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Abstract

Multilingual information retrieval (IR) is chal-
lenging since annotated training data is costly
to obtain in many languages. We present an
effective method to train multilingual IR sys-
tems when only English IR training data and
some parallel corpora between English and
other languages are available. We leverage
parallel and non-parallel corpora to improve
the pretrained multilingual language models’
cross-lingual transfer ability. We design a se-
mantic contrastive loss to align representations
of parallel sentences that share the same seman-
tics in different languages, and a new language
contrastive loss to leverage parallel sentence
pairs to remove language-specific information
in sentence representations from non-parallel
corpora. When trained on English IR data with
these losses and evaluated zero-shot on non-
English data, our model demonstrates signifi-
cant improvement to prior work on retrieval per-
formance, while it requires much less computa-
tional effort. We also demonstrate the value of
our model for a practical setting when a paral-
lel corpus is only available for a few languages,
but a lack of parallel corpora resources persists
for many other low-resource languages. Our
model can work well even with a small number
of parallel sentences, and be used as an add-on
module to any backbones and other tasks.

1 Introduction

Information retrieval (IR) is an important natural
language processing task that helps users efficiently
gather information from a large corpus (some rep-
resentative downstream tasks include question an-
swering, summarization, search, recommendation,
etc.), but developing effective IR systems for all
languages is challenging due to the cost of, and
therefore lack of, annotated training data in many
languages. While this problem is not unique to IR
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Figure 1: (a) The semantic contrastive loss encourages
the embeddings of parallel pairs, i.e. sentences that have
the same semantics but from different languages, to be
close to each other, and away from the rest negative
samples — sentences with different semantics. (b) The
language contrastive loss incorporates the non-parallel
corpora in addition to the parallel ones. It encourages
the distances from a sentence representation, which can
be a sample from both the parallel corpora and the non-
parallel corpora, to the two embeddings of a paralleled
pair to be the same.

research (Joshi et al., 2020), constructing IR data is
often more costly due to the need to either translate
a large text corpus or gather relevancy annotations,
or both, which makes it difficult to generalize IR
models to lower-resource languages.

One solution to this is to leverage the pretrained
multilingual language models to encode queries
and corpora for multilingual IR tasks (Zhang et al.,
2021; Sun and Duh, 2020). One series of work
on multilingual representation learning is based
on training a masked language model, some with
the next sentence prediction task, on monolingual
corpora of many languages, such as mBERT and
XLM-R (Conneau et al., 2020). They generally do
not explicitly learn the alignment across different
languages and do not perform effectively in empir-
ical IR experiments. Other works directly leverage
multilingual parallel corpora or translation pairs
to explicitly align the sentences in two languages,
such as InfoXLM (Chi et al., 2021) and LaBSE
(Feng et al., 2022).

In this work, we propose to use the semantic con-
trastive loss and the language contrastive loss to
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jointly train with the information retrieval objective,
for learning cross-lingual representations that en-
courage efficient lingual transfer ability on retrieval
tasks. Our semantic contrastive loss aims to align
the embeddings of sentences that have the same
semantics. It is similar to the regular InfoNCE
(Oord et al., 2018) loss, which forces the represen-
tations of parallel sentence pairs in two languages
to be close to each other, and away from other
negative samples. Our language contrastive loss
aims to leverage the non-parallel corpora for lan-
guages without any parallel data, which are ignored
by the semantic contrastive loss. It addresses the
practical scenario wherein parallel corpora are eas-
ily accessible for a few languages, but the lack of
such resources persists for many low-resource lan-
guages. The language contrastive loss encourages
the distances from a sentence representation to the
two embeddings of a paralleled pair to be the same.
Figure 1 illustrates how the two losses improve
language alignment. In experiments, we evaluate
the zero-shot cross-lingual transfer ability of our
model on monolingual information retrieval tasks
for 10 different languages. Experimental results
show that our proposed method obtains significant
gains, and it can be used as an add-on module to any
backbones. We also demonstrate that our method
is much more computationally efficient than prior
work. Our method works well with only a small
number of parallel sentence pairs and works well
on languages without any parallel corpora.

2 Background: Multilingual DPR

Dense Passage Retriever (DPR) (Karpukhin et al.,
2020) uses a dual-encoder structure to encode the
queries and passages separately for information
retrieval. To generalize to multilingual scenarios,
we replace DPR’s original BERT encoders with
a multilingual language model XLM-R (Conneau
et al., 2020) to transfer English training knowledge
to other languages.

Concretely, given a batch of N query-passage
pairs (pi, qi), we consider all other passages
pj , j ̸= i in the batch irrelevant (negative) pas-
sages, and optimize the retrieval loss function as
the negative log-likelihood of the gold passage:

LIR = − 1

N

N∑

i=1

log
exp (sim (qi,pi))

exp (sim (qi,pi)) +
∑N

j=1,j ̸=i exp
(
sim

(
qi,pj

))

(1)

where the similarity of two vectors is defined as
sim(u,v) = u⊤v

∥u∥∥v∥ .

