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Abstract

Knowledge-based referring expression compre-
hension (KB-REC) aims to identify visual ob-
jects referred to by expressions that incorporate
knowledge. Existing methods employ sentence-
level retrieval and fusion methods, which may
lead to issues of similarity bias and interfer-
ence from irrelevant information in unstruc-
tured knowledge sentences. To address these
limitations, we propose a segment-level and
category-oriented network (SLCO). Our ap-
proach includes a segment-level and prompt-
based knowledge retrieval method to mitigate
the similarity bias problem and a category-
based grounding method to alleviate interfer-
ence from irrelevant information in knowledge
sentences. Experimental results show that our
SLCO can eliminate interference and improve
the overall performance of the KB-REC task. ‡

1 Introduction

Referring expression comprehension (REC), a.k.a.
visual grounding, aims to identify a visual ob-
ject referred to by a referring expression that dis-
ambiguates multiple objects (Cirik et al., 2018;
Qiao et al., 2021). As a core task of language-
vision fields, REC benefits many downstream multi-
modal tasks, e.g., robotics (Berg et al., 2020; Wang
et al., 2022) and vision-and-language navigation
(Qi et al., 2020; Gao et al., 2021).

To explore a broader domain of knowledge,
Wang et al. extend the REC task to knowledge-
based referring expression comprehension (KB-
REC), and propose a baseline model and bench-
mark (Wang et al., 2020). This task requires the
use of external knowledge (e.g., commonsense and
encyclopedia) to refer to objects. This necessitates
the model’s ability to retrieve knowledge related to
expressions and associate it with image and expres-
sion, enabling localization of the referent.

*Equal contribution.
†Corresponding author.
‡The code is available at https://github.com/Buki2/SLCO.
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Figure 1: Comparison of the proposed method’s scheme
with existing methods. The red numbers at the end of
the knowledge sentences represent the similarity score.

The existing method ECIFA (Wang et al., 2020)
retrieves and fuses knowledge in a sentence-level
framework. They utilize sentence-level similarity
to retrieve the most similar unstructured knowledge
sentences from external knowledge bases, e.g., de-
scriptive sentences from Wikipedia. Then they fuse
all these retrieved knowledge sentences with ex-
pressions to locate the referent. However, ECIFA
still has two limitations. Firstly, the sentence-level
similarity method exhibits a similarity bias problem
(Bogatu et al., 2022). This means that although the
retrieved knowledge sentences are lexically simi-
lar to the query expression, they may not be the
intended knowledge for understanding the expres-
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sion. Consequently, the irrelevant knowledge may
result in an incorrect localization of the referent
due to error propagation. As shown in Fig. 1(a),
the intended knowledge for this expression is about
pillows, while existing methods retrieve knowledge
all about sofas due to sentence similarity with the
expression. As a result, the lack of knowledge
about pillows leads to localizing the incorrect ob-
ject, the sofa. Secondly, the retrieved unstructured
knowledge sentences may contain a large amount
of information that is unrelated to the referent, lead-
ing to interference in object localization. As shown
in Fig. 1(a), the irrelevant information “on the floor”
in the second knowledge sentence may mislead the
model to focus on objects located on the ground,
rather than the intended focus of “on the sofa” in
the expression, resulting in an incorrect localiza-
tion of the sofa on the floor. Even the irrelevant
information “on the bed” in the ground-truth knowl-
edge sentence may potentially mislead the model
to localize the incorrect object on the bed.

