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Abstract

In few-shot classification, key points to make
the learning phase effective are to construct ex-
pressive class-level representations and design
appropriate metrics. However, previous studies
often struggle to reconcile the expressivity of
representations and the conciseness of metrics.
When modeling class-level information, vanilla
embeddings can make classification difficult
due to the lack of capacity, whereas complex
statistical modeling hinders metric interpreta-
tion. To address the issues simultaneously, this
paper presents a simple and effective approach
from the geometrical perspective, dubbed as hy-
persphere prototypes. Specifically, our method
represents class information as hyperspheres,
which are characterized by two sets of learnable
parameters: a center and a radius. Our method
enjoys the following advantages. (1) With the
learnable parameters, unique class represen-
tations can be easily constructed and learned
without additional restrictions. (2) Using “ar-
eas” instead of “points” as class representation,
the expressive capability will be greatly en-
hanced, increasing the reliability of few-shot
classification. (3) The metric design is intuitive
for hypersphere representation, which is the
distance from a data point to the surface of the
hypersphere. As a fundamental method of few-
shot classification, our method demonstrates re-
markable effectiveness, generality, and compat-
ibility with other technologies in experiments.

1 Introduction

Constituting cognition of novel concepts with a few
examples is crucial for machines to emulate human
intelligence, and with the exorbitant cost associ-
ated with annotating large amounts of data, few-
shot learning has garnered considerable attention in
modern deep learning (Lu et al., 2020). Despite the
success under ample supervision, limited training
examples remain a challenge for traditional deep

∗ Equal contribution
† Corresponding authors

neural models. Consequently, various approaches
have been proposed to extend the applicability of
deep neural networks to scenarios with limited data
availability. One significant area of research within
this domain is metric-based meta-learning (Snell
et al., 2017; Ren et al., 2018; Allen et al., 2019),
where models are trained to generate expressive
representations and perform classification through
predefined metrics.

The success of metric-based meta-learning
depends on both representation learning and the
metrics chosen. One straightforward approach
relies on training feature representation and adopts
a nearest-neighbor classifier (Vinyals et al., 2016;
Yang and Katiyar, 2020; Wang et al., 2019). Other
works introduce additional parameters as class
representation to achieve better generalization abil-
ity. A naive way to estimate class representation
is to use the mean embedding of feature represen-
tation, i.e., prototypes (Snell et al., 2017; Allen
et al., 2019), while some also use second-order
moments (Li et al., 2019a) or reparameterize the
learning process to generate class representation in
a richer semantic space (Ravichandran et al., 2019)
or in the form of probability distribution (Zhang
et al., 2019). Apart from traditional Euclidean
and cosine distance, a variety of metric functions
are also proposed (Sung et al., 2018; Zhang et al.,
2020a; Xie et al., 2022). Most existing works
learn class representation from the statistical per-
spective, making designing and implementing the
metrics more difficult. For example, the proposed
covariance metric in CovaMNet (Li et al., 2019a)
theoretically requires a non-singular covariance
matrix, which is awkward for neural-based feature
extraction methods.

This paper revisits metric-based meta-learning
and demonstrates that geometrical modeling can
simultaneously enhance the expressivity of rep-
resentations and reduce the difficulty of metric
calculation, meanwhile yielding surprising per-
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formance in few-shot classification. Specifically,
we propose HyperProto , a simple and effective
approach to model class representation with
hyperspheres. It is equipped with three advantages:
(1) Characterizing geometrical “area” as manifolds
with complex boundaries can often be difficult in
deep learning. Instead, we only use two sets of
learnable parameters: the center and the radius, to
represent a hypersphere, which is straightforward
and easy to learn. (2) A hypersphere is much more
expressive than a single point in the representation
space. The introduction of a learnable radius
parameter greatly expands the representative
power. (3) Besides, hyperspheres are suitable for
constructing measurements in Euclidean space.
We can calculate the Euclidean distance from one
feature point to the surface of the hypersphere in
order to perform metric-based classification, which
is difficult for other manifolds.

Along with the simplicity in metric design and
the enhanced expressive power is the easiness
in optimization and learning. With the metrics
designed as distance to the hypersphere surface,
both the radius and the center of the hypersphere
will appear in the loss function and participate
in the backward propagation during optimization.
Intuitively, for the classes with sparse feature distri-
butions, the corresponding radii of their prototypes
are large, and the radii are small otherwise. Beyond
the Euclidean space, we also develop two variants
based on the general idea – cone-like prototypes
with cosine similarities and Gaussian prototypes
from the probability perspective (in Appendix A).

We conduct extensive experiments to evaluate
the effectiveness of HyperProto on two classical
information extraction tasks, few-shot named
entity recognition (NER) (Ding et al., 2021c) and
relation extraction (RE) (Han et al., 2018; Gao
et al., 2019b). Despite the simplicity, we find that
our approach is exceedingly effective, which out-
performs the vanilla prototypes by 8.33 % absolute
in average F1 on FEW-NERD (INTRA), 6.55%
absolute in average F1 on FEW-NERD (INTER),
4.77% absolute in average accuracy on FewRel,
respectively. The generality of our approach allows
it to be easily integrated with other techniques. We
combine our method with prompt-learning and
task-specific pre-training to obtain high-quality
representations, substantially outperforming many
competitive baselines. We believe our approach
could serve as a strong baseline for few-shot

learning and inspire new ideas from the research
community for representation learning.

2 Problem Setup

We consider the episodic N -way K-shot few-shot
classification paradigm1. Given a large-scale
annotated training set Dtrain, our goal is to learn a
model that can make accurate predictions for a set
of new classes Dtest, containing only a few labeled
examples for training. The model will be trained
on episodes constructed using Dtrain and tested on
episodes based on Dtest. Each episode contains a
support set S = {xi, yi}N×K

i=1 for learning, with
N classes and K examples for each class, and
a query set for inference Q = {x∗

j , y
∗
j }N×K′

j=1 of
examples in the same N classes. Each input data
is a vector xi ∈ RL with the dimension of L and
yi is an index of the class label. For each input xi,
let fϕ(xi) ∈ RD denote the D-dimensional output
embedding of a neural network fϕ : RL → RD

parameterized by ϕ.

3 Methodology

This section describes the mechanisms of hyper-
sphere modeling of prototypes. One hypersphere
prototype is represented by two parameters: the
center and the radius, which are first initialized via
estimation and then optimized by gradient descent
in conjunction with the encoder parameters.

3.1 Overview
We now introduce HyperProto , which are a set
of hyperspheres in the embedding space D to ab-
stractly represent the intrinsic features of classes.
Formally, one prototype is defined by

Bd(fϕ, z, ϵ) := {fϕ(x) ∈ RD : d(fϕ(x), z) ≤ ϵ},
(1)

where d : RD × RD → [0,+∞) is the distance
function in the metric space. fϕ is a neural encoder
parameterized by ϕ, while z and ϵ denote the center
and the radius of the hypersphere. We useM(·) to
denote the measurement between a data point and
a hypersphere prototype based on d(·).

The central idea is to learn a hypersphere
prototype for each class with limited episodic
supervision, and each example in the query set
(x∗, y∗) is predicted by the measurement to the
hypersphere prototypesM(x∗

j ,Bd), which is the

1For the few-shot named entity recognition task, the sam-
pling strategy is slightly different (details in Appendix E).
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Figure 1: The illustration of our proposed HyperProto, where the data is sampled in 5-shot. The star symbol denotes
the center of the hypersphere, the solid triangle denotes the sampled examples, and the dotted triangle denotes other
examples in the whole dataset. The solid green line denotes the distance from a data embedding to the hypersphere’s
surface. The left part illustrates the initialization stage, where the sampled data estimate the center and radius, and
the right part illustrates the learning stage, where the center and radius are simultaneously optimized.

