.5563 3.48% 0.5608 3.93%
Ne-En 0.4852 0.5383 5.31% 0.5435 5.83% 0.7702 0.7921 2.19% 0.8005 3.03%
Si-En 0.6216 0.6556 3.40% 0.6946 7.30% 0.6402 0.6533 1.31% 0.6791 3.89%

Et-En 0.4254 0.4971 7.17% 0.5100 8.46% 0.7646 0.7905 2.59% 0.7943 2.97%
Ro-En 0.4446 0.4910 4.64% 0.5273 8.27% 0.8952 0.8985* 0.33% 0.8960* 0.08%
Ru-En 0.3928 0.4208 2.80% 0.4394 4.66% 0.7864 0.7994 1.30% 0.8000 1.36%

En-De 0.3996 0.4245 2.49% 0.4467 4.71% 0.4005 0.4310 3.05% 0.4433 4.28%

Table 1: Results obtained for word-level (F1-scores) and sentence-level (Pearson (r)) QE tasks in the single-pair
setting. STL: results from the models trained using TransQuest. LS-MTL and Nash-MTL: results obtained using
the Linear Scalarization MTL approach, and the Nash-MTL-based models, respectively. The first three rows show
results for the low-resource language pairs, the next three for mid-resource, and the last for a high-resource language
pair. [(*) indicates the improvement is not significant with respect to the baseline score.]

LP Word-Level (F1) Sentence-Level (r)
STL LS-MTL +/- % Nash-MTL +/- % STL LS-MTL +/- % Nash-MTL +/- %

En-Mr 0.4013 0.4349 3.36% 0.4815 8.02% 0.6711 0.6514* -1.97% 0.6704* -0.07%
Ne-En 0.4902 0.5406 5.04% 0.5560 6.58% 0.7892 0.8012 1.20% 0.8001 1.09%
Si-En 0.5629 0.6392 7.63% 0.7003 13.74% 0.6653 0.6837 1.84% 0.6957 3.04%

Et-En 0.4348 0.4998 6.50% 0.5082 7.34% 0.7945 0.7970* 0.25% 0.7963* 0.18%
Ro-En 0.4472 0.4925 4.53% 0.5285 8.13% 0.8917 0.8883* -0.34% 0.8895* -0.22%
Ru-En 0.3965 0.4241 2.76% 0.4211 2.46% 0.7597 0.7751 1.54% 0.7772 1.75%

En-De 0.3972 0.4253 2.81% 0.4499 5.27% 0.4373 0.4308* -0.65% 0.4298* -0.75%

Table 2: Results obtained for word-level and sentence-level QE tasks in the multi-pair setting. [* indicates the
improvement is not significant with respect to the baseline score.]

6 Results and Discussion

Results of the single-pair, multi-pair, and zero-shot
settings are presented in this section. The tables
referred to in this section report performance of
the STL, LS-MTL, and Nash-MTL QE models
using the Pearson correlation (r) and F1-score for
sentence-level and word-level QE, respectively.

We could not conduct a direct performance com-
parison between our QE models and winning en-
tries of the recent WMT QE shared tasks due to the
following reasons: (1) Nature of the word-level QE
task, and its evaluation methodology have changed
over the years. Until last year, gaps between trans-
lation tokens were a part of the data, and the ‘OK’
or ‘BAD’ tags were predicted for them as well.
But the WMT22 shared task did not consider these
gaps; and (2) Not all the language pairs investigated
in this paper have been a part of WMT QE tasks in
the same year. Therefore, we establish a standard
baseline using the Transformers-based framework,
TransQuest, and show improvements.

We also compare Pearson correlation coeffi-

cients obtained by STL and MTL QE models to
assess whether MTL QE model predictions on both
tasks for the same inputs are consistent (Table 4).
Furthermore, we perform a qualitative analysis of
the output for En-Mr, Ro-En, and Si-En language
pairs, and show some examples in Table 5. We
discuss the analysis in detail in subsection 6.4.