Based on statistical analysis, we find that most
knowledge-based referring expressions can be di-
vided into two segments according to the informa-
tion contained: (1) Visual segments (e.g., “on the
sofa” in Fig. 1(b)), which can be interpreted based
on visual content, such as color, shape, and relative
position of objects; (2) Knowledge segments (e.g.,
“used for sleeping” in Fig. 1(b)), which require ad-
ditional knowledge beyond the visual content to
be understood, such as function and non-visual ob-
ject attributes. Distinguishing these two types of
segments and discarding the visual segment during
knowledge retrieval can help to solve the similarity
bias problem. Moreover, for grounding, it is only
necessary to know the category of objects corre-
sponding to the knowledge segment, and detailed
descriptive knowledge about the object is not re-
quired. Therefore, we employ a category-oriented
method to retrieve knowledge categories and fuse
them with the visual segment for object localiza-
tion, which can avoid irrelevant information from
knowledge sentences. For example, in Fig. 1(b),
the knowledge segment can identify which object
categories are used for sleeping and narrows the
target to pillows and sofas. Then, these categories
associated with the visual segment distinguish mul-
tiple instances of pillows and accurately locates the
referent one on the sofa.

In this paper, we propose a segment-level and
category-oriented network (SLCO), which utilizes

knowledge segments to retrieve knowledge cate-
gories and delegate them to visual segments for
grounding target objects. It consists of three mod-
ules: a segment detection module, a prompt-based
retrieval module, and a category-based grounding
module. Firstly, the segment detection module iden-
tifies visual and knowledge segments. Then, in-
spired by the excellent knowledge retrieval ability
of prompt learning (Shin et al., 2020; Zhong et al.,
2021), we present a prompt-based retrieval mod-
ule that uses knowledge segments as hints to elicit
knowledge categories from generic language mod-
els. Finally, the category-based grounding module
associates the retrieved knowledge categories with
visual segments for target object localization.

The contributions can be summarized as follows:

• We propose a segment-level and prompt-based
retrieval method that can retrieve object cate-
gories corresponding to knowledge segments,
thereby addressing the similarity bias problem
and reducing incorrect knowledge retrieval.

• We propose a category-based method to as-
sociate knowledge categories with visual seg-
ments for object localization, thereby alleviat-
ing the interference from irrelevant informa-
tion in knowledge sentences.

• Experimental results on the KB-Ref dataset
show that our SLCO can eliminate interfer-
ence and improve the overall performance.

2 Related Work

2.1 Referring Expression Comprehension

REC is a fundamental task in the multimodal field.
Existing methods are twofold based on the align-
ment pattern used. Two-stage methods (Wang et al.,
2019; Yu et al., 2018) involve an initial stage for de-
tecting boxes, followed by a second stage for rank-
ing these boxes based on an expression. In contrast,
one-stage methods (Yang et al., 2020; Huang et al.,
2021; Li et al., 2021; Deng et al., 2021; Yang et al.,
2022) integrate both visual and textual features to
directly regress the bounding box.

To extend this task to a broader knowledge do-
main, (Wang et al., 2020) introduced a knowledge-
based REC task with a benchmark dataset and a
two-stage model. This model retrieves knowledge
by sentence similarity and fuses it with expression
and image for object ranking and selection. How-
ever, this model has the problems of similarity bias
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Figure 2: Overview of the proposed segment-level and category-oriented network.

and interference from knowledge sentences. To
solve these problems, we try to identify parts of
expressions that require knowledge and retrieve it
in a segment-level and category-oriented manner.

2.2 Knowledge Retrieval

Early attempts in knowledge retrieval primarily
relied on similarity measures and matching meth-
ods. However, these methods lack the flexibility
to handle the variability of natural language. Re-
cently, prompt-based methods (Petroni et al., 2019;
Liu et al., 2021) have been shown to possess supe-
rior knowledge retrieval capabilities. Many studies
(Shin et al., 2020; Qin and Eisner, 2021; Zhong
et al., 2021) have focused on prompt engineering to
identify effective templates for knowledge retrieval.
However, existing methods typically assume that
the subject/object and relation are known, and the
task is to identify the corresponding object/subject.
Nevertheless, in real-world scenes, it is more valu-
able to analyze which parts of a sentence require
knowledge, rather than solely relying on the pre-
specified subject/object and relation. In this paper,
we propose a method for detecting parts of sen-
tences that require knowledge and automatically
generating prompts for knowledge retrieval.

