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Abstract

Training a large language model in low-
resource settings is challenging since they are
susceptible to overfitting with limited general-
ization abilities. Previous work addresses this
issue by approaches such as tunable parame-
ters reduction or data augmentation. However,
they either limit the trained models’ expres-
siveness or rely on task-independent knowl-
edge. In this paper, we propose the Bi-
level Finetuning with Task-dependent Simi-
larity Structure framework where all parame-
ters, including the embeddings for unseen to-
kens, are finetuned with task-dependent infor-
mation from the training data only. In this
framework, a task-dependent similarity struc-
ture is learned in a data-driven fashion, which
in turn is used to compose soft embeddings
from conventional embeddings to be used in
training to update all parameters. In order to
learn the similarity structure and model param-
eters, we propose a bi-level optimization algo-
rithm with two stages—search and finetune—
to ensure successful learning. Results of
experiments on several classification datasets
in low-resource scenarios demonstrate that
models trained with our method outperform
strong baselines. Ablation experiments further
support the effectiveness of different compo-
nents in our framework. Code is available at
https://github.com/Sai-Ashish/BFTSS.

1 Introduction

Finetuning pretrained large models in low-resource
scenarios 1 face many challenges (Kann et al., 2020;
Hedderich et al., 2021; Şahin, 2022). One of the
challenges is the overfitting of the model when
finetuned on the small training data. Different ap-
proaches have been proposed to tackle this problem
and achieved great results. Some approaches re-
strict the number of parameters to be updated in

*Equal Contribution
1Our work is conducted in low resource scenarios that

comprise a few hundred instances of data.

the finetuning process to avoid overfitting to small
amounts of data (Xu et al., 2021). However, param-
eter restriction while model finetuning may impact
the model’s expressiveness.

Other methods such as data augmentation (Wei
and Zou, 2019; Hoang et al., 2018) aim at increas-
ing the training data size through synthesizing new
training data examples to boost generalization abil-
ity. These methods rely on either external lexical
resources and heuristics, which are limited in do-
main and language; or pretrained language models,
the semantic similarity space of which is not task-
dependent. For example, Apple may be replaced by
Microsoft in synonym replacement based on some
lexical resource, but the “replace-ability” really
depends on whether the task is “separate tech com-
panies from gas companies” or “find companies
with their headquarters in Washington state”, the
information of which pretrained language models
or static lexical resources are not able to provide.

Our motivation is to combine strengths of both
approaches. For generalization ability to unseen
data, all parameters, especially embeddings of
words not in the training data, should participate in
the finetuning. At the same time, no external knowl-
edge source should be required for such finetuning
to ensure the method being scalable to different
tasks. The ideal training framework for these goals
should allow training signals to flow from tokens in
training data to unseen tokens in a task-dependent
way. Such a framework will ensure that the general-
ization ability of the trained model is strengthened
through finetuning without the risk of overfitting
quickly to a small amount of training data.

Our approach proposed in this paper, Bi-level
Finetuning with Task-dependent Similarity Struc-
ture (BFTSS), aims to meet these goals. First, we
propose a low-resource finetuning method where
all parameters of the model, including the em-
beddings of unseen tokens, can be tuned directly
through soft embeddings. The soft embeddings
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are constructed through the use of a similarity ma-
trix with pairwise similarity scores between words,
termed a similarity structure2 in this paper. Second,
we propose a bi-level optimization algorithm to
learn a task-dependent similarity structure with low-
resource task data, where no extra data, knowledge
source or task-dependent prior knowledge is re-
quired. Since the similarity structure is usually very
large, two different methods are proposed to reduce
its size and make the learning tractable. Finally, we
conduct extensive experiments on different datasets
and with different model sizes. Comparison to base-
line models and ablated models shows the effective-
ness of our approach, where the performance of the
models trained in the proposed method surpasses
all baselines by large margins.