3 Contrastive Learning for Cross-Lingual
Generalization

The multilingual dense passage retriever only uses
English corpora for training. To improve the
model’s generalization ability to other languages,
we leverage two contrastive losses, semantic con-
trastive loss and language contrastive loss. Fig-
ure 2 shows our model framework.

Specifically, the semantic contrastive loss (Chen
et al., 2020a) pushes the embedding vectors of a
pair of parallel sentences close to each other, and
at the same time away from other in-batch samples
that have different semantics. The language con-
trastive loss focuses on the scenario when there is
no parallel corpora for some languages, which en-
courages the distance from a sentence embedding
to paralleled embedding pairs to be the same.

3.1 Semantic Contrastive Loss

To learn a language-agnostic IR model, we wish
to encode the sentences with the same semantics
but from different languages to have the same em-
beddings. For each parallel corpora batch, we do
not limit our sample to just one specific language
pair. We randomly sample different language pairs
for a batch. For example, a sampled batch could
contain multiple language pairs of En-Ar, En-Ru,
En-Zh, etc. This strategy can increase the difficulty
of our contrastive learning and make the training
more stable.

Concretely, we randomly sample a mini-batch
of 2N data points (N here does not have to be
the same value as the N in Section 2). The batch
contains N pairs of parallel sentences from multi-
ple different languages. Given a positive pair zi

and zj , the embedding vectors of a pair of paral-
lel sentences (i, j) from two languages, the rest
2(N − 1) samples are used as negative samples.
The semantic contrastive loss for a batch is:

LsemaCL =− 1

2N

∑

(i,j)

[
log

exp (sim (zi,zj) /τ)∑2N
k=1,k ̸=i exp (sim (zi,zk) /τ)

+

log
exp (sim (zj ,zi) /τ)∑2N

k=1,k ̸=j exp (sim (zj ,zk) /τ)

]

(2)

where τ is a temperature hyperparameter.

9134



Query 
Encoder

(e.g., XLM-R) 

Where was Alan Turing 
born?

Over time, people do what 
you pay them to do. 

Alan Turing was a British 
computer scientist…

على مر الوقت، یفعل الناس ما 
.تدفعون لھم لفعلھ

Alan Turing was a British 
computer scientist…

Alan Turing was a British 
computer scientist…

Cosine 
Similarity

Semantic
Contrastive 

Loss

Information
Retrieval

Task

Parallel 
Corpus

Task

Passage 
Encoder

(e.g., XLM-R) 

Query

Passages

Parallel Sentences

Query Embeddings

Passage Embeddings

Parallel Sentence
Embeddings

Language
Contrastive 

Loss

Figure 2: Our model framework contains two parts: the main task (IR), and the parallel corpora task. For the main
task part, we use a dual-encoder dense passage retrieval module for information retrieval. For the parallel corpora
task part, we adopt the semantic contrastive loss to improve cross-lingual domain adaptation with parallel corpora.
We also use the language contrastive loss by leveraging parallel corpora and non-parallel corpora altogether.

3.2 Language Contrastive Loss
When training multilingual IR systems, we might
not always have parallel corpora for all languages
of interest. In a realistic scenario, we have easy
access to a few high-resource languages’ parallel
corpora, but no such availability for many low-
resource languages. We propose a language con-
trastive loss to generalize the model’s ability to the
languages which do not have any parallel corpora.
For a batch B consisting of both parallel corpora P
and non-parallel corpora Q, we denote zi and zj

as the embeddings of a pair of parallel sentences
(i, j) from two languages. We wish the cosine simi-
larity from any other sentence embedding zk to the
two embeddings of a parallel pair to be the same.
Therefore, we minimize the following loss.

LlangCL =− 1

N(N − 2)

∑

(i,j)∈P

∑

k∈(P∪Q)\{i,j}

[
log

exp(sim (zi,zk))

exp(sim (zi,zk)) + exp(sim (zj ,zk))
+

log
exp(sim (zj ,zk))

exp(sim (zi,zk)) + exp(sim (zj ,zk))

]

(3)

The optimum can be reached when sim (zi, zk) =
sim (zj , zk) for all i, j, k. Note that the parallel
corpus involved is not the target language’s parallel
corpus. For example, in Formula 3, i and j are two
languages that are parallel with each other, and k
is a third language (target language) that does not
have any parallel corpus with other languages.

3.3 Semantic vs Language Contrastive Losses
While both the semantic contrastive loss and lan-
guage contrastive loss can serve to align the rep-
resentations of parallel sentences and remove lan-

guage bias, they achieve this goal differently, one
via contrasting against in-batch negative samples,
the other using in-batch parallel examples to con-
strain the target language embeddings. Moreover, a
key property of the language contrastive loss is that
as long as there is some parallel corpus, we can use
this loss function to remove the language bias from
representations of sentences where no parallel data
exists, which makes it more broadly applicable.

4 Training

The two contrastive losses are applied to the pas-
sage encoder only. Experiments show that applying
them to both the passage encoder and the query en-
coder would result in unstable optimization, where
we see weird jumps in the training loss curves.