3 Proposed Method

An illustration in Fig. 2, SLCO contains three main
modules: (1) A segment detection module, which
identifies knowledge segments and visual segments

in an expression; (2) A prompt-based retrieval mod-
ule, which employs knowledge segments as hints
to elicit knowledge category from language mod-
els; and (3) A category-based grounding module,
which associates knowledge category and visual
segments for object localization.

3.1 Segment Detection
The main idea of this module is to identify parts of
expressions that cannot be inferred solely from im-
ages as knowledge segments, and parts with corre-
sponding visual features as visual segments. Given
a referring expression x = {x1, ..., xn} comprising
n tokens, a knowledge segment can be defined as a
subset of the expression xkn ⊆ x, which consists
of tokens associated with external knowledge.

Given an image and a referring expression, we
first encode visual features v with a convolutional
backbone and encode textual features x using a
pretrained language model. Due to the difficulties
in aligning long expressions with visual features
all at once, inspired by sentence decomposition
(Yang et al., 2020; Li et al., 2021), we perform a
subsentence generation to break the expressions
into subsentences by T iterations. The features of
subsentence xsub(t) at the t-th iteration are:

xsub(t) = ssub(t) · x, (1)

ssub(t) = Conv(vsub(t−1) · x · ssub(t−1)), (2)

where ssub(t) is a score to determine the position
of subsentence, with a matrix of ones as an initial
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value. In iteration, we use a FiLM method (Perez
et al., 2018) for feature projection and obtain visual
features of the subsentences vsub(t), as follows:

vsub(t) = ReLU(vsub(t−1) ⊙ Linear(xsub(t))

+Linear(xsub(t))),

(3)

where ⊙ represents element-wise multiplication.
To determine which parts of expressions have

corresponding visual features, we present a seg-
ment activation method that attends visual features
to textual features, in contrast to the text-to-image
alignment scheme of most REC models. Con-
cretely, we first concatenate the results of T sub-
sentence features to obtain xsub and the visual fea-
tures of T subsentences to obtain vsub, respectively.
Then, to identify activated parts of expressions, we
use cross-modal attention to attend the visual fea-
tures vsub to the textual features xsub. The vision-
dependent subsentence features x′sub are:

x′sub = σ(xsub · v⊤sub) · vsub, (4)

where σ represents a softmax function. Finally,
we project these features into two scores via MLP:
one representing the parts of the sentence activated
by visual context and the other representing the
unactivated parts. We then obtain visual segment
xvi and knowledge segment xkn by multiplying the
sentence features with these scores, as follows:

xkn = σ(Linear(x′sub))⊙ x+ x, (5)

and xvi = 1− xkn.
During the early stages of model training, the

visual features and textual features obtained by
single-modal encoders are relatively independent,
which makes it challenging to align their represen-
tations. To tackle this issue, we introduce a pseudo-
supervision strategy to supervise the detection pro-
cess. In particular, to generate pseudo-annotations,

we extract common substrings between expressions
and their corresponding reference knowledge, as
well as extract knowledge guide words (e.g., “used
for” and “made up of”) along with the following
words. Subsequently, the extracted knowledge-
related words are merged and converted into tokens-
level scores, where 1 indicates knowledge segments
and 0 indicates visual segments. Finally, we use a
mean squared error (MSE) loss Lseg to reduce the
discrepancy between pseudo-annotations and the
predicted scores of knowledge segments.

3.2 Prompt-Based Retrieval

After the detection of knowledge segments, this
module conducts segment-level knowledge re-
trieval of object categories to which the intended
knowledge in expressions pertains.

