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Abstract

Automatic medical entity and relation extrac-
tion is essential for daily electronic medical
record (EMR) analysis, and has attracted a lot
of academic attention. Tremendous progress
has been made in recent years. However, medi-
cal terms are difficult to understand, and their
relations are more complicated than general
ones. Based on this situation, domain knowl-
edge gives better background and contexts for
medical terms. Despite the benefits of medi-
cal domain knowledge, the utilization way of
it for joint entity and relation extraction is in-
adequate. To foster this line of research, in
this work, we propose to leverage the medi-
cal knowledge graph for extracting entities and
relations for Chinese Medical Texts in a col-
lective way. Specifically, we propose to con-
struct a high-order heterogeneous graph based
on medical knowledge graph, which is linked
to the entity mentions in the text. In this way,
neighbors from the high-order heterogeneous
graph can pass the message to each other for
better global context representations. Our ex-
periments on real Chinese Medical Texts show
that our method is more effective than state-of-
the-art methods.

1 Introduction

Medical text, e.g., electronic medical record
(EMR), has been produced at a rapid speed and
massive volume every day. Without any structured
organization, this enormous volume of medical in-
formation is difficult to be read through by humans
in a short time (Shang et al., 2021). Due to this sit-
uation, many researchers have recently paid great
attention to the joint entity and relation extraction
in the medical domain (Lai et al., 2021; Verlinden
et al., 2021).

The challenge of joint entity and relation extrac-
tion in medical domain is that medical terms are
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usually difficult to understand due to the require-
ment of medical domain knowledge, especially for
abbreviations of medical terms in the medical text.
Even worse, relations between medical entities be-
come even more complicated. Therefore, medical
domain knowledge that could provide meaningful
contexts and backgrounds is essential for the better
extraction of medical entities and relations. De-
spite the advantages of medical domain knowledge,
most previous works fail to use medical domain
knowledge (Li et al., 2017; Xue et al., 2019; Pang
et al., 2021; Luo et al., 2020). They solely rely on
the local information in the medical text to extract
entities and relations with language model (LM),
which is insufficient for incomprehensible medical
terms and complicated relations between entities.

Some recent works utilize medical knowledge
for joint entity and relation extraction (Lai et al.,
2021; Verlinden et al., 2021). However, both Lai
et al. (2021) and Verlinden et al. (2021) simply
align entity representation (node representation)
from knowledge graph to local texts and fail to
explicitly introduce the complicated relation con-
texts (edge representation) in the medical knowl-
edge graph to enhance the deep representations
of their involved entities. Huang et al. (2020)
propose graph edge-conditioned attention network
(GEANet) which integrates initial static relation
embedding into attention mechanism for entity rep-
resentation enhancement in medical knowledge
graph. Nonetheless, it leaves out relational update
during knowledge graph training process. Battaglia
et al. (2018) propound graph network (GN) frame-
work to update node and edge features iteratively
within a heterogeneous graph. However, the edge
representation update is based on the sender and re-
ceiver nodes information it links, which will bring
about fluctuation since the amount of nodes is far
outweighed that of edge types.

Therefore, we propose a method to fix these is-
sues by providing additional relation contexts from
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Figure 1: An example of the high-order heterogeneous
graph: the left is original first-order graph searched
directly from knowledge graph with ei and ri as entity
and relation, respectively, and the right is its converted
second-order graph where tei means the type of entity
ei.

medical knowledge graph to enrich the deep rep-
resentations of entity mentions. Specifically, we
propose to construct a high-order heterogeneous
graph, e.g., Fig. 1, to provide meaningful global
contexts for its linked entity mentions. In Fig. 1,
we denote Ge as the standard first-order graph with
entities as nodes and relations as edges, and repre-
sent Gr as Ge’s converted second-order graph with
relations as nodes and entity types as edges. For ev-
ery relation pair of an entity in Ge, e.g., r3 and r2,
we link an edge, i.e., the entity type te1 , in Gr con-
necting them. In this way, both message passing of
entities via different relations and message propa-
gation of relations via different entity types can be
well diffused in the global graph structure. After ex-
tracting the high-order heterogeneous graph from
the medical knowledge graph, we fuse the entity
and relation representations in the global context
obtained from the high-order heterogeneous graph
with the local information extracted from the medi-
cal text.