2 Related work

Low-resource training has been a challenging but
important task in natural language processing (Hed-
derich et al., 2021). Approaches have been pro-
posed to tackle the issues encountered in low-
resource training. Robust finetuning methods are
applied in such training scenarios, such as ap-
proaches restricting tunable parameters (Houlsby
et al., 2019; Lee et al., 2019; Chen et al., 2020;
Xu et al., 2021) and noise-robust training meth-
ods (Jia et al., 2019; Onoe and Durrett, 2019; Jin
et al., 2021). They alleviate the overfitting prob-
lem but introduce no new information beyond the
training data into the model. Data augmentation on
the token level (Wei and Zou, 2019; Raiman and
Miller, 2017; Vania et al., 2019) as well as on the
sentence level using syntax (Şahin and Steedman,
2018; Şahin, 2022), back-translation (Hoang et al.,
2018; Xie et al., 2020) or generation models (Ding
et al., 2020; Lowell et al., 2021; Liu et al., 2022;
Zhou et al., 2022; Wang et al., 2022; Somayajula
et al., 2022) are approaches which aims at introduc-
ing extra information into model training. Other
similar methods rely on pseudo-labeling extra data
(Mintz et al., 2009; Le and Titov, 2019; Lison et al.,
2020) using task insights and heuristics. Most of
them are designed for a specific task, or require
external knowledge sources.

Bi-level optimization (BLO) has wide applica-
tions in machine learning. The neural architecture

2By using “similarity structure” instead of “similarity ma-
trix”, we would like to emphasize that 1) the similarity scores
are interrelated among words with underlying task-dependent
structures, 2) a matrix is just one way of expressing the rela-
tions among words.

search proposed by Liu et al. (2018) uses BLO. It is
also used in data selection (Shu et al., 2019; Wang
et al., 2020; Ren et al., 2020) and meta-learning
(Finn et al., 2017). Feurer et al. (2015) proposed
a BLO-based optimization framework for hyper-
parameter tuning. Baydin et al. (2017) proposed
BLO-based learning rate adaptation. Noisy label
correction using BLO is proposed by Baydin et al.
(2017). Among the papers mentioned above, the
lower parameters are the model weights, and the
upper parameters are the meta-variables, such as
hyperparameters, architecture, training example
weights, etc., to be optimized using BLO.

3 Bi-level Finetuning with
Task-dependent Similarity Structure

The Bi-level Finetuning with Task-dependent Sim-
ilarity Structure framework, as shown in Figure
1, centers around how to learn and utilize a task-
dependent similarity structure S. The structure is
first initialized and learned along with model pa-
rameters with bi-level optimization on task data,
where soft embeddings of words are derived from
the structure to propagate training signals into un-
seen words. After this first phase of training, named
Search phase, the Finetune phase follows in which
only model parameters are updated with the simi-
larity structure fixed.

3.1 Motivation and Overview of BFTSS

In BFTSS, a task-dependent similarity structure is
first learned with a small training data and then
used to improve the performance of the language
models. The motivation for the task-dependent sim-
ilarity structure comes from the observation that
only a few words appear in the training data in a
low-resource scenario with their word embeddings
updated in training. However, we want to pass
more information about the unseen words to the
model to train it. One way to do that is to iden-
tify a word’s similar words in the vocabulary and
estimate gradients of them from the seen word’s
gradient. This similarity structure is encoded as a
similarity matrix S, with each row corresponding to
a word3 in the vocabulary with size V . The row en-
tries represent the task-dependent semantic proxim-
ity of a word with all other words in the vocabulary.
Previous methods for data augmentation implicitly

3The smallest string units for a pretrained language model
may be words, subwords or other symbols. We use word to
refer to all items in the tokenization vocabulary.
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Use soft embeddings from learned S to update all parametersUse soft embeddings from S to update all parameters

Figure 1: The high level overview of Bi-level Finetuning with Task-dependent Similarity Structure.

assume that the similarity structure for a task is
identical to a general similarity structure, which
can be derived from pretrained models or gathered
from external lexical semantic resources. However,
similarity structures are task-specific with varying
degrees of closeness to the general similarity struc-
ture, as shown in the Apple-Microsoft example. In
our framework, they are trained with task data to
ensure they are task-specific.