6.1 Single-Pair Setting

The results for the first experimental setting are
presented in Table 1. The MTL QE approaches
provide significant performance improvements for
all language pairs in the sentence and word-level
QE tasks over the respective STL QE models. In
the word-level QE task, the Nash-MTL QE models
outperform the STL and LS-MTL models for all
language pairs. Our approach achieves the highest
improvement of 8.46% in terms of macro F1-score
for the Et-En language pair. While for the En-De,
we observe the least improvement from the LS-
MTL QE model (2.49%). The average improve-
ment in the F1-score from Nash-MTL model and
LS-MTL model is 6.29% and 4.06%, respectively.
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LP Word-Level Sentence-Level
STL LS-MTL +/- % Nash-MTL +/- % STL LS-MTL +/- % Nash-MTL +/- %

En-Mr 0.3800 0.3692* -1.08% 0.3833 0.33% 0.4552* 0.3869 -6.83% 0.4674 1.22%
Ne-En 0.4175 0.4472 2.97% 0.4480 3.05% 0.7548 0.7601 0.53% 0.7560 0.12%
Si-En 0.4239 0.4250* 0.11% 0.4407 1.68% 0.6416 0.6434* 0.18% 0.6447* 0.31%

Et-En 0.4049 0.4206 1.57% 0.4291 2.42% 0.5192 0.5583 3.91% 0.5598 4.06%
Ro-En 0.4179 0.4349 1.70% 0.4420 2.41% 0.5962 0.6104 1.42% 0.6300 3.38%
Ru-En 0.3737 0.3761* 0.24% 0.3834 0.97% 0.5286 0.5605 3.19% 0.5812 5.26%

En-De 0.3750 0.3763* 0.13% 0.3768* 0.18% 0.3217 0.3227* 0.10% 0.3305 0.88%

Table 3: Results obtained for word-level and sentence-level QE tasks in the zero-shot setting. [* indicates the
improvement is not significant with respect to the baseline score.]

For the sentence-level QE task, Pearson correla-
tion (r) between the QE system prediction scores
and true labels is used as an evaluation metric. For
this task, the MTL QE models, again, outperform
the STL QE models for all language pairs. Here,
the En-De Nash-MTL QE model obtains the most
significant performance improvement of 4.28%
over the corresponding STL QE model. A minor
performance improvement of 0.33% is observed
for the Ro-En language pair using the LS-MTL
QE model. The average improvement in Pearson’s
correlation (r) from the Nash-MTL model and the
LS-MTL model is 2.75% and 2.10%, respectively.

Except for the Ro-En Nash-MTL QE model’s
performance in the sentence-level QE task, we see
the Nash-MTL QE models amass the most improve-
ments over the STL and LS-MTL QE models for
all language pairs in both tasks. It shows that the
bargaining between the gradient update directions
for sentence-level and word-level QE tasks that
the Nash-MTL method arranges results in effec-
tive learning. The results of both tasks also show
that we get more improvements for low-resource
and mid-resource language pairs than for the high-
resource language pair.

We additionally report the results obtained by
the WMT QE shared task winning systems in Ap-
pendix C. The WMT figures are not directly com-
parable to our results. The WMT figures are higher
than ours but that is really not the point. Our aim
is to show that multitask learning is more effec-
tive than single-task learning. Any QE technique
can seriously be considered adopting MTL in pref-
erence to the STL. Of course, if the STL figures
are already high then the improvement may not be
significant which we also have observed.

6.2 Multi-Pair Setting

Table 2 tabulates the results for the multi-pair set-
ting. The multi-pair setting can benefit the word-
level QE task due to vocabulary overlap and the
sentence-level QE tasks due to syntactical similari-
ties between the language pairs.

In this setting, MTL improves performance for
all language pairs in the word-level QE task. Using
the LS-MTL QE model, the highest F1-score im-
provement of 7.63% is observed for the Si-En lan-
guage pair, while with the Nash-MTL QE model,
the best improvement is of 13.74%. The least im-
provement with the LS-MTL QE model is observed
for the Ru-En pair 2.76%, while for the Nash-MTL-
based QE model, it is of 2.46% for the Ru-En pair.