Euclidean distance from the embedding to the
surface of the hyperspheres,

M(x,B) = d(fϕ(x), z)− ϵ

= ∥fϕ(x)− z∥22 − ϵ.
(2)

Note that with such metric design, the value of
M(·) may be negative. That is, geometrically
speaking, the point is contained inside the hyper-
sphere, which does not affect the calculation of
the loss function and the prediction. Generally,
the idea is to use areas instead of points in the
embedding space to model prototypes to enhance
expressivity while preserving the convenience of
Euclidean metric design. The advantages of the
proposed method are two folds. First, as stated in
§ 1, one hypersphere prototype could be uniquely
modeled by the center z and the radius ϵ, while
characterizing manifolds with complex boundaries
in the embedding space is intricate. Second, it
is easy to optimize the parameters by conducting
metric-based classification since they are naturally
involved in measurement calculation.

3.2 Hypersphere Prototypes

To construct hypersphere prototypes, the first step
is the initialization of the center z and the radius
ϵ of the hypersphere. To start with a reasonable ap-
proximation of the data distribution, we randomly
select K instances from each class for initialization.
Specifically, for one class, the center of the hyper-
sphere prototype is initialized as the mean output
of the K embeddings as in Snell et al. (2017), and
the radius is the mean distance from each sample
to the center, as shown in Equation 3, where Sn

is the set of sampled instances from the n-th class,

Bn :=





zn =
1

K

∑

x∈Sn

fϕ(x),

ϵn =
1

K

∑

x∈Sn

d(fϕ(x), zn).

(3)

Once initialized, a hypersphere prototype will
participate in the training process, where its center
and radius are simultaneously optimized. During
training, for each episode, assuming the sampled
classes are N = {n1, n2, ..., nN}, the probability
of one query point x ∈ Q belonging to class n
is calculated by softmax over the metrics to the
corresponding N hypersphere prototypes.

p(y = n|x;ϕ) = exp(−M(x,Bn))∑
n′∈N exp(−M(x,Bn′))

.

(4)

And the parameters of f and hypersphere
prototypes are optimized by minimizing the
metric-based cross-entropy objective:

Lcls = − log p(y|x, ϕ,z, ϵ). (5)

Equation 4 explains the combination of the
advantages of hypersphere prototypes, whereM is
calculated by ϵ and z, which will participate in the
optimization. The parameters of the neural network
ϕ are optimized along with the centers and radii of
hypersphere prototypes through gradient descent.
To sum up, in the initialization stage, the hyper-
sphere prototypes of all classes in the training set,
which are parameterized by z and ϵ, are estimated
by the embeddings of randomly selected instances
and stored for subsequent training and optimization.
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Algorithm 1: Training process. fϕ is the feature encoder, Ntotal is the total number of classes
in the training set, N is the number of classes for support and query set, K is the number of
examples per class in the support set, K ′ is the number of examples per class in the query set, M
is a hyper-parameter. RANDOMSAMPLE(S,K) denotes a set of K elements chosen uniformly at
random from set S, without replacement. λf and λϵ are separate learning rates.
Input: Training data Dtrain = {(x1, y1), ..., (xT , yT )}, yi ∈ {1, ..., Ntotal}. Dk denotes the subset

of D containing all elements (xi, yi) such that yi = k
Output: The updated encoder fϕ
// Initialization phase
for n = 1 to Ntotal do
Sn ← RANDOMSAMPLE(Dn,K)
zn ← 1

|Sn|
∑

(xi,yi)∈Sn

fϕ(xi),

ϵn ← 1
|Sn|

∑
(xi,yi)∈Sn

d(fϕ(xi), zn),

// Learning phase
for i = 1 to M do

V ← RANDOMSAMPLE({1, ..., Ntotal}, N), Lcls ← 0
for n in {1, ..., N} do
Qn ← RANDOMSAMPLE(DVn ,K

′)
Lcls ← Lcls +

1
NK′

∑
(xi,yi)∈Qn

[d(fϕ(xi), zn)− ϵn + log
∑
n′

exp(ϵn′ − d(fϕ(xi), zn′))]

UPDATE z, ϵ, fϕ w.r.t Lcls, λf , λϵ

In the training stage, the stored ϵ is optimized by an
independent optimizer. The optimization will yield
a final location and size of the hyperspheres to serve
the classification performance. More importantly,
the involvement of prototype centers and radii in
the training process will, in turn, affect the opti-
mization of encoder parameters, stimulating more
expressive and distinguishable representations.

Algorithm 1 expresses the initialization and
learning stages of hypersphere prototypes. Al-
though the centers and radii are stored and opti-
mized continuously in training (in contrast with
vanilla prototypes where centers are re-estimated
at each episode), the whole process is still episodic,
as in each episode, the samples in the query set
are only evaluated against the classes in that single
episode instead of the global training class set.

Meanwhile, a standard episodic evaluation
process is adopted to handle the unseen classes,
where we estimate prototype centers and radii in
closed forms. In the episodic evaluation procedure,
HyperProto directly takes the mean of instance
embeddings as the centers and the mean distance
of each instance to the center as the radius (as in
Equation 3), following previous works (Vinyals
et al., 2016; Snell et al., 2017; Zhang et al., 2020a).

We also develop two variants that use “areas” to
represent class-level information in few-shot clas-
sification under other measurements, details can be
found in Appendix A.

4 Experiments

To evaluate the effectiveness of the proposed
method, we conduct experiments on few-shot
named entity recognition (NER) and few-shot
relation extraction (RE) tasks, both of which
are fundamental tasks of information extraction
accompanied by well-established datasets. Task
descriptions, datasets, and implementation details
are reported in Appendix B. Apart from the
experimental study in this section, we also carry
out additional experiments and analyses of image
classification to demonstrate the generality of our
method in Appendix C.

4.1 Combination with Orthogonal Techniques

Our experiments show that by simply adding a
radius parameter in the learning process, Hyper-
Proto outperforms vanilla embedding prototypes
by a large margin. In addition, as a basic method of
few-shot learning, HyperProto can be used suc-
cessfully with other orthogonal enhancements to
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Model
FEW-NERD (INTRA) FEW-NERD (INTER)

Avg.5 way 10 way 5 way 10 way

1 shot 5 shot 1 shot 5 shot 1 shot 5 shot 1 shot 5 shot

NNShot† (Yang and Katiyar, 2020) 31.011.21 35.742.36 21.880.23 27.671.06 54.290.40 50.563.33 46.981.96 50.000.36 39.77
StructShot† (Yang and Katiyar, 2020) 35.920.69 38.831.72 25.380.84 26.392.59 57.330.53 57.162.09 49.460.53 49.391.77 42.48
CONTAINER♠ (Das et al., 2021) 40.43 53.70 33.84 47.49 55.95 61.83 48.35 57.12 49.84
ESD (Wang et al., 2022) 36.081.60 52.141.50 30.000.70 42.152.60 59.291.25 69.060.80 52.160.79 64.000.43 50.61

Proto† (Snell et al., 2017) 23.450.92 41.930.55 19.760.59 34.610.59 44.580.26 58.801.42 39.090.87 53.970.38 39.52
HyperProto (Ours) 32.261.94 50.881.01 24.021.06 42.463.04 52.092.49 65.590.50 44.260.53 60.731.47 46.53
HyperProto +Prompt (Ours) 48.492.75 60.781.87 41.693.45 53.163.21 65.400.08 68.340.73 61.720.37 67.903.90 58.44

Table 1: Performance (F1 score) on FEW-NERD .The standard deviation is reported with 3 runs with different
random seeds for each model. Results with † are reported in Ding et al. (2021c), and other baseline results are from
the original papers. Results with ♠ mean that the approaches involve task-specific pre-training encoder. Best results
in bold and the second best results are underlined.

further boost performance. We choose two tech-
niques, prompting and task-specific pre-training to
combine with our approach on NER and RE tasks,
respectively. Essentially, these two methods can
both be regarded as means to construct high-quality
initial representations for the current task. And our
approach performs metric based few-shot learning
on top of the initial representations.