Firstly, we use words in the expression that
have a higher score than the median of the knowl-
edge segment scores to regenerate knowledge seg-
ments for prompts. Considering that longer knowl-
edge segments are primarily descriptive statements,
while shorter segments pertain to similar objects
or synonyms, we devise two prompt templates for
these scenes. They are in the forms of “A is
xkn” and “ is a kind of xkn”, where xkn is a
knowledge segment in the input slot. When given
a prompt, a pretrained language model fPLM pre-
dicts the probability of different tokens z ∈ Z that
could potentially fill the answer slot. These predic-
tions are then filtered through labels of objects in
an image to narrow down potential answers. The
top-M highest-scoring tokens ẑ are:

ẑ = argmax
z∈Z

P (fPLM (z)|xprompt). (6)

To enhance the category-oriented retrieval ability
of this module, we expand the pretrained language
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model’s knowledge by incorporating the knowl-
edge bases on which KB-Ref is based. Specifically,
inspired by entity-level masking (Sun et al., 2019),
we mask knowledge categories in knowledge sen-
tences for fine-tuning the language model.

3.3 Category-Based Grounding
In this module, we associate the retrieved knowl-
edge categories with the detected visual segments
for visual grounding. According to (Akula et al.,
2020), the position of knowledge categories in
a sentence may significantly impact its meaning.
Thus, we consider three association forms that can
accommodate most situations. In particular, fea-
tures of each candidate knowledge category xz(m)

are integrated into the beginning, middle, and end
of a visual segment to obtain ybeg(m), ymid(m), and
yend(m), respectively. Then, we perform category
association to concatenate and linear project these
features into category-associated sentence features
ybme(m) for the m-th knowledge category.

During iteration, features of top-ranked category-
associated sentences with high probability value
tend to largely accumulate, facilitating the model
to learn important category information. Therefore,
we present a knowledge accumulation method to
iteratively incorporate textual information of M
category-associated sentences into visual features
using multi-head attention, as shown in Fig. 3.
Specifically, there are two parallel branches. At
each step m of the iteration, the first branch fuses
the m-th category-associated sentences ybme(m)

with the (m− 1)-th visual features u1(m−1) to ob-
tain u1(m), as follows:

u1(m) = σ(
u1(m−1) · y⊤bme(m)√

dy
) · ybme(m), (7)

where dy is the dimension of ybme(m). Additionally,
the u1(m) is used to compute the weight of each sen-
tence concerning the visual features. We follow the
calculation of the verification score in (Yang et al.,
2022) to compute this weight. After M iterations,
the weights are summed element-wise to obtain
category-activated weight svi. The second branch
also fuses ybme(m) with the (m− 1)-th visual fea-
tures u2(m−1) to obtain u2(m) in each step of itera-
tion. After M iterations, these features u2(m) are
concatenated and projected via MLP, then added to
the original visual features, obtaining u′2. Finally,
the category and segment-related visual features
vkn are obtained as follows:

vkn = σ(
u′2 · u′⊤2√

du
) · v ⊙ svi + v, (8)

where du is the dimension of u′2.
After activating objects on visual features with

knowledge categories and visual segments, we em-
ploy a variant of the Transformer decoder (Vaswani
et al., 2017) to further distinguish multiple in-
stances of similar objects. It comprises 6 lay-
ers of multi-head attention and point-wise fully
connected. In each layer, two self-attentions are
replaced with cross-modal attention. In one in-
stance, visual features serve as query, text features
serve as key and value, and the other is reversed.
The resulting features are then projected into four-
dimensional object coordinates via MLP.

3.4 Training Objective

The proposed SLCO is trained by a joint loss con-
taining an MSE loss Lseg and a diversity loss (Yang
et al., 2020) Ldiv for segment detection, as well as
a smooth L1 loss Ll1 and a GIoU loss (Rezatofighi
et al., 2019) Lgiou for grounding, as follows:

L = λsegLseg + λdivLdiv + λl1Ll1 + λgiouLgiou,
(9)

where λ are trade-off factors.