Though the improvements observed in the word-
level QE task in this setting when using MTL
QE approaches are even higher compared to the
single-pair setting, we see an opposite trend in the
sentence-level QE task results. At the sentence
level, we observe a slight degradation in the results
of the En-Mr, En-De, and Ro-En MTL QE models.
We observe the most improvement of the 3.04% in
Pearson Correlation over the STL QE model by the
Nash-MTL QE model. For the Ro-En pair, both
QE models fail to bring improvements over the
STL QE model. For Ne-En and Et-En pairs, the
LS-MTL QE model outperforms the Nash-MTL
QE model. In this setting, the Nash-MTL tech-
nique provides similar results to the LS-MTL tech-
nique. Also, we observe that the Nash-MTL QE
approach benefits the most to the low-resource lan-
guage pairs. We also see higher improvements
for the mid-resource language pairs than the high-
resource language pair.
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LP Pearson Correlation (r) Spearman Correlation (ρ)
STL Nash-MTL +/- STL Nash-MTL +/-

En-Mr -0.2309 -0.3645 13.36% -0.1656 -0.2963 13.07%
Ne-En -0.6263 -0.6604 3.41% -0.6124 -0.6442 3.18%
Si-En -0.5522 -0.5881 3.59% -0.5380 -0.5510 1.30%

Et-En -0.7202 -0.7539 3.37% -0.7541 -0.768 1.39%
Ro-En -0.7765 -0.7794 0.29% -0.7380 -0.7534 1.54%
Ru-En -0.6930 -0.7187 2.57% -0.6364 -0.6805 4.41%

En-De -0.4820 -0.5482 6.62% -0.4524 -0.5099 5.75%

Table 4: Pearson (r) and Spearman (ρ) correlations between sentence-level and word-level QE predictions using
STL and Nash-MTL QE models. The sentence-level QE prediction is the z-standardized Direct Assessment (DA)
score, and the word-level QE prediction is the bad tag count normalized by sentence length.

6.3 Zero-shot Setting

Table 3 shows the results for the zero-shot setting.
The MTL QE models achieve better performance
for both tasks over their STL-based counterparts
for all the language pairs, except for the En-Mr lan-
guage pair in the sentence-level QE task. Surpris-
ingly, for the Ne-En pair, the LS-MTL model out-
performs the Nash-MTL QE model in the sentence-
level QE task by a small margin (0.0053). While for
all other language pairs, the Nash-MTL QE mod-
els outperform the respective LS-MTL QE models.
Similar to the trend in the previous two settings,
the MTL QE approaches bring more benefits to the
low-resource and mid-resource language pairs than
the high-resource language pair.

In Appendix B, for each low-resource language
pair, we include a table showing the comparison of
STL, LS-MTL, and Nash-MTL QE models. These
tables show that the multi-pair setting helps the
low-resource scenario.

6.4 Discussion

Consistent Predictions Improvements shown by
the MTL QE models in varied experimental set-
tings on both tasks show that the tasks complement
each other. We further assess the potential of the
MTL QE models in predicting consistent outputs
for both tasks over the same inputs. We do so by
computing a correlation between the predicted DA
scores and the percentage of tokens in a sentence
for which the ‘BAD’ tag was predicted. Therefore,
a stronger negative correlation denotes better con-
sistency. Table 4 shows Pearson and Spearman
correlations between sentence-level and word-level

QE predictions on the test sets, in a single pair set-
ting. For all the language pairs, Nash-MTL QE
models show a stronger correlation than the STL
QE models. We also perform a qualitative analysis
of the STL and MTL QE models for the En-Mr,
Ro-En, and Si-En language pairs.

Qualitative Analysis The first English-Marathi
example is shown in Table 5. It contains a poor
translation of the source sentence meaning, “The
temple is close to the holy place where ages ago the
Buddha was born.” The STL word-level QE and
MTL QE models predict the same output assigning
correct tags to tokens, yet we observe a significant
difference in the sentence-level scores predicted
by the models. The STL sentence-level QE model
outputs a high score of 0.25, while the score given
by the MTL QE model is -0.64. It supports the
observation that the MTL QE model outputs are
more consistent.

Unlike the STL sentence-level QE models, the
MTL QE models predict more justified quality
scores when translations have only minor mistakes.
The translation in the first Ro-En example in Ta-
ble 5 is a high-quality translation. In this transla-
tion, the word “overwhelming” could have been
replaced with a better lexical item. The STL QE
model harshly penalizes the translation by predict-
ing the z-score at -0.0164, while the MTL model
predicts a more justifiable score (0.8149). Similar
behaviour is reflected in the second Si-En exam-
ple as well (last row). Even though the transla-
tion reflects the meaning of the source sentence
adequately and is also fluent, the STL QE model
predicts a low score of -0.35, while the MTL QE
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Table 5: Source-translation pairs along with z-standardized DA scores by STL, Nash-MTL QE models, and the
ground truth labels.

model rates the translation appropriately by predict-
ing 0.66 as score.