The joint loss with the information retrieval loss,
the semantic contrastive loss, and the language con-
trastive loss is

L = LIR + wsLsemaCL + wlLlangCL, (4)

where ws and wl are hyperparameters for the se-
mantic contrastive loss and the language contrastive
loss weights which need to be tuned adaptively in
different tasks.

We train our model using 8 Nvidia Tesla V100
32GB GPUs. We use a batch size of 48. We use
the AdamW optimizer with β1 = 0.9, β2 = 0.999
and a learning rate of 10−5. For the three losses
LIR,LsemaCL,LlangCL, we sequentially calculate
the loss and the gradients. We use ws = 0.01 and
wl = 0.001. The hyperparameters are determined
through a simple grid search.
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5 Experiments

5.1 Datasets

Our IR experiments involve two types of datasets:
IR datasets and the parallel corpora.

5.1.1 Information Retrieval
In our experiments, we only use English informa-
tion retrieval corpora (Natural Questions), and we
evaluate the model’s zero-shot transfer ability on
other target languages (Mr.TyDi).

• Natural Questions (Kwiatkowski et al., 2019)
is an English QA dataset. Following Zhang
et al. (2021), we use NQ dataset to train IR.

• Mr.TyDi is a multilingual dataset for mono-
lingual retrieval (Zhang et al., 2021), which is
constructed from a question answering dataset
TyDi (Clark et al., 2020). It contains eleven
typologically diverse languages, i.e., Arabic
(Ar), Bengali (Bn), English (En), Finnish (Fi),
Indonesian (Id), Japanese (Ja), Korean (Ko),
Russian (Ru), Swahili (Sw), Telugu (Te), Thai
(Th). We do not use Mr.TyDi for IR training.

5.1.2 Parallel Corpora
WikiMatrix parallel corpora contains extracted
parallel sentences from the Wikipedia articles in
85 different languages (Schwenk et al., 2021). For
those languages involved in the Mr.Tydi dataset, the
number of parallel pairs between them and the En-
glish of the WikiMatrix dataset ranges from 51,000
and 1,019,000. During training, we sample the
same number of parallel pairs (50K) for them.

5.2 Baseline Models

We apply our contrastive loss functions on three
multilingual pretrained language models:

• XLM-R (Conneau et al., 2020) is a pre-
trained transformer-based multilingual lan-
guage model. It is trained on a corpus from
100 languages only with the Masked language
Model (MLM) objective in a Roberta way.

• InfoXLM (Chi et al., 2021) uses 42GB paral-
lel corpora to pre-train XLM-R by maximiz-
ing mutual information between multilingual-
multi-granularity texts.

• LaBSE (Feng et al., 2022) pre-trains BERT
with Masked Language Model and Transla-
tion Language Model on the monolingual data

InfoXLM LaBSE Our Model

Batch Size 2,048 8,192 48
Training Steps 200K 1.8M 24.54K
Training Compute 347x 12,518x 1x

Table 1: A comparison of our model and baseline mod-
els’ pre-training for lingual adaptation. Ours actually
uses a "co-training" mode rather than "pre-training", so
our training steps are the same as the main task.

and bilingual translation pairs. They train the
model by 1.8M steps using a batch size of
8192.

In Table 1, we compare the computational efforts
needed by each model to improve the language
transfer ability. Both InfoXLM and LaBSE re-
quire a large-scale pre-training which needs a larger
batch size and a larger number of training steps
than ours. Our model only requires "co-training"
on the parallel corpora along with the main task. In
Table 1, we list our model’s training steps on the in-
formation retrieval task. This comparison indicates
that for the retrieval task, our model does not need
the costly pre-training as InfoXLM and LaBSE.

5.3 Information Retrieval - All languages
have parallel corpora with English

For the information retrieval training, we follow the
previous literature (Zhang et al., 2021; Wu et al.,
2022) to use an English QA dataset – the Natural
Questions dataset (Kwiatkowski et al., 2019) for
both training and validation.

We evaluate our model performance on the
Mr.TyDi dataset (Zhang et al., 2021) for mono-
lingual query passage retrieval in eleven languages.
We follow Zhang et al. (2021) to use MRR@100
and Recall@100 as metrics.

In this section, we experimented with the set-
ting when we have parallel corpora from English
to all other target languages. We tested three differ-
ent variants of our model using the XLM-R as the
backbone:

1. we only include the semantic contrastive loss
for the parallel corpora: LIR + wsLsemaCL;

2. we only include the language contrastive loss
for the parallel corpora: LIR + wlLlangCL;

3. we use both the semantic contrastive loss
and the language contrastive loss: LIR +
wsLsemaCL + wlLlangCL.