4 Experiment

4.1 Experimental Setup

Dataset. KB-Ref (Wang et al., 2020) is the first
and currently the only dataset for the KB-REC task.
It includes 43,284 knowledge-based referring ex-
pressions for objects in 16,917 images from Visual
Genome (Krishna et al., 2017). The knowledge in-
volved is derived from Wikipedia, ConceptNet, and
WebChild, which are reformed into unstructured
sentences. We follow the official data splits.
Evaluation Metrics. Following (Wang et al.,
2020), accuracy is an average of the number of
predictions with IoU greater than 0.50. Given the
absence of ground-truth boxes in practical applica-
tions, the model inputs available for experiments
are images and expressions, without ground-truth
boxes. For knowledge retrieval, accuracy is an av-
erage of the number of predictions that the ground-
truth knowledge category is within the top-M re-
sults, i.e., Acc@M . We obtain the ground-truth
category corresponding to the ground-truth knowl-
edge from the KB-Ref dataset.
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Model Visual Backbone Language Model Val Test
Two-stage alignment methods
LGRANs (Wang et al., 2019) VGG-16 LSTM 21.72 21.37
MAttNet (Yu et al., 2018) VGG-16 LSTM 22.04 21.73
ECIFA (Wang et al., 2020) VGG-16 LSTM 24.11 23.82
One-stage alignment methods
LBYLNet (Huang et al., 2021) DarkNet-53 LSTM 22.65 22.41
ReSC (Yang et al., 2020) DarkNet-53 BERT 27.56 26.88
BBA (Li et al., 2021) DarkNet-53 BERT 28.28 27.08
TransVG (Deng et al., 2021) ResNet-101 w/ DETR BERT 25.03 24.53
VLTVG (Yang et al., 2022) ResNet-101 w/ DETR BERT 29.23 28.96
SLCO (Ours) ResNet-101 w/ DETR BERT 32.15 30.44

Table 1: Comparison with state-of-the-art methods on the KB-Ref dataset. All two-stage methods use object
detection results as candidate bounding boxes. Bold values indicate the best performance.

Implementation. During training, we finetune the
knowledge retrieval module on a 2080Ti GPU and
then end-to-end optimize the remaining modules on
two P100 GPUs. The height and width of the input
image are resized to 640 and the max length of the
expression is set to 40. We use a ResNet-101 (He
et al., 2016) initialized with weights from DETR
(Carion et al., 2020) as the visual backbone, and
BERT (Devlin et al., 2019) as the language model.
We then follow the preprocessing of (Yang et al.,
2022). For training, we use the AdamW optimizer
to train SLCO with a batch size of 28 and a total
of 90 epochs. The initial learning rate for feature
encoders is set to 10−5, and the other modules to
10−4. For the first 10 epochs, we freeze the weights
of feature encoders.

In the prompt-based retrieval module, we use a
LAMA framework (Petroni et al., 2019) and an un-
cased BERT large model as fPLM based on (Shin
et al., 2020) which suggests its effectiveness for
knowledge retrieval among different PLMs. We
employ a Faster R-CNN (Ren et al., 2017) pre-
trained on Visual Genome (Krishna et al., 2017) to
identify object labels in an image. The number of
retrieved knowledge M is set to 3.

We follow (Yang et al., 2022) to set smooth L1
and GIoU loss for object localization. The trade-
off between these loss parameters has been tuned
to be 5:2. Additionally, we perform a grid search
and find the optimal parameters 10 and 0.125 for
the MSE loss and diversity loss in the segment
detection module. Accordingly, we set λseg, λdiv,
λl1, λgiou as 10, 0.125, 5, and 2 in Eq.(9).

Baseline Models. With regards to two-stage meth-
ods, LGRANs (Wang et al., 2019) uses a graph-

based attention method to infer inter-object rela-
tionships. MAttNet (Yu et al., 2018) employs three
modules to handle the grounding of object appear-
ance, location, and relationship. ECIFA (Wang
et al., 2020) retrieves knowledge by cosine similar-
ity between expressions and knowledge sentences,
and then uses a stack of LSTM to fuse all the knowl-
edge sentences with expressions. In regard to one-
stage methods, LBYLNet (Huang et al., 2021) uses
a landmark convolution method to encode object
features. ReSC (Yang et al., 2020) utilizes a re-
cursive framework to fuse visual and textual fea-
tures. Based on it, BBA (Li et al., 2021) employs
a bottom-up and bidirectional framework to align
multimodal features. TransVG (Deng et al., 2021)
constructs a Transformer-based grounding frame-
work. VLTVG (Yang et al., 2022) further extracts
text-conditioned discriminative visual features.