To summarize, our contributions are:
• We propose a high-order graph modeling

method for knowledge fusion, which treats text
related sub-graph as the first-order graph with enti-
ties as nodes and its converted graph as the second-
order one with relations as nodes. We update the
hidden representations of nodes in the two order
graphs separately as the entity/relation representa-
tions for knowledge graph.
• We present a knowledge-enhancement method

for medical text encoding, which boosts the entity
representation of the first-order graph with the feed-
back of the second-order relation representation.
And it further enhances the encoding of the entity
mentions from medical text for joint extraction.
• We have performed substantial experiments

against existing methods. Our evaluation results
on real medical datasets verify that our method is
more effective than state-of-the-art methods.

The rest of this paper is organized as follows.

Section 2 discusses related work. In Section 3, we
introduce the typical algorithms for text and graph
representation and present the proposed method for
knowledge-enhanced joint extraction. Section 4
shows the evaluation results on two datasets with
compared to some other advanced methods. We
conclude in Section 5.

2 Related Work

There are two categories of entity and relation ex-
traction methods: pipeline-based methods and joint
extraction methods.

Pipeline-based entity and relation extraction
methods: These work usually first extract entities
as outputs, then extract relations for the returned
entities. The drawback of pipeline-based extraction
methods is that the errors of entity extraction may
be accumulated when extracting relations for the
already returned entities. For example, Zhong and
Chen (2021) put forward an extra encoder and fuse
the entity type information to enhance entity pair
representation during the relation extraction task.

Jointly entity and relation extraction meth-
ods: Some recent work extracts entity and rela-
tion in a collective way to overcome the accumu-
lated error problem in the pipeline-based meth-
ods. There are two kinds of standard extraction
methods, which are non-knowledge-enhanced and
knowledge-enhanced methods.

Most joint entity and relation extraction methods
ignore the domain knowledge. Wang et al. (2018)
utilize a novel graph scheme to solve the prob-
lem. Luan et al. (2018) apply multi-task method to
optimize entities, relations, and coreference simul-
taneously.Bekoulis et al. (2018) further propose
multi-context based adversarial training method.
Luan et al. (2019) utilize dynamic span graphs to
form a general framework. Fu et al. (2019) model
text as relational graphs for joint extraction. Zhao
et al. (2021) model dense cross-modal interactions
for joint extraction. Wang and Lu (2020) apply
table-sequence encoders to extract jointly. Lin et al.
(2020) apply neural model for information extrac-
tion with global features. Recently, Eberts and
Ulges (2020) propose a span-based method with
transformer pre-training. Further, Ji et al. (2020) ap-
ply span-based method with attention-based span-
specific and contextual semantic representations.
Moreover, Wei et al. (2020) propose a cascade bi-
nary tagging framework for entity and relation ex-
traction. Yan et al. (2021) propose a partition filter
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network for joint entity and relation extraction. De-
spite that these works extract entity and relation
in a joint way, they are not designed for medical
text. While some previous works are designed for
medical text, they ignore the help of medical do-
main knowledge when modeling (e.g., Li et al.,
2017; Xue et al., 2019; Pang et al., 2021; Luo et al.,
2020). Only a few works incorporate medical do-
main knowledge to enhance the contexts of the
medical text for joint entity and relation extraction
(Lai et al., 2021; Verlinden et al., 2021). Among
them, Lai et al., 2021 extract entity and relation
jointly with knowledge-enhanced collective infer-
ence. Verlinden et al. (2021) inject knowledge base
information into entity and relation extraction and
coreference resolution simultaneously. However,
both Lai et al. (2021) and Verlinden et al. (2021)
fail to explicitly incorporate complicated relation
contexts for their involved entities. Thus the inter-
action between entity and relation extraction will
not be captured. Our method overcomes this draw-
back by providing relation contexts when modeling
deep representations of entities.

Most of the current work does not use domain
knowledge, or only uses the entity context in do-
main knowledge, and does not include the relation
context. While we explicitly model the entity con-
text and relation context as the important context
information for entity span, which improves the
results of joint extraction.

3 Proposed Method

Fig. 2 shows the framework of our method. It
first extracts the high-order heterogeneous graph
from the medical knowledge graph (Section 3.1),
and learns entity and relation representation from
the global context (Section 3.2). After that, we
learn the representation of entity mentions from the
local context in the medical text (Section 3.3). The
fusion of entity representations from both global
and local contexts and its corresponding relation
representation (Section 3.4) is utilized to extract
entities and relations in a collective way (Section
3.5).