Table 2 shows the results of our model and the
baseline XLM-R model. We also report the results
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Model Ar Bn En Fi Id Ja Ko Ru Sw Te Th Avg

XLM-R 0.335 0.345 0.275 0.302 0.368 0.274 0.275 0.287 0.231 0.298 0.403 0.308
+ semaCL 0.399 0.465 0.332 0.355 0.445 0.360 0.338 0.345 0.281 0.550 0.482 0.396
+ langCL 0.402 0.437 0.338 0.335 0.425 0.339 0.320 0.329 0.265 0.600 0.453 0.386
+ semaCL + langCL 0.404 0.465 0.338 0.346 0.430 0.333 0.320 0.341 0.266 0.516 0.477 0.385

Table 2: MRR@100 on the monolingual information retrieval task of Mr.TyDi dataset.

Model Ar Bn En Fi Id Ja Ko Ru Sw Te Th Avg

Results reported by Wu et al. (2022)
XLM-R 0.365 0.374 0.275 0.318 0.395 0.299 0.304 0.306 0.274 0.346 0.401 0.333
InfoXLM 0.373 0.354 0.325 0.300 0.380 0.310 0.299 0.313 0.351 0.311 0.400 0.338
LABSE 0.372 0.504 0.314 0.309 0.376 0.271 0.309 0.325 0.394 0.465 0.374 0.365
CCP 0.426 0.457 0.359 0.372 0.462 0.377 0.346 0.360 0.392 0.470 0.489 0.410

Results reported by Zhang et al. (2021)
BM25 (default) 0.368 0.418 0.140 0.284 0.376 0.211 0.285 0.313 0.389 0.343 0.401 0.321
BM25 (tuned) 0.367 0.413 0.151 0.288 0.382 0.217 0.281 0.329 0.396 0.424 0.417 0.333

Our implementation
XLM-R 0.335 0.345 0.275 0.302 0.368 0.274 0.275 0.287 0.231 0.298 0.403 0.308

+ semaCL 0.399 0.465 0.332 0.355 0.445 0.360 0.338 0.345 0.281 0.550 0.482 0.396
InfoXLM 0.371 0.337 0.284 0.272 0.343 0.311 0.271 0.298 0.338 0.306 0.385 0.320

+ semaCL 0.375 0.413 0.331 0.314 0.406 0.321 0.292 0.318 0.299 0.304 0.427 0.345
LaBSE 0.321 0.419 0.240 0.283 0.347 0.224 0.290 0.296 0.428 0.387 0.322 0.323

+ semaCL 0.333 0.485 0.300 0.313 0.395 0.216 0.265 0.329 0.374 0.330 0.308 0.332

Table 3: MRR@100 on the monolingual information retrieval task of Mr.TyDi dataset.

of Wu et al. (2022), which propose a model called
contrastive context prediction (CCP) to learn mul-
tilingual representations by leveraging sentence-
level contextual relations as self-supervision sig-
nals. For our analysis, we mainly focus on MRR,
since MRR is more aligned with our retrieval loss
function, which aims to rank relevant passages at
higher orders. We also report Recall@100 in Ta-
ble 7 in Appendix A. We find that overall our model
performs significantly better than the basic XLM-R.
For our different model variants, we find that: (1)
using only the semantic contrastive loss for the par-
allel corpora would achieve the best average perfor-
mance; (2) using only the language contrastive loss
for the parallel corpora also achieves a significant
performance improvement, which is lower than but
close to using only the semantic contrastive loss; (3)
using both semantic contrastive loss and language
contrastive loss would only contribute to a few lan-
guages like Ar, but does not improve the overall
performance. Our assumption is that the seman-
tic contrastive loss has already efficiently removed
the language embedding shifts by leveraging the
parallel pairs, so it is not helpful to use additional
language contrastive loss when we have parallel
corpora for all the languages. In Section 5.4, we
experiment with a more practical scenario when
we only have parallel corpora for some of the tar-
get languages but non-parallel corpora for the rest.
And we find our language contrastive loss brings
significant performance gains in that case.

We then further compare the performance of

our best model — XLM-R + semantic contrastive
loss, with those of other strong baselines, i.e. In-
foXLM and LaBSE. We also examine if the se-
mantic contrastive loss can be used as an add-on
module to InfoXLM and LaBSE to further boost
their performance. Table 3 shows the MRR@100
results of XLM-R, InfoXLM, LaBSE themselves
— all of them are trained with the IR loss, and
the results trained jointly with the semantic con-
trastive loss. We find that our best model — XLM-
R with only semantic contrastive loss — signifi-
cantly outperforms these strong baselines. Note
that both InfoXLM and LaBSE involve a large-
scale pre-training to improve the lingual transfer
ability, which is not required in our method. Our
model only requires joint training with the con-
trastive loss, which needs much less computational
effort as in Table 1. We also find that the se-
mantic contrastive loss can be used as an add-on
module to effectively boost the performance of In-
foXLM and LaBSE. But such an add-on module’s
improvements on InfoXLM and LaBSE are not as
large as that on XLM-R. We speculate that this
phenomenon could be attributed to that InfoXLM
and LaBSE have already been pre-trained on other
datasets, which have some distribution shifts away
from the WikiMatrix dataset we used for the seman-
tic contrastive loss add-on module. We also report
the Recall@100 results in Table 8 of Appendix A.
In addition to the above results output by our own
runs, we also list the results reported by Wu et al.
(2022) in Table 3 as a reference. The difference in
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Figure 3: The effect of the size of the parallel dataset
for each language, with the 95% CI in shadow.

the baseline model performances may be due to the
randomness during model training. We also present
the performance of the traditional BM25 method.
The average MRR@100 of BM25 is significantly
lower than that of our method.