For NER, we enhance the primitive Hyper-
Proto with prompt (Liu et al., 2023), where in
the support set the label of the entity is inserted
after each entity, and in the query set the label can-
didates are concatenated and inserted as prefixes at
the beginning of the input. For RE, we apply Hy-
perProto to a task-specific pre-trained relation en-
coder (Peng et al., 2020). The two experiments fur-
ther show the compatibility of the proposed method
and indicate its potential as a novel fundamental
modeling strategy for few-shot learning.

4.2 Overall Results
Few-shot Named Entity Recognition. Table 1
shows the performance on FEW-NERD. It can be
seen that HyperProto has a considerable advan-
tage over vanilla ProtoNet, with an increase of at
least 5% in f1-score across all settings. The success
on both datasets demonstrates that HyperProto
can learn the general distribution pattern of enti-
ties across different classes and thus can greatly
improve the performance when little information is
shared between the training and test set. The perfor-
mances of NNShot and HyperProto are compa-
rable when it comes to low-shot. This is probably
because, in the sequence labeling task, it is more
difficult to infer the class-level information from
very limited tokens. In this case, the modeling abil-
ity of hypersphere prototypes degenerates towards
the nearest-neighbors strategy in NNShot. As the

shot number increases, the memory cost of NNShot
grows quadratically and becomes unaffordable,
while HyperProto keeps it in reasonable magni-
tude. In this sense, HyperProto is more efficient.

When HyperProto is combined with prompt,
it outperforms many other strong baselines like
CONTAINER (Das et al., 2021) and ESD (Wang
et al., 2022), which use pre-training and additional
span attention module to enhance class represen-
tation. Specifically, HyperProto is shown to be
more advantageous in INTRA setting. It also fits
with our intuition since less shared information be-
tween training and test set would make features
learned during pre-training stage or the trained at-
tention module less transferable. It further shows
the robustness of the modeling of HyperProto .
We also believe a carefully designed initialization
strategy is vital for the performance of our model
in low-shot settings. The impact of the number of
shots is reported in Appendix C.4.
Few-shot Relation Extraction. Table 2 presents
the results on two FewRel tasks. Methods that use
additional data or conduct task-specific encoder
pre-training are not included. HyperProto
generally performs better than all baselines across
all settings. In terms of backbone models, when
combined with pre-trained models like BERT, hy-
persphere prototypes can yield a larger advantage
against prototypes. It shows that the hypersphere
modeling of prototypes can better approximate the
real data distribution and boosts the finetuning of
BERT. Meanwhile, it sheds light on the untapped
ability of large pre-trained language models and
stresses that a proper assumption about data
distribution may help us unlock the potential.
HyperProto ’s outstanding performance on the
Domain Adaptation task further validates the
importance of a better abstraction of data in trans-
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Model FewRel 1.0

5 way 1 shot 5 way 5 shot 10 way 1 shot 10 way 5 shot Avg.

Meta Net† (Munkhdalai and Yu, 2017) 64.46 ± 0.54 80.57 ± 0.48 53.96 ± 0.56 69.23 ± 0.52 67.06
SNAIL† (Mishra et al., 2017) 67.29 ± 0.26 79.40 ± 0.22 53.28 ± 0.27 68.33 ± 0.26 67.08
GNN CNN† (Satorras and Estrach, 2018) 66.23 ± 0.75 81.28 ± 0.62 46.27 ± 0.80 64.02 ± 0.77 64.45
GNN BERT (Satorras and Estrach, 2018) 75.66 89.06 70.08 76.93 77.93
Proto-HATT‡ (Gao et al., 2019a) 76.30 ± 0.06 90.12 ± 0.04 64.13 ± 0.03 83.05 ± 0.05 78.40
MLMAN (Ye and Ling, 2019) 82.98 ± 0.20 92.66 ± 0.09 73.59 ± 0.26 87.29 ± 0.15 84.13
MTB‡♠ (Soares et al., 2019) 89.80 93.59 83.37 88.64 88.85
REGRAB♣ (Qu et al., 2020) 90.30 94.25 84.09 89.93 89.64
CP♠ (Peng et al., 2020) 95.10 97.10 91.20 94.70 94.53
MIML♣ (Dong et al., 2020) 92.55 ± 0.12 96.03 ± 0.17 87.47 ± 0.21 93.22 ± 0.22 92.32
COL♠ (Ding et al., 2021b) 92.51 95.88 86.39 92.76 91.89

ProtoCNN† 69.20 ± 0.20 84.79 ± 0.16 56.44 ± 0.22 75.55 ± 0.19 71.50
HyperProto CNN (Ours) 66.05 ± 3.44 87.31 ± 0.93 56.74 ± 1.06 77.87 ± 2.60 71.99

ProtoBERT† 80.68 ± 0.28 89.60 ± 0.09 71.48 ± 0.15 82.89 ± 0.11 81.16
HyperProto BERT (Ours) 84.34 ± 1.23 93.42 ± 0.50 77.24 ± 6.05 88.71 ± 0.31 85.93
HyperProto BERT+Pretrain♠ (Ours) 95.29 ± 0.32 98.15 ± 0.05 92.05 ± 0.13 96.46 ± 0.39 95.49

FewRel 2.0 Domain Adaptation

Proto-ADV CNN† (Wang et al., 2018) 42.21 ± 0.09 58.71 ± 0.06 28.91 ± 0.10 44.35 ± 0.09 43.55
Proto-ADV BERT† (Gao et al., 2019b) 41.90 ± 0.44 54.74 ± 0.22 27.36 ± 0.50 37.40 ± 0.36 40.35
BERT-pair† (Gao et al., 2019b) 56.25 ± 0.40 67.44 ± 0.54 43.64 ± 0.46 53.17 ± 0.09 55.13
CP♠ (Peng et al., 2020) 79.70 84.90 68.10 79.80 78.13
HCRP♣ (Han et al., 2021a) 76.34 83.03 63.77 72.94 74.02
LPD♠ (Zhang and Lu, 2022) 77.82 ± 0.4 86.90 ±0.3 66.06 ± 0.6 78.43 ± 0.4 77.30

ProtoCNN† 35.09 ± 0.10 49.37 ± 0.10 22.98 ± 0.05 35.22 ± 0.06 35.67
HyperProto CNN (Ours) 36.41 ± 1.43 55.50 ± 1.42 22.11 ± 0.58 40.82 ± 2.50 38.71

ProtoBERT† 40.12 ± 0.19 51.50 ± 0.29 26.45 ± 0.10 36.93 ± 0.01 38.75
HyperProto BERT (Ours) 59.03 ± 3.68 74.85 ± 4.59 45.88 ± 7.43 61.61 ± 4.69 60.34
HyperProto BERT+Pretrain♠ (Ours) 78.99 ± 1.26 91.65 ± 0.44 67.32 ± 1.90 84.47 ± 0.54 80.61

Table 2: Accuracies on FewRel 1.0 and FewRel 2.0 under 4 different settings. The standard deviation is reported
with 3 runs with different random seeds for each model. Results with † are reported in Gao et al. (2019b) and
Han et al. (2018). Results with ‡ are obtained by re-running the original code. Other baseline results are from
the original papers. Results with ♠ mean that the approaches involve task-specific pre-training encoder. Results
with ♣ indicate that the approaches involve additional resources like knowledge graphs and relation descriptions,
etc. Best results in bold and the second best results are underlined.

fer learning. Meanwhile, the large performance
variation in the domain adaptation task suggests
that when the domain shifts, the estimation of
hypersphere prototypes becomes less stable.