Models for the ordinary REC task lack mecha-
nisms to acquire external knowledge and interact
with multimodal information. Therefore, follow-
ing (Wang et al., 2020), we train all models using
their default implementations in the ordinary REC
training manner on the KB-Ref dataset.

4.2 Main Results

The results in Table 1 show that ECIFA performs
better than other two-stage methods, as it explic-
itly incorporates external knowledge from multiple
knowledge bases. As for one-stage methods, BERT-
based models generally outperform LSTM-based
ones. The reason lies in that the implicit knowl-
edge from the pretrained language model BERT
enhances the comprehension of knowledge-based
referring expressions. Moreover, the results show
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Method Val Test
Full model 32.15 30.44
w/o Detection 29.73↓ 2.42 29.73↓ 0.71
w/o Retrieval 30.15↓ 2.00 29.69↓ 0.75
w/o Grounding 29.70↓ 2.45 29.56↓ 0.88

Table 2: Ablation studies on variants of SLCO archi-
tecture, evaluating the effect of three primary modules,
i.e., a segment detection module, prompt-based retrieval
module, and category-based grounding module.

Method
Retrieval KB-REC
Acc@1 Val Test

Parsing 44.82 29.75 28.82
Detection 52.59 32.15 30.44

Table 3: Results of segment detection methods on
knowledge retrieval and the KB-REC task.

that our proposed SLCO achieves a performance
gain of up to 2.92%, demonstrating the effective-
ness of the segment-level and category-oriented
strategy. Furthermore, SLCO is the first model
that is able to associate both implicit and explicit
knowledge from pretrained language models.

Additionally, we conduct an evaluation of the
inference time. Our model exhibits an inference
time of 0.117 seconds per sample, whereas the
baseline model ECIFA necessitates 0.367 seconds.

4.3 Ablation Study

We conduct a series of experiments to verify the
effectiveness of three main modules (cf. Table 2).
Effectiveness of Segment Detection Module.
There is an average decrease of 1.57% when we
remove this module and its loss functions. This re-
sult validates the effectiveness of our segment-level
method, which solves the similarity bias problem
in the sentence-level method.
Effectiveness of Prompt-Based Retrieval Mod-
ule. To evaluate the importance of this module,
we replace the retrieved knowledge categories with
empty strings. The results show that removing this
module leads to an average decline of 1.38%, indi-
cating the value of knowledge categories for visual
grounding. Moreover, this experimental setup cor-
responds to using only implicit knowledge, which
is similar to the knowledge sources employed by
the state-of-the-art one-stage methods in Table 1.
Nevertheless, our method has better performance
than these methods.
Effectiveness of Category-Based Grounding

Method Acc@1 Acc@2 Acc@3
A. Knowledge retrieval methods
Sim. w/ expr. 26.40 30.63 35.63
Sim. w/ seg. 43.47 46.58 51.29
Prompt w/ expr. 45.48 56.48 61.34
Prompt w/ seg. 52.59 61.85 65.53
B. Fine-tuning strategies of language models
None 35.96 46.33 52.42
Random mask 48.08 58.64 63.27
Category mask 52.59 61.85 65.53

Table 4: Knowledge retrieval results from different
retrieval methods and different fine-tuning strategies.
“Sim.” refers to the cosine similarity method. “w/ expr.”
and “w/ seg.” refer to retrieving knowledge based on
expressions and knowledge segments, respectively.

Module. We ablate this module as well as the
prompt-based retrieval module, thus the visual
grounding process is performed by visual segments
only. Results show that this reduces the model per-
formance by 1.67% on average. The reason lies in
that model lacks the ability to associate knowledge
categories, making it hard to understand referring
expressions and localize the correct referent.