5.3.1 Effect of the Size of Parallel Dataset
We further investigate the effect of the size of the
parallel dataset on the multilingual retrieval perfor-
mance. We train our model by varying the parallel
dataset size using the XLM-R with only semantic
contrastive loss. Figure 3 shows the results. We
find that: (1) using parallel corpora can signifi-
cantly boost the retrieval performance, compared
with the dashed horizontal line when we do not
have parallel corpora at all (the basic XLM-R); (2)
even when we only have a small parallel corpus of
500 pairs for each language, we can already achieve
a good performance MRR@100=0.38. When we
gradually increase the parallel corpora to 50,000,
the MRR@100 grows gradually to 0.396. But the
increase is not very large. This suggests that our
model framework can work well even with a small
parallel corpora dataset. This makes our method
promising for those low-resource languages which
lack parallel corpora with English.

5.3.2 Effect of Language Pair Connection
In order to understand how different language pair
connections affect performance, we conduct exper-
iments using different language pairs on En, Fi, Ja,
Ko. We experimented with six different settings:

1. Basic setting: Train XLM-R without using
any parallel corpora, which is the same as the
first row in Table 2;

2. Setting 1: Train XLM-R with parallel corpora
between English and all other languages, i.e.

En Fi Ja Ko Avg

Basic Setting 0.275 0.302 0.274 0.275 0.281
Setting 1 0.330 0.340 0.325 0.331 0.331
Setting 2 0.334 0.344 0.354 0.320 0.338
Setting 3 0.318 0.341 0.348 0.365 0.343
Setting 4 0.336 0.354 0.340 0.345 0.343
Setting 5 0.323 0.352 0.317 0.311 0.325

Table 4: MRR@100 on different language pair connec-
tions.

En-Fi, En-Ja, En-Ko;

3. Setting 2: Train XLM-R with parallel corpora
between English and Korean, and between
Korean and the rest languages, i.e. En-Ko,
Ko-Fi, Ko-Ja;

4. Setting 3: Train XLM-R with parallel corpora
between English and Korean, and between
Japanese to Finnish, i.e. En-Ko, Ja-Fi;

5. Setting 4: Train XLM-R with parallel corpora
between English and Korean, i.e. En-Ko;

6. Setting 5: Train XLM-R with parallel corpora
between Japanese to Finnish, i.e. Ja-Fi.

Table 4 shows the MRR@100 results. We find
that all settings 1 to 5 significantly surpass the basic
setting. This echoes our previous finding that it
is helpful to leverage parallel corpora. Among
settings 1 to 5, the differences are not large — the
minimum MRR of them is 0.325, and the maximum
one is 0.343. This suggests that the connection
among language pairs is not a deterministic factor
for our method. We also report the Recall@100 in
Table 9 of Appendix A.

5.4 Information Retrieval - Some languages
do not have parallel data

In this section, we investigate the scenario when
we have parallel corpora only for some of the target
languages, but not for the rest languages. This sce-
nario emphasizes a realistic constraint that we lack
parallel corpora for many low-resource languages.
To test it, we leave Ru, Sw, Te, Th as languages
that do not have parallel corpora, and keep these
parallel corpora for all other languages, i.e. Ar, Bn,
Fi, Id, Ja, Ko. We experimented with three different
settings:

1. XLM-R + Semantic CL: we only use the
semantic contrastive loss on languages which
have parallel corpora (Ar, Bn, Fi, Id, Ja, Ko):
LIR + wsLsemaCL;

2. XLM-R + Semantic CL + Language CL
(WikiMatrix): we use the semantic con-
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Model Ar Bn En Fi Id Ja Ko Avg∥ Ru Sw Te Th Avg∦ Avg

XLM-R 0.335 0.345 0.275 0.302 0.368 0.274 0.275 0.307 0.287 0.231 0.298 0.403 0.305 0.308
+ semaCL 0.389 0.427 0.310 0.333 0.404 0.323 0.316 0.365 0.319 0.252 0.423 0.448 0.360 0.358
+ langCL (WikiMatrix) 0.385 0.394 0.314 0.340 0.411 0.319 0.299 0.351 0.316 0.227 0.474 0.430 0.361 0.355
+ langCL (Mr.TyDi) 0.347 0.378 0.287 0.306 0.371 0.292 0.277 0.322 0.294 0.221 0.248 0.395 0.289 0.311
+ semaCL + langCL (WikiMatrix) 0.396 0.421 0.342 0.357 0.438 0.357 0.336 0.384 0.350 0.274 0.420 0.476 0.380 0.378
+ semaCL + langCL (Mr.TyDi) 0.408 0.470 0.336 0.362 0.438 0.339 0.332 0.391 0.347 0.291 0.449 0.471 0.389 0.385

Note: Avg for languages with (∥) and without (∦) parallel data.