To further evaluate the compatibility of our ap-
proach and other orthogonal techniques, we re-
place the original BERT model with the version
pre-trained on relation classification task (Peng
et al., 2020). It could be observed that, with
this pre-trained encoder, the performance of our
method boosts substantially, demonstrating the
model-agnostic nature of our approach.

4.3 Experimental Analysis

Analysis of the Radius Dynamics. We demon-
strate the mechanism of hypersphere prototypes
by illustrating the change of radius for one specific

hypersphere. In the learning phase, the radius of
a hypersphere prototype changes according to the
“density” of the sampled episode, which could be
characterized by the mean distance of samples to
the corresponding prototype center. Practically,
due to randomness in sampling, the value of the
mean distance may oscillate at a high frequency
in this process, and the radius changes accordingly.
To better visualize the changing of radius along
with the mean distance at each update, for each
round of training, we fix one specific class as the
anchor class for mean distance and radius record-
ing and apply a special sampling strategy at each
episode. Specifically, we take FewRel training data
and train on the 5 way 5 shot setting with CNN
encoder. While training, each episode contains the
anchor class and 4 other randomly sampled classes.
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Figure 2: The illustration depicts the radius change according to the degree of sparsity of the sampled episode. Each
subfigure represents a selected anchor class in FewRel. The horizontal axis represents the increase of training steps.

Training accuracy is logged every 50 steps. After a
warmup training of 500 steps, we sample “good” or
“bad” episodes for every 50 steps alternatively. A
“good” episode has higher accuracy on the anchor
class than the previously logged accuracy, while
conversely, a “bad” episode has an accuracy lower
than before. The mean distance to the prototype
center and radius at each episode are logged every
50 steps after the warmup.

Figure 2 shows the changing of mean distance
and radius for 8 classes during 600∼2000 training
steps. Although the numeric values of distance
and radius differ greatly and oscillate at different
scales, they have similar changing patterns. Be-
sides, it could be observed that there is often a small
time lag in the change of radius, indicating that the
change of radius is brought by the change in mean
distance. This is in line with our expectations and
perfectly demonstrates the learning mechanism of
hypersphere prototypes. The experiment provides
a promising idea, if we can control the sampling
strategy through knowledge a priori, we may find a
way to learn ideal hypersphere prototypes.
Visualization. We also use t-SNE (van der Maaten
and Hinton, 2008) to visualize the embedding
before and after training, by ProtoNet and Hyper-
Proto , respectively. 5 classes are sampled from the
training set and test set of the Few-NERD dataset,
and for each class, 500 samples are randomly
chosen to be embedded by BERT trained on the
5-way-5-shot NER task. Figure 3 shows the result
of embeddings in a 2-dimensional space, where
different colors represent classes. Note that for the
token-level NER task, the interaction between the
target token and its context may result in a more
mixed-up distribution compared to instance-level
embedding. For both models, the representations
of the same class in the training set become more
compressed and easier to classify compared to
their initial embeddings. While HyperProto
can produce even more compact clusters. The
clustering effect is also observed for novel classes.
We also calculate the difference between the mean

euclidean distances from each class sample to the
(hypersphere) prototype of the target class and to
other classes. The larger the difference, the better
the samples are distinguished. For ProtoNet, the
difference is 2.33 and 1.55 on the train and test set,
while for HyperProto the results are 5.09 and 4.56,
respectively. This can also be inferred from the
t-sne result. Since samples from different classes
are distributed at different densities, an extra radius
parameter will help better distinguish between
classes. The visualization and statistical results
demonstrate the effectiveness of HyperProto in
learning discriminative features, especially in learn-
ing novel class representation that considerably
boosts model performance under few-shot settings.

HyperProto

HyperProto

Figure 3: t-sne visualization of feature distributions.
The six subfigures, from left to right, are the represen-
tations of seen data (in training set) before training,
produced by ProtoNet, and produced by HyperProto
; novel data (in test set) before training, produced by
ProtoNet, and produced by HyperProto . Note that
even after training, the neural network has never seen
the novel data and their classes.

Representation Analysis. To study if the learned
representations are discriminative enough for per-
forming few-shot classification, we illustrate the
normalized distances between the learned represen-
tations and the hypersphere prototypes in Figure 4.
Specifically, we randomly sample 5 classes and 25
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instances (5 per class) for each dataset and produce
representations for the instances and hypersphere
prototypes for the classes. Then, we calculate the
distance between each instance to each prototype
(i.e., distance from the point to the hypersphere sur-
face) to produce the matrix. All the values in the
illustration are normalized since the absolute values
may vary with the datasets. Warmer colors denote
shorter distances in the illustration. The illustration
shows that in all three datasets, our model could
effectively learn discriminative representations and
achieve stable metric-based classification.
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Figure 4: Normalized distances from instances to hyper-
sphere prototypes. Horizontal axis: hypersphere proto-
types of 5 classes. Vertical axis: 5 instances per class.

In order to further analyze the representations
produced by HyperProto , we study the similari-
ties of randomly sampled instance embeddings. We
randomly select 4 × 5 classes and 5 instances per
class in FEW-NERD, FewRel and miniImageNet,
respectively. As illustrated in Figure 5, each sub-
figure is a 25 × 25 matrix based on 5 classes. We
calculate the cosine similarities of these embed-
dings and observe clear intra-class similarity and
inter-class distinctiveness. This result confirms the
robustness of our model since all the classes and
instances are sampled randomly.

5 Related Work

This work is related to studies of meta-learning,
whose primary goal is to quickly adapt deep neu-
ral models to new tasks with a few training exam-
ples (Hospedales et al., 2020). To this end, two
branches of studies are proposed: optimization-
based methods and metric-based methods. The
optimization-based studies (Finn et al., 2017;
Franceschi et al., 2018; Ravi and Beatson, 2018)

regard few-shot learning as a bi-level optimization
process, where a global optimization is conducted
to learn a good initialization across various tasks,
and a local optimization quickly adapts the initial-
ization parameters to specific tasks by a few steps
of gradient descent.