3.1 High-order Heterogeneous Graph
Extraction

The challenge is that there are multiple relations
in the heterogeneous graph, and modeling entities
together with their contextual relation information
is non-trivial. We propose to construct a high-order

heterogeneous graph from the knowledge graph for
the medical text, such that the text representation
contains additional global knowledge contexts of
related entities and relations.

The high-order heterogeneous graph comprises
of first-order graph (a text related sub-graph of orig-
inal knowledge graph) and its converted second-
order graph. Given a piece of medical text ex-
pressed as words t = (w0, w1, ..., wi, ..., wk) and a
domain knowledge graph G = (V, ε, E), the goal
of high-order heterogeneous graph extraction is to
obtain Ge = (Ve, Ee) and Gr = (Vr, Er). Specifi-
cally,

Ve = V ∩ {wi},
(ei, rei,ej , ej) ∈ ε, (1)

rei,ej = Ee(ei, ej),

where vei , vej ∈ Ve, rei,ej ∈ Ee and ε is the set
of all triplets {(eh, reh,et , et)} in knowledge graph.
And

Vr ⊆ Ee,

Er ⊆ T (Ve), (2)

I(Er(Ee(ei, ej), Ee(el, em)))=I(ei=em∨ej=el),

where T (.) means the type of an entity. I is the
indicator function and I(Er(.)) measures whether
the edge Er(.) in second-order graph exists.

Hence, it first searches through the medical
knowledge graph to extract all triplets as the first-
order graph pertaining to current medical text, and
converts it to the second-order graph with nodes
and edges switched. To be detailed, we traverse
nodes, i.e., entities, in the first-order graph and
collect their in and out edges, i.e., relations. Con-
cretely, when it is the head entity in a triplet, we
call the corresponding relation the out relation,
conversely, the in relation. For any in-out relation
pair of an entity, we consider relations as nodes
for the second-order graph, and the type of the cor-
responding entity as the edge linking them. As
it can be seen in the High-Order Heterogeneous
Graph Extraction Module part of Fig. 2, a Chinese
entity “鹅口疮(thrush) ” is revolved around by re-
lations of “可能疾病(possible disease) ”, “并发
症(complication) ” and “传染方式(mode of infec-
tion) ” in the first-order graph, during which the
first two are in relations, and the other is the out
relation. For any in-out relation pair, e.g., “并发
症-传染方式”, we take them as two nodes in the
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Figure 2: The overall framework of our model. Details of each step are from Section 3.1 to 3.5.

converted second-order graph and the type of the
entity “鹅口疮”, i.e., “疾病(disease) ” as the link-
ing edge. As a counter example, “可能疾病” and
“并发症” are all in relations for entity “鹅口疮”,
therefore, no edge exists to link them. We merely
link the in-out relation pair on account of the mes-
sage flowing direction, i.e., from head entity to tail
entity.

This high-order heterogeneous graph we propose
is distinguished from the node layer and edge layer
in Jiang et al. (2020), which lies in two aspects:

(1) We only consider the in-out relation pairs as
edges for second-order graph, which better reflects
the direction of information flow, while Jiang et al.
(2020) links all relation pairs.

(2) The edge in second-order graph represents
the entity type in our method, however, it remains
as the entity by authors of Jiang et al. (2020), where
the number of entities is very huge and will not be
feasible for GNN to learn.

3.2 High-Order Heterogeneous Graph
Modeling

Our idea is to propagate messages among both
the first-order graph Ge and the converted second-
order graph Gr in Fig. 2, in order to capture the
complex global information from knowledge graph.
Hence, entity mentions in the medical text can inte-
grate their local information with the related global

contexts for the better encoding.
We first propagate message among the standard

first-order graph Ge with relational graph convolu-
tional network (RGCN) (Schlichtkrull et al., 2018).
We apply TransE (Bordes et al., 2013) as the ini-
tialization of the embedding for each node vi. The
embedding of each node vi, i.e., entity, can be up-
dated as:

vl+1
i = ReLU(Ulvli +

∑

k∈R

∑

vj∈Nk
i

(
1

|Nk
i |

Ul
kv

l
j)) ,

(3)
where vli is the embedding of the node vi at layer
l. Nk

i is the set of neighbors of vi under relation
k. Ul is the trainable parameter at layer l. Ul

k is
relation specific weighted parameter.