Table 5: Experiment results when Ru, Sw, Te, Th do NOT have parallel data (MRR@100).

trastive loss on languages which have par-
allel corpora (Ar, Bn, Fi, Id, Ja, Ko), and
the language contrastive loss on these par-
allel corpora (Ar, Bn, Fi, Id, Ja, Ko) along
with the non-parallel WikiMatrix corpora:
LIR + wsLsemaCL + wlLlangCL.

3. XLM-R + Semantic CL + Language CL
(Mr.TyDi): we use the semantic contrastive
loss on languages which have parallel corpora
(Ar, Bn, Fi, Id, Ja, Ko), and the language
contrastive loss on these parallel corpora
(Ar, Bn, Fi, Id, Ja, Ko) along with the non-
parallel Mr.TyDi corpora: LIR +wsLsemaCL +
wlLlangCL;

Table 5 shows the MRR@100 results of our ex-
periments. The language contrastive loss can ef-
fectively leverage the non-parallel corpora to im-
prove the information retrieval performance. For
the XLM-R + Semantic CL + Language CL
(Mr.TyDi) setting, the language contrastive loss
boosts the average MRR@100 from 0.358 to 0.385.
We also calculate the average performance on the
languages with parallel corpora (Ar, Bn, Fi, Id, Ja,
Ko), and the languages without parallel corpora
(Ru, Sw, Te, Th). The Avg (withParallel) col-
umn and the Avg (noParallel) column in Table 5
are their corresponding results. We find that the
language contrastive loss can improve the perfor-
mance on both types of languages. For languages
with parallel corpora (Ar, Bn, Fi, Id, Ja, Ko), the
MRR@100 increases from 0.365 to 0.391; for lan-
guages without parallel corpora (Ru, Sw, Te, Th),
the MRR@100 increase from 0.360 to 0.389. This
result suggests our model can be effectively de-
ployed in situations when we have no parallel cor-
pora for low-resource languages. Appendix A Ta-
ble 10 reports the Recall@100 results.

Since using the Mr.TyDi corpora brings in the
target domain information, we also examine the
XLM-R + Semantic CL + Language CL (Wiki-
Matrix) setting. This setting uses the WikiMa-
trix non-parallel corpora for Ru, Sw, Te, Th —
it does not introduce the target domain informa-

without using any non−parallel datasetwithout using any non−parallel datasetwithout using any non−parallel datasetwithout using any non−parallel datasetwithout using any non−parallel datasetwithout using any non−parallel datasetwithout using any non−parallel dataset
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Figure 4: The effect of the size of the non-parallel
dataset for each language, with the 95% CI in shadow.

tion, and reflects the clean gain from the language
contrastive loss. We find that using the WikiMa-
trix non-parallel corpora achieves a little lower but
close performance than the one using the Mr.TyDi
corpora. This suggests that the introduction of the
target domain information is very minor in improv-
ing IR performance.

5.4.1 Effect of the Size of Non-Parallel Dataset
We further investigate the effect of the size of the
non-parallel dataset on the multilingual retrieval
performance. We train our model by varying the
non-parallel dataset size using XLM-R with both
the semantic contrastive loss and the language con-
trastive loss. We keep the size of the parallel dataset
fixed at 50,000. Figure 4 shows the results. The
dashed horizontal line is the one using only par-
allel corpora, i.e. the first row in Table 5. We
find that: (1) using non-parallel corpora can signifi-
cantly boost the retrieval performance, compared
with the most left point when we do not use the non-
parallel corpora at all; (2) when the non-parallel
corpora dataset size increases from 0 to 10,000,
the MRR@100 improves quickly; (3) when the
non-parallel dataset size increases from 10,000 to
50,000, the MRR@100 has minor changes, but its
variance decreases.

5.5 BUCC: Bitext Retrieval

The information retrieval task above is not com-
mon to see in multilingual NLP papers. A closely
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related task they often work on is the BUCC1 task
(Zweigenbaum et al., 2018). The BUCC task has
been tested in the LaBSE benchmark model we
used in the previous section (Feng et al., 2022),
and in many other multilingual NLP works, such
as Artetxe and Schwenk 2019; Yang et al. 2019;
Schwenk 2018; Reimers and Gurevych 2020, etc.
Therefore, following these works, we also investi-
gate our model’s performance on the BUCC task.

For the BUCC bitext mining task, we follow pre-
vious work (Artetxe and Schwenk, 2019; Reimers
and Gurevych, 2020) to first encode texts, and then
use the equation below to calculate the score of two
sentence embeddings u,v:

score(u,v) =
sim(u,v)

∑
z∈NNk(u)

sim(u,z)
2k +

∑
z∈NNk(v)

sim(v,z)
2k

(5)

where NNk(u) denotes u’s k nearest neighbors
in another language. The training set is used to
find a threshold value of the score, for which pairs
with scores above this threshold are predicted as
parallel sentences. We use F1 to measure the model
performance on BUCC.