Compared to the mentioned studies, our work
is more related to the metric-based meta-learning
approaches (Vinyals et al., 2016; Snell et al., 2017;
Satorras and Estrach, 2018; Sung et al., 2018),
whose general idea is to learn to measure the
similarity between representations and find the
closest labeled example (or a derived prototype) for
an unlabeled example. Typically, these methods
learn a measurement function during episodic opti-
mization. More specifically, we inherit the spirit of
using prototypes to abstractly represent class-level
information, which could be traced back to cogni-
tive science (Reed, 1972; Rosch et al., 1976; Nosof-
sky, 1986), statistical machine learning (Graf et al.,
2009) and to the Nearest Mean Classifier (Mensink
et al., 2013). In the area of deep learning, Snell
et al. (2017) propose the prototypical network to
exploit the average of example embeddings as a
prototype to perform metric-based classification
in few-shot learning. In their work, prototypes
are estimated by the embeddings of instances.
However, it is difficult to find a satisfying location
for the prototypes based on the entire dataset. Ren
et al. (2018) adapt such prototype-based networks
in the semi-supervised scenario where the dataset
is partially annotated. Moreover, a set of prototype-
based networks are proposed concentrating on the
improvements of prototype estimations and appli-
cation to various downstream tasks (Allen et al.,
2019; Gao et al., 2019a; Li et al., 2019b; Pan et al.,
2019; Seth et al., 2019; Ding et al., 2021b; Li et al.,
2020c; Wertheimer and Hariharan, 2019; Xie et al.,
2022; Zhang et al., 2020a). We discuss our method
within the context of other prototype-enhanced
methods in Section D.1. There has also been a
growing body of work that considers the few-shot
problem from multiple perspectives, bringing
new thinking to the field (Tian et al., 2020; Yang
et al., 2021; Laenen and Bertinetto, 2021; Zhang
et al., 2020b; Wang et al., 2021; Das et al., 2021;
Wertheimer et al., 2021; Ding et al., 2021a; Cui
et al., 2022; Hu et al., 2022).There has also been
a series of works that embed prototypes into a
non-Euclidean output space (Mettes et al., 2019;
Keller-Ressel, 2020; Atigh et al., 2021).
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Figure 5: Representation similarity matrix produced by HyperProto on FEW-NERD, FewRel and miniImageNet.
Each row illustrates 20 classes and 100 instances in one dataset. Each subfigure contains 5 classes and 25 instances.
Each unit denotes the cosine similarity of two embeddings, and each 5×5 cell indicates the comparison of two
classes. The units on the diagonal represent the same instance, and the 5×5 cells on the diagonal represent the same
class. Warmer color means higher similarity in this illustration.

It should be noted that these studies regard hy-
perspheres or other non-Euclidean manifolds as
a characterization of the embedding space, while
our proposed method use hyperspheres to represent
prototypes and conduct metric-based classification
in the Euclidean space. Therefore, the focus of our
proposed HyperProto is different from the above
non-Euclidean prototype-based works.

6 Conclusion

This paper proposes a novel metric-based few-shot
learning method, hypersphere prototypes. Unlike
previous metric-based methods that use dense
vectors to represent the class-level semantics, we
use hyperspheres to enhance the capabilities of
prototypes to express the intrinsic information of
the data. It is simple to model a hypersphere in
the embedding space and conduct metric-based
classification in few-shot learning. Our approach
is easy to implement and also empirically effective,

we observe significant improvements to baselines
and compatibility with other techniques on
downstream tasks. For potential future work, such
modeling could be extended to more generalized
representation learning like word embeddings.
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Limitations

Compared to vanilla prototypes, the advantage of
HyperProto would also rely on the additional ra-
dius parameter. Under the 1-shot setting, however,
hypersphere prototypes will face challenges in es-
timating the radius in support sets, this is because
the initial radius may be biased by the randomness
of sampling. When the radius is set to exactly 0,
the model will resemble a traditional prototypical
network. Nevertheless, although not as large as the
boost in the multi-shot setting, we find that having
a consistently optimizable radius parameter at the
training stage in the 1-shot scenario still delivers
non-trivial results and exceeds most baselines (Ta-
ble 1, Table 2, Table 3). This further points to the
positive influence of the added radius parameter to
learning prototype representation and hints on the
possible research direction in learning a transfer-
able radius in 1-shot scenario.
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A Generalizations of Our Method

We have introduced the mechanisms of hyper-
sphere prototypes in Euclidean space. In this sec-
tion, we generalize this idea to construct variants
with other measurements.
Cone-like HyperProto. Cosine similarity is a
commonly used measurement in machine learning.
Assume all the data points are distributed on a unit
ball, and we use the cosine value of the intersection
angle to measure the similarity of the two embed-
dings. While keeping the intuition of the modeling
of hypersphere prototypes in mind, we introduce an
additional angle parameter ϵ. We use θa,b to denote
the intersection angle of the two embeddings a
and b. In this way, the center point z and the angle
ϵ could conjointly construct a cone-like prototype,

Bd(z, fϕ, ϵ):={fϕ(x) ∈ RD :d(fϕ(x), z) ≥ cos ϵ},
(6)

where d(fϕ(x), z) = cos(θfϕ(x),z). The measure-
ment M(·) is defined as the cosine of the angle
between the instance embedding and the nearest
point on the border of the prototype,

M(x,B) =
{
− cos(θfϕ(x),z − ϵ), θfϕ(x),z ≥ |ϵ|,
− 1, θfϕ(x),z < |ϵ|.

(7)

ϵ

center z

angle fϕ(x)

fϕ(x)μ1 μ2

Figure 6: Two variants according to different measure-
ments. The left is the cone-like modeling with cosine
similarities, and the right is the Gaussian modeling from
the probability perspective.

Similar to the vanilla hypersphere prototypes,
z and ϵ need to participate in the learning process
for optimization, and the angle θx,z is computed
by the inverse trigonometric function,

θfϕ(x),z = arccos
fϕ(x)

Tz

||fϕ(x)|| · ||z||
. (8)

The prediction for a training example is also
based on the softmax over the measurements to
the prototypes like Eq. 5. Note that as shown in
Eq. 7, the measurement becomes −1 when a data
point is “inside” the cone-like prototype. Then it

is hard to make a prediction when an embedding
is inside two prototypes. It thus requires that the
prototypes do not intersect with each other, that is,
to guarantee the angle between two center points is
larger than the sum of their own parameter angles,

Ldis =
1

N

∑

i,j

max((|ϵi|+ |ϵj |)− θzi,zj , 0). (9)

Therefore, the final loss function is L = Lcls+Ldis.
Gaussian HyperProto. From the probability per-
spective, each class can be characterized by a dis-
tribution in a multi-dimensional feature space. The
measurement of a query sample to the n-th class
can thus be represented by the negative log likeli-
hood of fϕ(x) belonging to Bn. In line with other
works (Zhang et al., 2019; Li et al., 2020d), we can
simply assume each class subjects to a Gaussian
distribution Bn ∼ N (µn,Σn). To reduce the num-
ber of parameters and better guarantee the positive
semi-definite feature, we can further restrict the
covariance matrix to be a diagonal matrix such that
Σn = σ2

nI . Then the measurement becomes

M(x,Bn)=− log p(fϕ(x);Bn)

=
||fϕ(x)− µn||22

2σ2
n

+ log((2π)
d
2 |σn|d)

=
||fϕ(x)− µn||22

2σ2
n

+ d log |σn|+ δ,

(10)

where δ = d
2 log 2π. The probability of target class

given a query sample can be calculated by Eq. 4 in
the same fashion: p(y = n|x) = p(fϕ(x);Bn)∑

n′ p(fϕ(x);Bn′ ) .
Note that the derived form of the equation is the
same as directly calculating the probability of
p(y = n|x) under a uniform prior distribution
of p(y). Comparing with pure probabilistic
approaches, such as variational inference that
treats B as hidden variables and models p(B|S)
and p(B|S,x) with neural network (Zhang et al.,
2019), under the framework of § 3.2, B is explicitly
parameterized and optimized for each class during
training. Moreover, comparing Eq. 10 with Eq. 2,
it can be observed that when formalizing B as a
distribution, instead of as a bias term, the original
radius parameter (now the variance) functions as
a scaling factor on Euclidean distance.