We further model the global contexts in the con-
verted second-order graph Gr. Different from the
first-order graph Ge, the nodes and edges in second-
order graph represent relations and entity types re-
spectively. We pass messages among the neighbors
of the node, i.e., relation ri, via different entity
types in graph Gr. Then the information among
multiple entity types of relation ri can be summa-
rized. Here the initialization of the embedding
for each relation ri is also obtained by the TransE
model. The embedding of each node, i.e., relation
ri, is integrated by the deep representations of its
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neighbors as:

rl+1
i = ReLU(Olrli+

∑

t∈T

∑

rj∈Nt
i

(
1

|N t
i |

Ol
tr

l
j)) , (4)

where rli is the embedding of the relation ri at layer
l. N t

i is the set of neighbors of relation ri under
the entity type t ∈ T , while |N t

i | is the number of
neighbors of ri. Ol is the trainable parameter at
layer l. And ReLU is the activation function.

The high-order heterogeneous graph modeling
provides deep representations for the entities and
relations. Therefore, complicated relation informa-
tion can be well preserved for the involved entities
in the modeling of Section 3.5.

3.3 Spans Representation with Transformer
Encoder

After modeling the high-order heterogeneous graph
extracted from the medical knowledge graph, we
then model the local contexts in the medical text.
The medical text is organized here as tokens
t = (x0, x1, ..., xi, ..., xn−1), and a successive se-
quence (xsi , ..., xei) in text is a span which means
an entity mention for medical text. Each span si is
modeled as:

si = gs([xsi , xei , x̂i, ϕ(si)]) , (5)

where xsi denotes the token level embedding from
the transformer encoder, e.g., BERT, of the start
of span si, while xei represents the token level
embedding of the end of span si. x̂i is an attention-
weighted sum of the token representations in the
span. And ϕ(si) is a feature vector modeling the
length of si. gs is a feed-forward neural network
(Lee et al., 2017).

Then a span-based GCN is applied on the graph
with spans as nodes and relations between spans as
edges:

hl+1
i = hli + f l

span(ReLU(f l
s(h

l
i), f

l
s′(h

l
i))) , (6)

and

f l
s(h

l
i) =

∑

sj∈sset,j ̸=i

∑

k∈R
rij [k](Wkh

l
j + bk),

f l
s′(h

l
i) =

∑

sj∈sset,j ̸=i

∑

k∈R
rji[k](W

′
kh

l
j + b′k), (7)

rij [k] = Softmax(fr([si, sj , si ◦ sj ]))[k],

where hl+1
i is the deep representation of si at the

layer l+1, fspanand fr are feedforward neural net-
works. f l

s and f l
s′ are bidirectional GCN (Marcheg-

giani and Titov, 2017; Fu et al., 2019) for hli, rij [k]

measures the relation score for relation k between
spans of si and sj , ◦ denotes the element-wise mul-
tiplication. And h0i is initialized as si.

3.4 Knowledge Graph Enhanced Span
Representation

After applying span-based GCN, we obtain the hid-
den representation hi of span si derived from local
context, e.g., the medical text. Then we apply an
attention mechanism (Lai et al., 2021) to integrate
the deep representation of hidden representation
hi of span si from the local medical text with the
deep representation of entities vi from the global
contexts in the first-order graph as fie :

fie = Wiefce(hi) +
∑

vj∈C(sie )

Wijefv(vj) , (8)

where C(sie) is the candidate set of entities cor-
responding to span si in the dual heterogeneous
graph. And fce(hi) and fv(vj) are the transformed
representation of hi and vj by two feedforward
neural networks. And Wie and Wije are attention
scores of the two transformed representations:

Wie =
exp(αie)

(exp(αie) +
∑

vj∈C(si)
exp(αije))

, (9)

and

Wije =
exp(αije)

(exp(αie) +
∑

vj∈C(si)
exp(αije))

.