Table 6 shows F1 score of our model based on
the XLM-R, InfoXLM, and LaBSE. We first ex-
amine the vanilla XLM-R, InfoXLM, and LaBSE
as the text encoder. LaBSE and InfoXLM out-
perform XLM-R a lot due to their large-scale pre-
training on improving lingual adaptation using par-
allel datasets. When we add our semantic con-
trastive loss to XLM-R, we get a large improvement
across all four languages. We find that our model
(XLM-R + Semantic CL) outperforms XLM-R, but
underperforms InfoXLM and LaBSE. We attribute
LaBSE’s great performance to its much larger pre-
training than ours, and LaBSE’s training involves
Translation Language Model (Conneau and Lam-
ple, 2019) with translation corpora. This is exactly
the same type of corpora as BUCC’s translation
parallel pairs. When we add our semantic con-
trastive loss to InfoXLM, we obtain performance
gain for all languages. The gain is smaller than
that of XLM-R because InfoXLM has already been
trained on parallel corpora. When we add our se-
mantic contrastive loss module to LaBSE, we ob-
tained a small increase in the average performance

1BUCC (Building and Using Comparable Corpora) is a
dataset for bitext mining — identify sentence pairs that are
translations in two different languages (Zweigenbaum et al.,
2018). The task aims to mine parallel sentences between
English and four other languages, i.e., German, French, Rus-
sian, and Chinese. About 2–3% of the sentences in the whole
dataset are gold parallel.

Model De Fr Ru Zh Avg

XLM-R 17.90 12.12 21.84 15.06 16.73
+ semaCL 72.86 69.44 73.10 66.27 70.42

InfoXLM 63.32 54.36 69.92 66.19 63.45
+ semaCL 80.40 75.48 78.20 75.04 77.28

LaBSE (Feng et al., 2022) 92.50 88.70 88.90 88.90 89.75
LaBSE 93.03 89.75 89.75 85.93 89.62

+ semaCL 92.95 89.50 89.82 89.77 90.51

Table 6: F1 score on the BUCC task. Row LaBSE (Feng
et al., 2022) is the results reported in Feng et al. (2022).
All other rows are the output of our own implementation.

— the performance on Zh has a significant increase.
One important insight we get from comparing

Table 6 and Table 3 is that a model’s better per-
formance in NLP tasks like BUCC does not nec-
essarily mean better performance in information
retrieval. Most existing multilingual NLP papers
only examine the BUCC bi-text retrieval task, and
we highlight the inconsistency between models’
performances on the two types of retrieval tasks.

6 Related Work

Dense monolingual / multilingual information re-
trieval study recently attracts great attention, which
mainly benefits from (1) supervised finetuning
based on large pre-trained language models and
(2) self-supervised contrastive learning.

Dense Passage Retrieval (Karpukhin et al., 2020)
is the framework first proposed for monolingual su-
perivsed finetuning on information retrieval. It
uses a BERT-based dual-encoder structure to en-
code the query and the candidate passages into
embeddings. Similar to monolingual IR, super-
vised finetuning can also be applied to multilingual
pretrained language models (LMs) for multilingual
IR. Commonly uesd multilingual pretrained LMs
include multilingual BERT (mBERT, Devlin et al.,
2019) and XLM-R (Conneau et al., 2020), both
of which are trained on large corpora representing
about 100 languages primarily with the masked lan-
guage modeling task. These models do not use any
explicit objective to improve the alignment between
language sentences. Recent efforts in NLP field
have provided easy access to parallel corpora, e.g.
Schwenk et al. (2021). Many multilingual language
models use additional parallel data to improve lin-
gual transfer ability. InfoXLM (Chi et al., 2021)
uses parallel corpora to pre-train XLM-R by max-
imizing mutual information between multilingual
multi-granularity texts. LaBSE (Feng et al., 2022)
pre-trains BERT with Masked Language Model
and Translation Language Model on the monolin-
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gual data and bilingual translation pairs.
Self-supervised contrastive learning is another

way used to improve the cross-lingual alignment.
Contrastive learning maximizes the agreement be-
tween positive samples, and minimizes the similar-
ity of positive and negative ones (He et al., 2020;
Chen et al., 2020a,b,c). For language representa-
tion learning, Clark et al. (2019) apply contrastive
learning to train a discriminative model to learn
language representations. For multilingual repre-
sentation learning, contrastive learning has been
used to improve cross-lingual transfer ability by
using additional parallel data (Hu et al., 2021) or
by leveraging other self-supervision signals (Wu
et al., 2022).

7 Conclusion

In this paper, we present a model framework for
multilingual information retrieval by improving lin-
gual adaptation through contrastive learning. Our
experiments demonstrate the effectiveness of our
methods in learning better cross-lingual represen-
tations for information retrieval tasks. The two
contrastive losses can be used as an add-on mod-
ule to any backbones and many other tasks besides
information retrieval.