B Experimental Details

This section reports the experimental details of all
three tasks in our evaluation. All the experiments
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are conducted on NVIDIA A100 and V100 GPUs
with CUDA. The main experiments are conducted
on three representative tasks in NLP and CV, which
are few-shot named entity recognition (NER), rela-
tion extraction (RE), and image classification. The
experimental details will be presented in the fol-
lowing sections.

B.1 Experimental Details for Few-shot Named
Entity Recognition

We assess the effectiveness of hypersphere proto-
types on NLP, specifically, the first task is few-shot
named entity recognition (NER) and the dataset
is FEW-NERD (Ding et al., 2021c)2. NER aims at
locating and classifying named entities ( real-world
objects that can be denoted with proper names)
given an input sentence, which is typically regarded
as a sequence labeling task. Given an input sen-
tence "“Bill Gates is a co-founder of the American
multinational technology corporation Microsoft”,
an named entity recognition system aims to locate
the named entities (Bill Gates, Microsoft) and
classify them into specific types. Conventional
schema uses coarse-grained labels such that Person
for Bill Gates and Organization for Microsoft. In
more advanced schema like Few-NERD, models
are asked to give more specific entity types, for
example, Person-Entrepreneur for Bill Gates and
Organization-Company for Microsoft.

Different from typical instance-level classifica-
tion, few-shot NER is a sequence labeling task,
where labels may share structural correlations.
NER is the first step in automatic information ex-
traction and the construction of large-scale knowl-
edge graphs. Quickly detecting fine-grained unseen
entity types is of significant importance in NLP. To
capture the latent correlation, many recent efforts
in this field use large pre-trained language mod-
els (Han et al., 2021b) like BERT (Devlin et al.,
2019) as backbone model and have achieved re-
markable performance. The original prototypical
network has also been applied to this task (Li et al.,
2020b; Huang et al., 2020; de Lichy et al., 2021).
Dataset. The experiment is run on FEW-NERD
dataset (Ding et al., 2021c). It is a large-scale NER
dataset containing over 400,000 entity mentions,
across 8 coarse-grained types and 66 fine-grained
types, which makes it an ideal dataset for few-shot
learning. It has been shown that existing methods
including prototypes are not effective enough on

2FEW-NERD is distributed under CC BY-SA 4.0 license

this dataset.
Baselines. We choose the following baselines:

• Proto(Snell et al., 2017) is the main baseline,
which adapts the prototypical network on few-
shot named entity recognition.

• NNShot (Yang and Katiyar, 2020) is a token-
level metric-based method that is specifically de-
signed for few-shot labeling.

• StructShot (Yang and Katiyar, 2020) adds a CRF
layer in inference and further boosts performance
of NNShot.

• CONTaiNER (Das et al., 2021) uses a pre-
trained backbone and further finetunes on the
few-shot data.

• ESD (Wang et al., 2022) uses attention mecha-
nism to learn prototype representation.

Implementation Details. We run experiments un-
der four settings on the two released benchmarks,
FEW-NERD (INTRA) and FEW-NERD (IN-
TER). Specifically, we use uncased BERT-base as
the backbone encoder and 1e-4 as the encoder learn-
ing rate. As for learning rate for radius parameter,
we use 20.0 for HyperProto+Prompt 10-way-5-shot
INTER setting and 10.0 for other settings. AdamW
is used as the BERT encoder optimizer, and
Adam (Kingma and Ba, 2017) is used to optimize
prototype radius. The batch size is set to 2 across
all settings. All models are trained for 10000 steps
and validated every 1000 steps. The results are
reported on 5000 steps of the test episode. For each
setting, we run the experiment with 3 different ran-
dom seeds and report the average F1-score the stan-
dard error. We use PyTorch (Paszke et al., 2019)
and huggingface transformers (Wolf et al., 2020)
to implement the backbone encoder BERTbase.

B.2 Experimental Details for Few-shot
Relation Extraction

The other common NLP task is relation extraction
(RE), which aims at correctly classifying the
relation between two given entities in a sentence.
For example, given an input sentence with marked
entities “[Bill Gates] is a co-founder of the
American multinational technology corporation
[Microsoft]”, the relation extraction system
aims to give the relationship between Bill Gates
and Microsoft. This is a fundamental task in
information extraction. RE is an important form of
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learning structured knowledge from unstructured
text. We use FewRel (Han et al., 2018)3 and
FewRel 2.0 (Gao et al., 2019b) as the datasets.
Dataset. We adopt the FewRel dataset (Han et al.,
2018; Gao et al., 2019b), a relation extraction
dataset specifically designed for few-shot learn-
ing. FewRel has 100 relations with 700 labeled
instances each. The sentences are extracted from
Wikipedia and the relational entities are obtained
from Wikidata. FewRel 1.0 (Han et al., 2018) is re-
leased as a standard few-shot learning benchmark.
FewRel 2.0 (Gao et al., 2019b) adds domain adapta-
tion task and NOTA task on top of FewRel 1.0 with
the newly released test dataset on PubMed corpus.
Baselines. In addition to the main baseline,
prototypical network (Snell et al., 2017), we also
choose the following few-shot learning methods
as the baselines in relation extraction.

• Proto-HATT (Gao et al., 2019a) is a neural
model with hybrid prototypical attention.

• MLMAN (Ye and Ling, 2019) is a multi-level
matching and aggregation network for few-shot
relation classification. Note that Proto-HATT and
MLMAN are not model-agnostic.

• GNN (Satorras and Estrach, 2018) is a meta-
learning model with a graph neural network as
the prediction head.

• SNAIL (Mishra et al., 2017) is a meta-learning
model with attention mechanisms.

• Meta Net (Munkhdalai and Yu, 2017) is a classi-
cal meta-learning model with meta information.

• Proto-ADV (Gao et al., 2019b) is a prototype-
based method enhanced by adversarial learning.

• BERT-pair (Gao et al., 2019b) is a strong base-
line that uses BERT for few-shot relation classifi-
cation.

• MTB (Soares et al., 2019) pre-trains on sentence
pairs constructed by entity linking technique.

• REGRAB (Qu et al., 2020) uses external knowl-
edge in KBs.

• CP (Peng et al., 2020) pre-trains a relation clas-
sification model with contrastive learning.

• MIML (Dong et al., 2020) uses additional se-
mantic information of each class.

3FewRel is distributed under MIT license

• COL (Ding et al., 2021b) assumes that proto-
types distribute uniformly on a unit ball surface
and pre-trains the prototype representation.

• HCRP (Han et al., 2021a) uses contrastive learn-
ing to learn better prototype representations,
while focusing more on hard cases.

• LPD (Zhang and Lu, 2022) adopts relation de-
scription as prompt and randomly drops labels in
the support set to derive better class prototype.

Implementation Details. The experiments are con-
ducted on FewRel 1.0 and FewRel 2.0 domain adap-
tation tasks. For FewRel 1.0, we follow the official
splits in Han et al. (2018). For FewRel2.0, we fol-
low Gao et al. (2019b), training the model on wiki
data, validating on SemEval data, and testing on
the PubMed data. We use the same CNN structure
and BERT as encoders. The learning rate for hy-
persphere prototype radius is 0.1 and 0.01 for CNN
and BERT encoder, respectively. Adam (Kingma
and Ba, 2017) is used as radius optimizer. We train
the model for 10000 steps, validate every 1000
steps, and test for 5000 steps. The other hyperpa-
rameters are the same as in the original paper.