(10)
Here αije and αie are importance scores of the
transformed entity representation vj and the trans-
formed span representation hi to the span represen-
tation hi:

αije = fαe([hi, fv(vj)]) , (11)

and
αie = fαe([hi, fce(hi)]) , (12)

where fαe is a feedforward neural network.
Next, we fuse the deep representations of rela-

tions ri from the global contexts in the second-
order graph Gr with the deep representation hi of
span si from the local medical text. Distinguished
from first-order graph fusion in equation 8, we
argue that the corresponding relations in second-
order graph may be irrelevant to the span depending
on current medical text, and arouse disproportion-
ate or even noisy aggregating representations for
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local context. Therefore, a selective gate mecha-
nism (Li et al., 2020) is utilized to perform this
fusion as fir :

fir = girfcr(hi) +
∑

rj∈C(sir )

gijrfr(rj), (13)

where C(sir) is the candidate set of relations in
the second-order heterogeneous graph for the span
si. To be detailed, C(sir) is a subset of relations
from knowledge graph triplets where si holds as
head or tail entity. And fcr(hi) and fr(rj) are the
transformed representation of hi and rj by two
feedforward neural networks. And gir and gijr are
gate scores of the two transformed representations:

gir=σ(W2(ReLU(W1[fcr(hi), hi]+b1)+b2), (14)

and

gijr=σ(W2(ReLU(W1[fr(rj), hi]+b1)+b2), (15)

where σ is the Sigmoid activate function which
maps the results into the interval of (0, 1).

Then, the fused representation fi can be modeled
as:

fi = (Wsumefie +Wsumrfir)||hi , (16)

which means an integration of deep representation
among entities, relations and the span. Wsume and
Wsumr serve as feedforward neural networks. ||
means concatenation operation.

3.5 Collective Entity and Relation Extraction

Finally, we map the integrated representation fi to
the entity type space as:

ei = Softmax(ge(fi)) , (17)

where ge is a feed-forward neural network to map
fi to the entity space.

Similarly, the relation between span i and j can
be mapped to the relation type space as:

rij = Softmax(gr(fi, fj)) , (18)

where gr is a feed-forward neural network to map
fi and fj to the relation space.

The training of collectively extracting entity and
relation can be optimized by minimizing the loss
function as:

L = Le + Lr , (19)

where Le represents the cross-entropy loss of enti-
ties, and Lr denotes the cross-entropy loss of rela-
tions.

Different from the pipeline way that optimizes
entities and relations in separate steps, our method
conducts the optimization in an end-to-end mode.
In this way, the errors of extracting entities and
relations can be reduced collectively.

4 Experiments

In this section, we evaluate our model with exten-
sive experiments. We first show the experimental
setup, which contains datasets, baselines for com-
parison, and evaluation metrics. Then we evaluate
the effectiveness of our model and baselines.

4.1 Experimental Setup

4.1.1 Datasets
We evaluate our method on several real medical
datasets with one medical knowledge graph dataset.

Chinese Medical Text datasets: We evaluate
our model on three Chinese medical text datasets.
• The first medical text dataset is the CHIP-

2020 dataset 1, which contains 17,924 sentences
from biomedical Chinese text that captures rela-
tions between medical entities (Guan et al., 2020).
The dataset includes a pediatric labeled corpus for
hundreds of common diseases. The training and
testing splits contain 14,339 and 3,585 sentences,
respectively.
• The next medical dataset is the CHIP-2022

dataset 2, which contains 1000 samples and is split
into 850/150 for training and testing set, respec-
tively. CHIP2022 aims to extract casual, entailment
and conditional relations between entities whose
type are not distinguished. In the experiments, we
merely trace out the previous two types of relations
for joint extraction.
• The third medical text dataset is the DiaKG

dataset 3, which contains sentences from diabetes
text that reflects relations between medical entities
(Chang et al., 2021). The dataset comes from 41
diabetes guidelines and consensuses from authori-
tative journals in China. The diabetes text contains
22,050 entities and 6,890 relationships. Finally,
the prepossessed training and testing splits contain
1,170 and 239 sentences, respectively.

1http://cips-chip.org.cn/2020/eval2
2http://cips-chip.org.cn/2022/eval2
3https://tianchi.aliyun.com/dataset/

dataDetail?dataId=88836
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Model CHIP-2020 CHIP-2022 DIAKG
Entity Relation Overall Entity Relation Overall Entity Relation Overall

PFN (Yan et al., 2021) 72.2 52.7 62.5 59.3 42.0 50.7 63.0 44.5 53.8
CASREL (Wei et al., 2020) 66.1 49.5 57.8 56.5 39.1 47.8 50.4 31.0 40.7

SPERT (Eberts and Ulges, 2020) 73.5 50.1 61.8 57.8 38.7 48.3 65.5 29.1 47.3
KB-graph (Verlinden et al., 2021) 73.9 61.8 67.9 65.0 32.5 48.8 69.3 51.1 60.2