We also observed that the MTL QE models
have an edge when rating translations with many
named entities. This can be seen through the sec-
ond English-Marathi (Row 3), second Romanian-
English (Row 5), and first Sinhala-English (Row
6) examples in Table 5. The translations are of
high quality in both examples, and the MTL QE
models rate them more appropriately than the STL
QE models.

7 Conclusion and Future Work

In this paper, we showed that jointly training a sin-
gle, pre-trained cross-lingual transformer over the
sentence-level and word-level QE tasks improves
performance on both tasks. We evaluated our ap-
proach in three different settings: single-pair, multi-
pair, and zero-shot. The results on both the QE
tasks show that the MTL-based models outperform
their STL-based counterparts for multiple language
pairs in the single-pair setting. Given the perfor-
mance in the zero-shot setting, we see promising
transfer-learning capabilities in our approach. Con-
sistent scores across both QE tasks for the same
inputs demonstrate the effectiveness of the MTL
method to QE. We release our MTL-based QE mod-
els and our code under the CC-BY-SA 4.0 license
publicly for further research.

In future, we wish to extend this work and evalu-
ate the MTL-based QE models in a few-shot setting
to assess the effectiveness of transfer learning. Fur-

ther, we would like to explore the usage of word-
level QE and sentence-level QE to assist in the task
of automatic post-editing for MT. We also wish to
explore the use of language-relatedness for build-
ing multi-pair MTL-based QE models.

Limitations

The experimental results suggest the possibility of
our MTL-based QE approach being biased towards
the word-level QE task, as the jointly trained QE
models show better performance improvements for
the word-level QE task as compared to the sentence-
level QE task. Further, we also observe that our ap-
proach does not work well for language pairs with
English as a source language (En-De and En-Mr).
The qualitative analysis of the English-Marathi
MTL-based QE model shows that the model per-
forms poorly when inputs are in the passive voice.
Our multi-pair setting experiments use all seven
language pairs. We do not consider properties like
the similarity between the languages, translation
directions, etc., to group the language pairs. So
it may be possible to achieve comparable perfor-
mance using a subset of languages. We choose
the Nash-MTL approach for MTL-based experi-
ments because it has been compared with around
ten other MTL techniques and it has been shown
that the Nash-MTL approach outperforms them on
different combinations of the tasks. In the current
work, we have not experimentally analyzed how
the Nash-MTL approach gives better improvements
than the LS-MTL approach.
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Ethics Statement

Our MTL architectures are trained on multiple pub-
licly available datasets referenced in this paper.
These datasets have been previously collected and
annotated, and no new data collection has been car-
ried out as part of this work. Furthermore, these are
standard benchmarks that have been released in re-
cent WMT shared tasks. No user information was
present in the datasets protecting users’ privacy and
identity. We understand that every dataset is sub-
ject to intrinsic bias and that computational models
will inevitably learn biased information from any
dataset. That said, we also believe that our MTL
models will help diminish biases in QE as they
provide an explainable aspect to the predictions
through token-level labels.
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A Additional Training Details

The number of parameters for our STL QE models
trained using the TransQuest framework is 125M
since we use the XLM-R base model variant for all
experiments. This language model has 12 heads,
with an embedding dimension of 768. The num-
ber of parameters in our MTL QE model is also
approximately 125M.

Our total computation time for the STL mod-
els was approximately 60 hours, whereas the com-
putation time for all experiments under LS-MTL
was approximately 22.5 hours. However, our best-
performing approach, i.e., Nash-MTL, took approx-
imately 41.25 hours.

Model Setting F1 r

STL
Single-Pair 0.3930 0.5215
Multi-Pair 0.4013 0.6711
Zero-Shot 0.3800 0.4552

LS-MTL
Single-Pair 0.4194 0.5563
Multi-Pair 0.4349 0.6514
Zero-Shot 0.3692 0.3869

Nash-MTL
Single-Pair 0.4662 0.5608
Multi-Pair 0.4815 0.6704
Zero-Shot 0.3833 0.4674

Table 6: Results obtained for the En-Mr Language pair.