4.4 Evaluation of Segment Detection Method

To explore methods for identifying knowledge and
visual segments, we construct a parsing method to
compare with the proposed detection method. The
parsing method divides the expressions according
to the constituency parsing in the syntax. Based
on observation, knowledge information mostly ap-
pears in predicates or subordinate clauses of ex-
pressions. Thus, we take the first half of the parsed
sentence as a visual segment and the second half
as a knowledge segment.

In Table 3, it can be observed that the parsing
method underperforms in both knowledge retrieval
and KB-REC. The reason is that the diversity of nat-
ural language expressions poses a challenge in iden-
tifying knowledge segments based on specific rules,
as they may appear in various positions within sen-
tences. Moreover, the results demonstrate the flex-
ibility of our segment detection method in recog-
nizing knowledge and visual information in expres-
sions, which improves the performance of both
knowledge retrieval and KB-REC.
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Method Val Test
A. Objects associated with knowledge
Knowledge + expression 30.40 29.38
Knowledge + visual segment 32.15 30.44
B. Methods of associating knowledge
Concatenation after attention 29.25 29.23
Addition after attention 29.83 29.73
Iterative attention 32.15 30.44

Table 5: Results of different objects associated with
knowledge categories and results of different methods
to handle multiple category-associated sentences.

4.5 Evaluation of Knowledge Retrieval
Method

In block A of Table 4, we compare the proposed
method with the cosine similarity method in the
baseline model ECIFA (Wang et al., 2020). Re-
sults show that replacing the entire expression in
the cosine similarity method with the knowledge
segments obtained by our segment detection mod-
ule can significantly improve the performance of
knowledge retrieval. Additionally, our prompt-
based knowledge retrieval method significantly out-
performs the sentence-level similarity method, indi-
cating that our segment-level and category-oriented
method can effectively alleviate the similarity bias
problem. Moreover, we evaluate the inference time
of different retrieval methods under the same set-
tings. The results show that our prompt-based
method demonstrates high efficiency in retrieving
knowledge with 0.020s per sample, which is 70
times faster than the cosine similarity method in
ECIFA which takes 1.400s.

Results in block B of Table 4 show that fine-
tuning a language model using category masks im-
proves the model’s capacity to retrieve categories.
It contributes to our category-oriented method and
alleviates the interference of irrelevant information
from unstructured knowledge sentences.

4.6 Evaluation of Knowledge-Based
Grounding Method

Block A of Table 5 shows comparison results for
associating the textual features of knowledge cate-
gories and expressions. It can be seen that associ-
ating knowledge categories with visual segments
is superior to that with the entire expressions. This
is because visual segments concentrate on disam-
biguation at the instance level and reduce interfer-
ence from irrelevant parts of expressions.
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Figure 4: Results for different number of retrieved
knowledge categories.

In block B of Table 5, we evaluate the perfor-
mance of various methods for associating multiple
category-associated sentences and visual features.
There are three settings for the association: Mul-
tiple sentences and visual features are processed
separately by multiple attention mechanisms, and
then their results are (1) concatenated or (2) added
together; and (3) the attention mechanism is iter-
atively applied to multiple sentences. The results
indicate that the iterative method is the most ef-
fective, as it accumulates features from the top-1
category-associated sentence, which is more likely
to contain accurate knowledge. In contrast, the con-
catenation method and the addition method treat all
sentences equally, making it difficult to determine
which sentences are more important.

The results in Fig. 4 show that the association of
the top-3 knowledge categories with expressions
achieves the best performance. As the number of
knowledge decreases below three, the overall accu-
racy of knowledge retrieval diminishes, resulting
in a degradation of grounding performance. Con-
versely, when the number of knowledge exceeds
three, an excessive number of candidate knowledge
categories may impede the model’s ability to accu-
rately associate knowledge for object localization.