B.3 Experimental Details for Few-shot Image
Classification

Image classification is one of the most classical
tasks in few-shot learning research. Seeking a bet-
ter solution for few-shot image classification is ben-
eficial in two ways: (1) to alleviate the need for data
augmentation, which is a standard technique to en-
rich the labeled data by performing transformations
on a given image; (2) to facilitate the application
where the labeled image is expensive. To demon-
strate the effectiveness of HyperProto, we also con-
duct experiment on few-shot image classification
with miniImageNet (Vinyals et al., 2016) dataset.
The results of the experiment are shown in C.
Dataset. miniImageNet (Vinyals et al., 2016) is
used as a common benchmark for few-shot learning.
The dataset is extracted from the full ImageNet
dataset (Deng et al., 2009), and consists of 100
randomly chosen classes, with 600 instances each.
Each image is of size 3×84×84. We follow the
split in Ravi and Larochelle (2017) and use 64, 16,
and 20 classes for training, validation, and testing.
Baselines. The baselines we choose are as follows:

• Prototypical network (Snell et al., 2017) uses
the vanilla prototypes as representations and is
our main baseline.
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• IMP (Allen et al., 2019) is a prototype-enhanced
method that models an infinite mixture of proto-
types for few-shot learning.

• CovaMNet (Li et al., 2019a) is a few-shot learn-
ing method that uses covariance to model the dis-
tribution information to enhance few-shot learn-
ing performance.

• SNAIL (Mishra et al., 2017) is an attention-based
classical meta-learning method.

• Variational FSL (Zhang et al., 2019) is a varia-
tional Bayesian framework for few-shot learning,
which contains a pre-training stage.

• Activation to Parameter (Qiao et al., 2018) pre-
dicts parameters from activations in few-shot
learning.

• LEO (Rusu et al., 2018) optimizes latent embed-
dings for few-shot learning.

• TRAML (Li et al., 2020a) uses adaptive margin
loss to boost few-shot learning, and Prototypes +
TRAML is a strong baseline in recent years.

• SimpleShot (Wang et al., 2019) combines vanilla
prototypes with simple feature transformation.

• AWGIM (Guo and Cheung, 2020) follows the
idea of LEO (Rusu et al., 2018) but generates dif-
ferent classification representations for different
queries by maximizing mutual information.

Implementation Details. The experiments are con-
ducted on 5 way 1 shot and 5 way 5 shot settings.
To ensure validity and fairness, we implement
hypersphere prototypes with various backbone
models including CNN, ResNet-12, and WideRes-
Net (Zagoruyko and Komodakis, 2016) to make
it comparable to all baseline results, and we also
re-run some of the baselines including prototypi-
cal network (Snell et al., 2017), infinite mixture
prototypes (Allen et al., 2019), and CovaMNet (Li
et al., 2019a) under our settings based on their
original code. Other baseline results are taken
from the original paper. Each model is trained
on 10,000 randomly sampled episodes for 30∼40
epochs and tested on 1000 episodes. The result is
reported with 95% confidence interval. Note that
both ResNet-12 and WideResNet (Zagoruyko and
Komodakis, 2016) are pretrained on the training
data, where the pretrained ResNet-12 is identical

to Chen et al. (2021) and the pretrained WideRes-
Net follows Mangla et al. (2020). The CNN struc-
ture is the same as Snell et al. (2017), which is
composed of 4 convolutional blocks each with a
64-filter 3 × 3 convolution, a batch normalization
layer (Ioffe and Szegedy, 2015), a ReLU nonlinear-
ity, and a 2 × 2 max-pooling layer. We use SGD
optimizer for the encoder and Adam (Kingma and
Ba, 2017) optimizer for the prototype radius. The
learning rate for the backbone model is 1e-3. The
learning rate for radius is manually tuned and the
reported result in Table 3 has a learning rate of 10.
For cone-like and gaussian prototypes, we use 1e-1
and 1e-3. At the training stage, the prototype center
is re-initialized at each episode as the mean vector
of the support embeddings.

C Additional Experiments and Analysis

This section provides additional experiments and
analysis. We first present results on image classifi-
cation, then we compare generalized HyperProto.
We also experiment on cross-dataset setting and
provide analysis on impact of training data volume
on model performance and instance-level represen-
tation.

C.1 Few-shot Image Classification.

Table 3 shows the result on miniImageNet few-
shot classification under 2 settings. HyperProto
substantially outperforms the primary baselines in
most settings, displaying their ability to model the
class distribution of images. We observe that com-
pared to NLP, image classification results are more
stable both for vanilla prototypes and hypersphere
prototypes. This observation may indicate the dif-
ference in encoding between the two technologies.
Token representations in BERT are contextualized
and changeable around different contexts, yet the
image representation produced by deep CNNs aims
to capture the global and local features thoroughly.
Under the 5-way 5-shot setting, the improvements
of HyperProto are significant. The effectiveness
of our method is also demonstrated by the compar-
isons with other previous few-shot learning meth-
ods with the same backbones. In particular, Hy-
perProto yields the best results of all the compared
methods with the WideResNet (Zagoruyko and Ko-
modakis, 2016) backbone, suggesting that the ex-
pressive capability of hypersphere prototypes can
be enhanced with a more powerful encoder. Com-
pared to the 5-shot setting, our model improves
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mediocrely in the 1-shot setting of ConvNet and
ResNet-12 (He et al., 2015). The phenomenon is
consistent with the intuition that more examples
would be more favorable to the learning of radius.
We further analyze the dynamics of the radius of
our method in Appendix 4.3.

C.2 Comparison of Generalized HyperProto.
To further compare the variants of our ap-
proach, we conduct experiments for cone-like and
gaussian HyperProto with WideResNet-28-10 on
miniImageNet as well. Table 4 presents results
across three measurement settings. Although the
two variants do not perform better than our main
method, they still considerably outperform many
baselines in Table 3. While the three models’ per-
formance is close under the 1-shot setting, the Cone
HyperProto model performs worse in the 5-shot set-
ting. It could be attributed to unsatisfying radius
learning. It is found that the Cone Hyperproto
model is susceptible to radius learning rate and is
prone to overfitting.

C.3 Cross-dataset Few-shot Learning
We also conduct experiments on the more diffi-
cult cross-dataset setting. Specifically, the model
trained on miniImagenet is tested on the CUB
dataset (Welinder et al., 2010) under the 5-way 5-
shot setting. We use ResNet-12 (RN-12) (He et al.,
2015) as the backbone in our experiment. Table 5
shows the results compared with several baselines.
It can be seen that HyperProto outperforms the
baselines by a large margin even with less powerful
encoder (RN-12), indicating the ability to learn rep-
resentations that are transferrable to new domains.
The results also echo the performance of Hyper-
Proto for the cross-domain relation extraction in
Table 2.

C.4 Impact of Number of Shots
We conduct additional experiments on FEW-
NERD (INTRA) 5-way setting with 10, 15,
20 shots. Since NNShot becomes too memory-
intensive to run when shot reaches 15, we pro-
vide results on Proto and HyperProto . Figure 7
shows both models perform better when more data
are available, while HyperProto performs consis-
tently better than vanilla prototypes.

D Discussion

This section discusses related prototype-based
methods in detail, and the broader impact of our

Hyper

Figure 7: Impact of shot number on model performance
for FEW-NERD (INTRA) 5-way setting.

work.

D.1 Other Prototype-enhanced Methods

In this section, we discuss the difference between
hypersphere prototypes with four prototype-
enhanced methods in few-shot learning: infinite
mixture prototypes (Allen et al., 2019), Cov-
aMNet (Li et al., 2019a), Variational Few-Shot
Learning (Zhang et al., 2019), and Two-Stage
(Das and Lee, 2020).