With a task-specific similarity structure, we are
able to train all parameters through soft embed-
dings. Soft embeddings are defined as a linear
combination of the embedding vectors weighted
by the entries of the S matrix. Intuitively, it means
that when a model with parameters W sees a word
in the text input, it also sees all the related words
weighted by the entries of the corresponding row
in S. Thus the optimal model weights learned this
way would be dependent on S, i.e., W ∗(S).

For training, the task-dependent similarity ma-
trix S should not be learned by reducing the train-
ing loss on the model parameters W ∗(S), because
this is similar to adding more parameters to an
already huge language model. Therefore, the task-
dependent similarity matrix S is learned using a bi-
level optimization approach. Bi-level optimization
is used because of the inter-dependency between
the optimal model weights W ∗ and the optimal
similarity matrix S∗. The learned optimal model
weights W ∗(S) depend on S and S is learned in
a way that further improves the performance of
W ∗(S). This shows that both parameters influence
and benefit from each other. With bi-level optimiza-
tion, we are able to first estimate the W parameters
by one-step gradient descent with S fixed on one
portion of the training data, and learn the S parame-
ter by using the learned W parameter on a different
portion. This bi-level optimization phase of W and
S is called the Search Phase.

Finally, with the learned S and W from the
Search Phase, normal finetuning is conducted in

the Finetuning Phase for further tuning the W pa-
rameters on the entire training data. The learned S
parameters is fixed throughout the phase.

3.2 Similarity structure initialization

The similarity structure is encoded in this work as a
similarity matrix S ∈ RV×V , where V is the vocab-
ulary size. Each row of the S matrix represents a
word in the vocabulary. The row entries represent a
word’s semantic proximity with all the other words
in the vocabulary. One way to initialize this S ma-
trix is to add the inner product of the pretrained
language model’s embedding matrix E ∈ RH×V

with itself (where H is the hidden dimension of
the embedding layer of the language model) to the
identity matrix:

S = αI + (1− α)f({ÊT Ê}d),

where Ê is the normalized E matrix where each
column vector is a unit norm vector, d is the inverse
temperature, I ∈ RV×V is the identity matrix, α
is trade-off parameter, and f is the normalizing
function that normalizes each row to sum to 1. The
identity matrix is added to make the initialization a
spiky distribution with the highest weight for the
diagonal elements. The pretrained model’s embed-
ding layer decides the weights of the off-diagonal
elements. These language models are pretrained
on a huge corpus of texts and the cosine distance
between the embedding vectors depict the semantic
proximity between the words. The inner-product
matrix is raised to the power of inverse temperature
and normalized to make it a smooth and light-tailed
distribution. α controls how strong the pretrained
embeddings influence the similarity values. By set-
ting α to 1, we have Vanilla finetuning where the
similarity terms are not considered. In this paper,
we set both terms to have equal weights and omit
it in the following sections.

8571



3.3 Soft Embeddings

Soft embeddings are defined as the linear combi-
nation of all the related embedding vectors whose
weights are determined by the similarity structure
S. Formally, we define the soft embedding vector
of a word as follows,

ê
(t)
i =

K∑

j=0

s
(t)
i,jE

(t)
j = e

(t)
i S(t){E(t)}T

where K is the number of related words used to
calculate soft embeddings, E(t) ∈ RH×V and
S(t) ∈ RV×V are the embedding matrix and simi-
larity matrix at tth iteration. E(t)

j is the embedding

vector of jth word. s(t)i,j is the {i, j}th element of
the S(t) matrix which describes how similar the
j-th word is to the i-th word. e(t)i is the one-hot
representation of the i-th word and ê(t)i is the soft
embedding of it.