KECI (Lai et al., 2021) 74.3 61.1 67.7 63.4 32.6 48.0 72.6 55.1 63.8
KECI_nnconv (Li et al., 2017) 74.2 61.7 68.0 63.5 32.4 48.0 73.2 54.1 63.7
KECI_gea (Huang et al., 2020) 75.6 61.0 68.3 61.8 32.5 47.2 73.1 54.9 64.0

KECI_gn (Battaglia et al., 2018) 74.7 60.5 67.6 64.0 32.4 48.2 73.9 54.5 64.2
Our Model 76.5 61.8 69.2 66.7 32.5 49.6 74.2 54.4 64.3

Table 1: Evaluation results (%) on CHIP-2020 & CHIP-2022 & DiaKG datasets.

Chinese Medical knowledge graph dataset:
We extract Chinese medical triplets from the public
knowledge graph dataset 4, which contains disease-
related entities and disease-related triples. After
preprocessing, we obtain 215,745 triplets for the
medical knowledge graph. These triplets contain
16,735 entities and 13 relations, and the amount of
entity types is 9.

4.1.2 Baselines for comparison
We compare our model with state-of-the-art joint
extraction methods, variant versions of knowledge-
enhanced baseline included.
• PFN (Partition Filter Network) is an advanced

joint extraction method that does not utilize a
knowledge graph. It segments the encoder into
entity extraction and relation extraction parts, and
accomplishes NER-specific and relation-specific
tasks with shared part separately (Yan et al., 2021).
• CASREL (Cascade Binary Tagging Frame-

work for Relational Triple Extraction) is an ad-
vanced joint extraction method without knowledge
graph enhancement. It models triplets extraction
into head entity extraction as well as relation and
tail entity extraction with fused head entity repre-
sentation. The two parts share the same encoder
for a joint extraction task (Wei et al., 2020).
• SPERT (Span-based Joint Entity and Relation

Extraction with Transformer Pre-training) is also
an advanced joint extraction method without knowl-
edge graph context. It attaches entity labels for
spans derived from the text, and traversed span
pairs for relation judgement (Eberts and Ulges,
2020).
• KB-graph is an advanced joint extraction

method, which injects medical knowledge into en-
tity and relation extraction and coreference resolu-
tion simultaneously (Verlinden et al., 2021).
• KECI (Knowledge-Enhanced Collective

Inference) is an advanced joint extraction method,
which extracts entity and relation collectively with

4http://www.openkg.cn/dataset/medical

knowledge-enhanced collective inference. It uti-
lizes RGCN algorithm for knowledge graph rep-
resentation (Lai et al., 2021). Compared with the
proposed method, KECI merely models the first-
order graph for knowledge fusion.
• KECI_nnconv is the variant version of KECI

(Lai et al., 2021) in which the NNConv (Gilmer
et al., 2017) is utilized instead of RGCN. Different
from RGCN, NNConv fuses the initial edge feature
for message propagation and further enhances the
node representation, which is similar to GEANet.
• KECI_gea is one variant version of KECI

(Lai et al., 2021) that the RGCN part is replaced by
GEANet (Huang et al., 2020) which is similar to
NNCONV.
• KECI_gn is also one variant version of KECI

(Lai et al., 2021) where the node and edge features
are simultaneously derived from the graph net (GN)
framework (Battaglia et al., 2018).

4.1.3 Evaluation metrics
We evaluate methods by Micro-F1 scores for entity
and relation extraction. Also, we use the average
Micro-F1 scores of entities and their relations in
each medical text as the overall scores for each
medical text.

4.1.4 Implementation details
We implement our method with PyTorch and
MedBERT-kd Transformer 5 which is based on
the structure of BERT and trained on a mount of
Chinese clinic texts. The number of parameters
of our model is 135,557,734. We conduct hyper-
parameter tuning by using a Bayesian optimizer
for all the methods on real datasets. The scopes of
hyper-parameters are: {16, 32} for batch size, {2e-
5, 3e-5, 4e-5, 5e-5} for lower learning rate, {1e-4,
2e-4, 5e-4} for upper learning rate.

A coarse-to-fine training process is applied dur-
ing training process. Firstly, we leave out the

5https://huggingface.co/trueto/
medbert-kd-chinese
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Figure 3: The ablation study results w.r.t. overall Micro-F1 scores on CHIP-2020/CHIP2022/DiaKG datasets.

knowledge graph fusion part and only employ hid-
den representations of spans from the local context
to train a better downstream task-specific BERT
structure. After that, global information from
knowledge graph representation is added for a pre-
cise training.