8 Limitations

In this work, we did not conduct a detailed analysis
of how language-specific characteristics contribute
to our model’s cross-lingual generalization capa-
bilities. Future work may address this question
through extensive matrix experiments — traverse
the training on each possible language pair combi-
nation and evaluate on all languages.
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A Appendix

Table 7 and Table 8 show the Recall@100 results
of experiments in Section 5.3. Table 9 shows the
Recall@100 results of experiments in Section 5.3.2.
Table 10 shows the Recall@100 results of experi-
ments in Section 5.4.
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Model Ar Bn En Fi Id Ja Ko Ru Sw Te Th Avg

XLM-R 0.782 0.797 0.754 0.755 0.840 0.741 0.691 0.741 0.614 0.820 0.852 0.762
+ semaCL 0.799 0.851 0.777 0.773 0.867 0.779 0.730 0.763 0.597 0.862 0.886 0.789
+ langCL 0.799 0.820 0.782 0.769 0.858 0.769 0.723 0.750 0.629 0.892 0.871 0.788
+ semaCL + langCL 0.806 0.864 0.798 0.784 0.858 0.780 0.736 0.743 0.626 0.867 0.877 0.794

Table 7: Recall@100 on the monolingual information retrieval task of Mr.TyDi dataset.

Model Ar Bn En Fi Id Ja Ko Ru Sw Te Th Avg

Results reported by Wu et al. (2022)
XLM-R 0.813 0.842 0.776 0.782 0.886 0.785 0.727 0.774 0.633 0.875 0.882 0.798
InfoXLM 0.806 0.860 0.804 0.749 0.869 0.788 0.717 0.767 0.724 0.867 0.874 0.802
LABSE 0.762 0.910 0.783 0.760 0.852 0.669 0.644 0.744 0.750 0.889 0.834 0.782
CCP 0.820 0.883 0.801 0.787 0.875 0.800 0.732 0.772 0.751 0.888 0.889 0.818

Results reported by Zhang et al. (2021)
BM25 (default) 0.793 0.869 0.537 0.719 0.843 0.645 0.619 0.648 0.764 0.758 0.853 0.732
BM25 (tuned) 0.800 0.874 0.551 0.725 0.846 0.656 0.797 0.660 0.764 0.813 0.853 0.758

Our implementation
XLM-R 0.782 0.797 0.754 0.755 0.840 0.741 0.691 0.741 0.614 0.820 0.852 0.762

+ semaCL 0.799 0.851 0.777 0.773 0.867 0.779 0.730 0.763 0.597 0.862 0.886 0.789
InfoXLM 0.797 0.900 0.785 0.725 0.843 0.790 0.717 0.753 0.711 0.873 0.875 0.797

+ semaCL 0.790 0.842 0.791 0.731 0.829 0.805 0.708 0.753 0.646 0.800 0.866 0.778
LaBSE 0.769 0.887 0.760 0.773 0.854 0.652 0.649 0.764 0.832 0.862 0.824 0.784

+ semaCL 0.725 0.865 0.762 0.770 0.845 0.575 0.604 0.734 0.739 0.724 0.697 0.731

Table 8: Recall@100 on the monolingual information retrieval task of Mr.TyDi dataset.

En Fi Ja Ko Avg

Basic Setting 0.754 0.755 0.741 0.691 0.735
Setting 1 0.776 0.770 0.777 0.706 0.757
Setting 2 0.785 0.778 0.781 0.710 0.763
Setting 3 0.767 0.762 0.766 0.723 0.754
Setting 4 0.779 0.785 0.764 0.722 0.762
Setting 5 0.765 0.759 0.722 0.703 0.737

Table 9: Recall@100 on different language pair connections.

Model Ar Bn En Fi Id Ja Ko Avg∥ Ru Sw Te Th Avg∦ Avg

XLM-R 0.782 0.797 0.754 0.755 0.840 0.741 0.691 0.766 0.741 0.614 0.820 0.852 0.757 0.762
+ semaCL 0.759 0.824 0.752 0.738 0.826 0.745 0.715 0.767 0.724 0.598 0.851 0.859 0.758 0.762
+ langCL (WikiMatrix) 0.778 0.797 0.782 0.757 0.840 0.752 0.726 0.776 0.734 0.550 0.861 0.854 0.749 0.766
+ langCL (Mr.TyDi) 0.767 0.842 0.739 0.749 0.819 0.761 0.713 0.770 0.724 0.605 0.773 0.857 0.739 0.759
+ semaCL + langCL (WikiMatrix) 0.784 0.856 0.776 0.774 0.866 0.759 0.738 0.796 0.761 0.592 0.828 0.887 0.767 0.783
+ semaCL + langCL (Mr.TyDi) 0.792 0.806 0.768 0.782 0.871 0.782 0.737 0.795 0.755 0.619 0.850 0.885 0.777 0.786

Note: Avg for languages with (∥) and without (∦) parallel data.

Table 10: Experiment results when Ru, Sw, Te, Th do NOT have parallel data (Recall@100).
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