4.7 Qualitative Results

As shown in Fig. 5(a) and Fig. 5(b), the baseline
model is interfered with by the words “stove” and
“desk” in expressions, leading to incorrect results of
knowledge retrieval and object localization. In con-
trast, SLCO effectively avoids this problem by uti-
lizing knowledge segments to retrieve knowledge
categories. As shown in Fig. 5(a), SLCO accurately
retrieves relevant knowledge categories based on
the knowledge segments, and then activates mul-
tiple objects related to the retrieved categories in
the visual features shown in Fig. 5(c). Then, in
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ECIFA: 1. Some desks do not have the form of a 
table, for instance, an armoire desk… (desk);
2. The need for more space led some desk 
companies to attach some accessory... (desk);
3. Handheld keyboards allow the user the ability 
to move around a room or to lean… (keyboard).

SLCO (Ours): 1. monitor; 2. laptop; 3. desk

the container that holds dishes and is above 
the stove 

SLCO (Ours): 1. cabinet; 2. kitchen; 3. stove

ECIFA: 1. A stove is an enclosed space in which 
fuel is burned to heat either the space… (stove);
2. In some areas it developed into a U-shaped 
dried mud or brick enclosure with the... (stove);
3. The exhaust (smoke) from the stove is usually 
several metres above the combustion… (stove).

the electronic machine on desk in front of 
the man which can store and deal with large 
amounts of information

(a) Expressions with knowledge scores and
results of knowledge retrieval by SLCO and ECIFA

(b) Ground-truth and prediction 
results of SLCO and ECIFA

(c) Category-activated weights 
on visual features in SLCO 

(d) Attention scores in the last layer 
of cross-modal decoder in SLCO

Figure 5: Visualization and comparison with the baseline model ECIFA. In Fig. (a), the text highlighted in dark blue
indicates knowledge segments. Fig. (a) shows the top 3 out of the 50 sentences retrieved by ECIFA, and the word
at the end of the sentence is the knowledge category to which the sentence belongs. Fig. (b) shows ground truth
(green box) and the results of SLCO (blue box) and ECIFA (red box). Fig. (c) and Fig. (d) show the significance of
weights and scores, with warmer colors representing higher.

Fig. 5(d), the decoder further refines the objects by
visual segments “above the stove” and “in front of
the man”, thereby accurately localizing the refer-
ent. Qualitative results show that SLCO can solve
the issues of similarity bias and interference by
irrelevant information in knowledge sentences.

5 Conclusion

In this paper, we propose a segment-level and
category-oriented network to endow the model with
the ability to identify and utilize the knowledge and
visual segments in a targeted manner. Specifically,
the proposed method uses knowledge segments to
retrieve knowledge, which addresses the similarity
bias problem in the sentence-level method. Addi-
tionally, our category-oriented retrieval method can
elicit knowledge categories from language models,
mitigating the interference from irrelevant infor-
mation in knowledge sentences. Experimental re-
sults demonstrate the effectiveness of the proposed
method in addressing two limitations of the exist-
ing methods, thus improving the accuracy of the
KB-REC task. In future work, we will explore
more fine-grained information in expressions and
combine it with knowledge and visual content.

Limitations

To better understand the limitations of the proposed
method, we conducted an error analysis by ran-
domly selecting 100 incorrect predictions and cate-
gorizing their error types. The results revealed that
32% of errors were caused by grounding issues,

specifically, an inability to distinguish between mul-
tiple objects of the same category, despite having
knowledge category of the referent object. The
results indicate that there is a need for improve-
ment in the ability to discriminate visual objects,
especially for object categories with long-tailed
distributions. Additionally, the results show that
20% of errors are due to imprecise object detection,
particularly for small objects. This highlights the
need for optimization of the visual encoder and loss
function. Moreover, 14% of errors are attributed
to incorrect knowledge retrieval. To address this,
incorporating more fine-grained information in ex-
pressions for retrieval should be considered as a
future research direction. Furthermore, 34% of in-
correct predictions can be attributed to issues with
the ground-truth annotations, which may negatively
impact the model’s learning process.
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