We evaluate all models with GPUs on the JIU-
TIAN Platform of China Mobile Research Institute.

4.2 Evaluation results

We evaluate the effectiveness of all methods on
three real datasets in Table 1, where we show the
Micro-F1 values of both entities and relations. We
also show the averaged overall Micro-F1 values.
From Table 1, we make the following observations:

(1) KECI outperforms other joint extraction
methods which do not involve medical knowledge
graph. For example, KECI has 9.9%, 0.2% and
23.1% improvements compared with CASREL on
CHIP-2020, CHIP-2022 and DiaKG datasets, re-
spectively. It shows that the medical knowledge
graph is essential for providing more contexts in
joint entity and relation extraction.

(2) Our model works better than KECI in over-
all values. Specifically, our model achieves 1.5%,
1.6% and 0.5% improvements compared with the
KECI model on CHIP-2020, CHIP-2022 and Di-
aKG datasets, respectively. It verifies that high-
order graph context could provide more informa-
tion for text modeling. Moreover, before adding
relation context, as shown in Table 1, the Micro-F1
score of the entity for KECI is 74.3 % on CHIP-
2020 dataset, while our method uses relation con-
text and Micro-F1 is increased to 76.5 %. On aver-
age, there are 2.2%, 3.3%, and 1.6% improvements
on the three datasets respectively after adding re-
lation contexts. It can be seen that the relation
context does have a significant effect on improving
the entity value.

(3) Results in CHIP-2022 show that our model

has a little poorer performance than that of PFN
in overall score, however, we still prevail much in
entity result. This is attributed to the fact that the
relation types in CHIP-2022 dataset are all logi-
cal types, such as casual and entailment relations,
which varies considerably from medical knowledge
graph.

We further make detailed evaluation on all the en-
tity types which can be seen in table 2 and 3. Gen-
erally, our model achieves a higher F1 score among
entity types, especially in the less-train-instance
targets, e.g., “部位(part) ”, “其他治疗(other ther-
apy) ”, “其他(others) ” in CHIP-2020 dataset and
“Amount”, “Method”, “Pathogenesis” in DiaKG
dataset, our model performs almost above 4% bet-
ter than KECI (Lai et al., 2021). When mentioning
CHIP-2022 data, we neglect the entity type results
owing to its lack of discrimination between entity
types.

We also make comparisons between proposed
high-order heterogeneous graph modeling method
and some typical graph neural networks (GNN).
We can conclude that the high-order graph mod-
eling for both entity and relation update is more
efficient than a single order heterogeneous graph
modeling for entity representation, even with the
extra relation update. Details are as follows:

(1) The proposed model exceeds KECI_nnconv,
KECI_gea and KECI_gn by 1.2%, 0.9%, 1.6%,
respectively, in CHIP-2020 dataset.

(2) The proposed model surpasses
KECI_nnconv, KECI_gea and KECI_gn by
1.6%, 2.4%, 1.4%, respectively, in CHIP-2022
dataset.

(3) The proposed model beats KECI_nnconv,
KECI_gea and KECI_gn by 0.6%, 0.3%, 0.1%,
respectively, in DiaKG dataset.
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Entity
Type

KECI(Lai et al., 2021) Our Model
P R F1 P R F1

surgery 55.78 54.30 55.03 47.34 64.90 54.75
inspection 65.75 61.03 63.30 58.07 72.31 64.41

epidemiology 60.76 58.22 59.46 52.92 73.26 61.45
disease 70.04 84.52 76.60 79.95 80.24 80.09

symptom 71.70 63.12 67.14 68.00 72.74 70.29
sociology 66.83 46.64 54.94 60.14 57.79 58.94
medicine 61.27 75.68 67.72 66.84 75.78 71.03

part 72.93 46.41 56.72 60.35 66.27 63.17
prognosis - - - - - -

other-therapy 47.70 33.24 39.18 47.67 38.78 42.77
others - - - 100.00 5.83 11.02

Table 2: Entity evaluation details (%) on CHIP-2020
dataset. (- means the result is zero.)