Infinite mixture prototypes (Allen et al., 2019)
model each class as an indefinite number of clusters
and the prediction is obtained by computing and
comparing the distance to the nearest cluster in
each class. This method is an intermediate model
between prototypes and the nearest neighbor model,
whereas hypersphere prototypes alleviate the over-
generalization problem of vanilla prototypes with
a single additional parameter that turns a single
point modeling into a hypersphere. The essential
prototype-based feature of hypersphere prototypes
allows faster computation and easier training.

CovaMNet (Li et al., 2019a) calculates local vari-
ance for each class based on support samples and
conducts metric-based learning via covariance met-
ric, which basically evaluates the cosine similarity
between query samples and the eigenvectors of
the local covariance matrix. To ensure the non-
singularity of the covariance matrix, the feature of
each sample is represented with a matrix, generated
by a number of local descriptors, with each extract-
ing a feature vector. Compared to hypersphere
prototypes, both methods attempt to model more
variance based on vanilla prototypes, while the idea
of hypersphere prototypes is more straightforward
and requires fewer parameters. On the other hand,
the multi-channel features adopted by CovaMNet
are less natural for NLP tasks.

Variational Few-Shot Learning (Zhang et al.,
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Model Backbone miniImageNet

5 way 1 shot 5 way 5 shot Average

Infinite Mixture Prototypes† (Allen et al., 2019) ConvNet 33.30 ± 0.71 65.88 ± 0.71 49.59
ProtoNet† (Snell et al., 2017) ConvNet 46.44 ± 0.60 63.72 ± 0.55 55.08
CovaMNet† (Li et al., 2019a) ConvNet 51.83 ± 0.64 65.65 ± 0.77 58.74
HyperProto (Ours) ConvNet 50.21 ± 0.31 66.48 ± 0.71 58.35

SNAIL (Mishra et al., 2017) ResNet-12 55.71 ± 0.99 68.88 ± 0.92 62.30
ProtoNet† (Snell et al., 2017) ResNet-12 53.81 ± 0.23 75.68 ± 0.17 64.75
Variational FSL (Zhang et al., 2019) ResNet-12 61.23 ± 0.26 77.69 ± 0.17 69.46
Prototypes + TRAML (Li et al., 2020a) ResNet-12 60.31 ± 0.48 77.94 ± 0.57 69.13
HyperProto (Ours) ResNet-12 59.65 ± 0.62 78.24 ± 0.47 68.95

ProtoNet† (Snell et al., 2017) WideResNet-28-10 59.09 ± 0.64 79.09 ± 0.46 69.09
Activation to Parameter (Qiao et al., 2018) WideResNet-28-10 59.60 ± 0.41 73.74 ± 0.19 66.67
LEO (Rusu et al., 2018) WideResNet-28-10 61.76 ± 0.08 77.59 ± 0.12 69.68
SimpleShot (Wang et al., 2019) WideResNet-28-10 63.50 ± 0.20 80.33 ± 0.14 71.92
AWGIM (Guo and Cheung, 2020) WideResNet-28-10 63.12 ± 0.08 78.40 ± 0.11 70.76
HyperProto (Ours) WideResNet-28-10 63.78 ± 0.63 81.29 ± 0.46 72.54

Table 3: Accuracies with 95% confidence interval on 1000 test episodes of HyperProto and baselines on
miniImageNet. Results with † are obtained by re-running the original code unider our experimental settings.
Other baselines are reported in their original papers.

Methods miniImageNet

5 way 1 shot 5 way 5 shot

Cone HyperProto 62.43 ± 0.63 76.03 ± 0.50
Gaussian HyperProto 60.34 ± 0.64 80.43 ± 0.45
HyperProto 63.78 ± 0.63 81.29 ± 0.46

Table 4: Accuracies with 95% confidence interval of
generalized HyperProto on miniImageNet.

Methods Backbone 5 way 5 shot

miniImageNet→ CUB

MatchingNet (Vinyals et al., 2016) RN-12 53.07 ± 0.74
ProtoNet (Snell et al., 2017) RN-12 62.02 ± 0.70
MAML (Finn et al., 2017) RN-18 52.34 ± 0.72
RelationNet (Sung et al., 2018) RN-18 57.71 ± 0.73
Baseline++ (Chen et al., 2021) RN-18 62.04 ± 0.76
SimpleShot (Wang et al., 2019) RN-18 65.56 ± 0.70

HyperProto (Ours) RN-12 63.22 ± 0.77

Table 5: Results on cross-dataset classification.

2019) tackles the few-shot learning problem un-
der a bayesian framework. In order to improve
single point-based estimation, a class-specific la-
tent variable representing the class distribution is
introduced and is assumed to be Gaussian. The
method parameterizes the mean and variance of the
latent variable distribution with neural networks
that take the feature of a single instance as input.
The learning and inference processes are both con-
ducted on the latent variable level. The method

adopts variational inference and is built on mod-
eling distribution as a latent variable, where the
metric calculation highly relies on the Gaussian
assumption. Hypersphere prototypes, on the other
hand, model the distribution with a center vector
and a radius parameter in the actual embedding
space, which is more tangible and easier to calcu-
late. It is worth noting that this work also points
that a single embedding is insufficient to represent
a class, and samples the prototype from a high-
dimensional distribution. This is actually similar
to our starting point, the difference is that our ap-
proach turns out to consider the problem from the
geometric point of view based on the original em-
bedding space, and proves that such simple geomet-
ric modeling could be very efficient in the few-shot
scenarios.

Two-Stage Approach first trains feature encoder
and variance estimator on training data in an
episodic manner with extracted absolute and rel-
ative features. Then in the second stage, training
data are split into "novel" class, and base class,
novel class prototypes are learned from both sam-
ple mean and base class features. The classifica-
tion is carried out with integrated prototypes. This
method improves on vanilla prototypes by extract-
ing more features and combining information from
base classes, but still follows single-point-based
metric learning. Our approach extends a single
point to a hypersphere in the embedding space and
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therefore, better captures within-class variance.

D.2 Broader Impact
Our method focuses on the method of few-shot
learning, which enables machine learning systems
to learn with few examples, and could be applied
to many downstream applications. The technique
itself does not have a direct negative impact, i.e.,
its impact stems primarily from the intent of the
user, and there may be potential pitfalls when the
method is applied to certain malicious applications.

E K∼2K Sampling for Few-NERD

In the sequence labeling task FEW-NERD, the
sampling strategy is slightly different from other
classification tasks. Because in the named entity
recognition, each token in a sequence is asked to be
labeled as if it is a part of a named entity. And the
context is crucial for the classification of each en-
tity, thus the examples are sampled at the sequence
level. Under this circumstance, it is difficult to op-
erate accurate N way N shot sampling. Ding et al.
(2021c) propose a greedy algorithm to conduct N
way K ∼ 2K shot sampling for the FEW-NERD
dataset. We follow the strategy of the original pa-
per (Ding et al., 2021c) and report it in Algorithm 2.
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Algorithm 2: Greedy N -way K∼2K-shot sampling algorithm for FEW-NERD
Input: Dataset X , Label set Y , N , K
Output: output result
S ← ∅; // Init the support set
// Init the count of entity types
for i = 1 to N do

Count[i] = 0 ;

repeat
Randomly sample (x,y) ∈ X ;
Compute |Count| and Counti after update ;
if |Count| > N or ∃Count[i] > 2K then

Continue ;
else
S = S⋃(x,y) ;
Update Counti ;

until Counti ≥ K for i = 1 to N;
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