Model Setting F1 r

STL
Single-Pair 0.4852 0.7702
Multi-Pair 0.4902 0.7892
Zero-Shot 0.4175 0.7548

LS-MTL
Single-Pair 0.5383 0.7921
Multi-Pair 0.5406 0.8012
Zero-Shot 0.4472 0.7601

Nash-MTL
Single-Pair 0.5435 0.8005
Multi-Pair 0.5560 0.8001
Zero-Shot 0.4480 0.7560

Table 7: Results obtained for the Ne-En Language pair.

B Low-resource Setting Results

Here, we try to compare the performance of our pro-
posed approaches on low-resource language pairs,
in all three settings and for both tasks, in a concise
manner. Table 6, Table 7, and Table 8 show that the
Nash-MTL-based QE approach in the multi-pair
setting outperforms the single-pair settings for all
the low-resources languages. Table 6 shows this
comparison in terms of F1 for word-level QE and

Model Setting F1 r

STL
Single-Pair 0.6216 0.6402
Multi-Pair 0.5629 0.6653
Zero-Shot 0.4239 0.6416

LS-MTL
Single-Pair 0.6556 0.6533
Multi-Pair 0.6392 0.6837
Zero-Shot 0.4250 0.6434

Nash-MTL
Single-Pair 0.6946 0.6791
Multi-Pair 0.7003 0.6957
Zero-Shot 0.4407 0.6447

Table 8: Comparison of all models under all three set-
tings for Si-En Language pair.

Pearson’s (r) for the En-Mr language pair. Table 7,
and 8 show the same results for Ne-En and Si-En,
respectively.

C Additional Single Pair Setting Results

We additionally report the results of winning sub-
missions to the WMT21 and WMT22 QE shared
tasks for the single-pair setting. Table 9 tabulates
the results. Results obtained by the winning sys-
tems of WMT21 QE shared tasks are reported for
all language pairs except English-Marathi. For the
English-Marathi pair, we report the result achieved
by the WMT22 shared task-winning systems. We
report the F1-multi results for the word-level QE
task and Pearson’s correlation (r) for the sentence-
level QE shared task.
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LP Word-level Sentence-level
STL LS-MTL +/- % Nash-MTL +/- % WMT STL LS-MTL +/- % Nash-MTL +/- % WMT

En-Mr 0.3930 0.4194 2.64% 0.4662 7.32% 0.5827 0.5215 0.5563 3.48% 0.5608 3.93% 0.604
Ne-En 0.4852 0.5383 5.31% 0.5435 5.83% 0.5693 0.7702 0.7921 2.19% 0.8005 3.03% 0.867
Si-En 0.6216 0.6556 3.40% 0.6946 7.30% 0.7140 0.6402 0.6533 1.31% 0.6791 3.89% 0.605
Et-En 0.4254 0.4971 7.17% 0.5100 8.46% 0.5140 0.7646 0.7905 2.59% 0.7943 2.97% 0.812
Ro-En 0.4446 0.4910 4.64% 0.5273 8.27% 0.5777 0.8952 0.8985 0.33% 0.8960 0.08% 0.908
Ru-En 0.3928 0.4208 2.80% 0.4394 4.66% 0.4480 0.7864 0.7994 1.30% 0.8000 1.36% 0.806
En-De 0.3996 0.4245 2.49% 0.4467 4.71% 0.4267 0.4005 0.4310 3.05% 0.4433 4.28% 0.584

Table 9: Results obtained for word-level (F1-scores) and sentence-level (Pearson (r)) QE tasks in the single-pair
setting. STL: results from the models trained using TransQuest. LS-MTL and Nash-MTL: results obtained using
the Linear Scalarization MTL approach, and the Nash-MTL-based models, respectively. WMT: results obtained by
the winning submission of the WMT21/WMT22 shared tasks. The first three rows show results for the low-resource
language pairs, the next three for mid-resource, and the last for a high-resource language pair. Please note that the
WMT results are not directly comparable with the LS-MTL or the Nash-MTL results.
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