Entity
Type

KECI(Lai et al., 2021) Our Model
P R F1 P R F1

ADE 68.42 54.17 60.47 77.55 52.78 62.81
Amount 20.00 17.65 18.75 26.67 23.53 25.00
Anatomy 79.31 92.00 85.18 82.51 92.00 87.00

Class 87.13 60.69 71.55 86.27 60.69 71.25
Disease 78.22 77.49 77.85 73.40 82.60 77.73
Drug 65.02 75.24 69.76 66.80 77.62 71.80

Method - - - 36.84 50.00 42.42
Pathogenesis - - - 22.22 25.00 23.53

Reason 30.00 33.33 31.58 - - -
Symtom 48.15 40.62 44.07 52.17 37.50 43.63

Test 43.33 61.90 50.98 50.00 66.67 57.14
Test_items 59.54 60.94 60.23 53.99 68.75 60.48
Treatment 42.86 57.69 49.18 38.24 50.00 43.34
Operation - - - - - -

Table 3: Entity evaluation details (%) on DiaKG dataset.
(- means the result is zero.)

4.3 Ablation Study
We conduct an ablation study on our model to eval-
uate the effectiveness of its main modules in Fig-
ures 3. Specifically, we compare our model with
the following variants w.r.t. the overall score of
each medical text, i.e., average Micro-F1 score of
entities and relation in each medical text.
• MnoKG (Model without Knowledge Graph)

ignores knowledge graph for triplets extraction.
• MEnt (Model with Entity) merely fuses first-

order graph into medical text for joint extraction.
• MRel (Model with Relation) merely fuses

second-order graph into medical text for extrac-
tion.
• MnoGNN (Model without GNN update) fuses

initial node representations of high-order graph
from TransE into text without GNN to update.
• MRAtt (Model with Relation Attention fu-

sion) is one variant version of our model, which
uses an attention mechanism in Equation 20 to re-
place Equation 16 for relation fusion:

fir = Wirfcr(hi) +
∑

rj∈C(sir )

Wijrfr(rj) , (20)

where Wir and Wijr are similar to 9 and 10, respec-
tively.

From the Figures, we make the following obser-
vations:

(1) Our model beats MnoKG on all real datasets.
In particular, the performance improvements of
our model are 8.9%, 6.3% and 5.9% better com-
pared with MnoKG on CHIP-2020, CHIP-2022
and DiaKG datasets, respectively. It shows that
using medical knowledge graph is important for
providing external contexts.

(2) Our model outperforms MEnt. For example,
the overall improvements are 1.5%, 1.6% and 0.5%
compared with MEnt on CHIP-2020, CHIP-2022
and DiaKG datasets, respectively. It justifies that
the second-order graph provides a positive feed-
back for the first-order representations and further
enhance the encoding of entity mentions in medical
text.

(3) Our model surpasses MRel and the rate is
less than that of MEnt. It seems the second-order
graph plays a major role in dual heterogeneous
graph for joint extraction task.

(4) Our model precedes MnoGNN. Specifically,
the exceeding values are 1.2%, 2.5% and 0.1% for
the datasets. It shows that the GNN update part
is vital for a better knowledge graph information
fusion.

(5) The MEnt model only added the first-order
graph, and the MRel only added the second-order
graph. It can be seen from the data that the effect
of MRel is better than that of MEnt. Second-order
graph can improve entity extraction even more ef-
fectively, because it acts directly on the entity span.

(6) Our model performs better than MRAtt. To
be specific, the overall improvement of our model
is 0.5%/1.5% compared with MRAtt on CHIP-
2020/CHIP-2022 datasets and the result is compa-
rable to that of MRAtt on DiaKG dataset. It means
that the selective gate mechanism can improve the
performance for relation fusion.

5 Conclusions

In this paper, we study the problem of the joint en-
tity and relation extraction in the medical text. We
propose to construct the high-order heterogeneous
graph from the medical knowledge graph, and learn
the entity span representations in a knowledge-
enhanced which integrates the deep representations
from both global and local contexts. The extraction
of entities and relations is in a collective way. The
experimental results show that our model is more
effective than state-of-the-art methods.
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Limitations

We inject the medical knowledge graph into local
texts for entity span representations enhancement.
However, unlike most joint extraction methods, the
proposed model is hard to be trained in a parallel
way. Therefore, it is time-consuming to obtain a
well-trained model. We would like to optimize the
architecture of the model in the future.

Moreover, our model is adapted to Chinese med-
ical texts where a token usually means a character
(not a word). Hence, there will be errors when
aligning the entities from the knowledge graph with
mentions from local texts. Word segmentation task
will be considered in our future work.
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