When the model weights are updated with back-
propagation, the embeddings of all the similar
words (determined by the entries of the similarity
matrix S) are updated, propagating task knowledge
into all parts of the model:

∇ei =
K∑

j=0

s
(t)
ij ∇E

(t)
j .

3.4 Bi-level learning of a task-dependent
similarity structure

Because the similarity structure needs to be trained
with task data, a bi-level optimization-based ap-
proach is proposed in this work for learning such a
task-dependent similarity structure. There are two
stages in the bi-level learning process. In the first
stage, the model weightsW is updated to minimize
the loss on one dataset, searching for the optimal
model weights W ∗(S) on that dataset. In the sec-
ond stage, the task-dependent similarity matrix S is
updated searching for S∗ that attains the minimum
loss on a different dataset.4

4The two datasets used in the bi-level optimization are
usually the training set and the validation set. However, be-
cause we are operating in low-resource scenarios, we split the
small training dataset Dtrain into two halves to act as these two
datasets. The first half DB-train is used to train the model in
the first stage. The second half DB-val is used to train the op-
timal S parameter in the second stage. This procedure keeps
the training data size the same among all baselines for fair
comparison.

3.4.1 Training W

In the first stage, model parameters W are trained
on BFTSS training set DB-train with the similarity
matrix S fixed:

W ∗(S) = min
W

L(W,S,DB-train), (1)

where W is model parameters, S is the similarity
matrix, and L is the task loss. The optimal model
weights are learned on DB-train given a similarity
matrix S. Hence we learn W ∗(S), which is depen-
dent on S since W ∗ depends on the loss function
L(·) which is a function of S. S is not updated in
this stage because this would overfit the BFTSS
training set; instead it will be updated in the second
stage.

3.4.2 Training S

In the second stage, the optimal similarity matrix
S is learned on BFTSS validation set DB-val given
the optimal model weights W ∗(S) learned in the
first stage on DB-train. The model trained in the
first stage W ∗(S) is evaluated on DB-val and S is
updated by minimizing the validation loss. The
following optimization problem is solved at this
stage:

min
S

L(W ∗(S), S,DB-val). (2)

By performing both the stages iteratively with dif-
ferent parameters being fixed at each stage, we do
not overfit on the any of the two dataset DB-train

and DB-val.

3.4.3 A bi-level optimization framework

Combining both the stages, we have the following
bi-level optimization framework:

minS L(W ∗(S), S,DB-val)
s.t. W ∗(S) = minW L(W,S,DB-train)

(3)
The algorithm consists of two learning stages.
From the bottom, the optimization problem cor-
responds to the learning stage 3.4.1 and then 3.4.2.
These two stages are conducted end-to-end. The
solution obtained in the first stageW ∗(S) is a func-
tion of S. We solve for S by minimizing the valida-
tion loss in the second stage. The S learned in the
second stage changes the training loss in the first
stage, which changes the solution W ∗(S).
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3.5 The full optimization algorithm

The full optimization algorithm, shown in Algo.1
includes two distinct phases. 1) Search phase: In
this phase, optimal similarity matrix S∗ is esti-
mated by an iterative algorithm to solve the Bi-level
optimization problem in Equation 3. The algorithm
learns S′ ≈ S∗. 2) Finetune Phase: In this phase,
we finetune the language model on the wholeDtrain

for optimal model weights W ∗ with a fixed S′.
For optimization in the search phase, we develop

a gradient-based optimization algorithm to solve
the problem defined in Equation 3 (Liu et al., 2018).
W is approximated using the one-step gradient
descent.

W ∗(S) ≈W ′ =W − ηw∇WL(W,S,DB-train) (4)

W ′ is plugged into the second-level objective func-
tion. The gradient with respect to the S matrix is
calculated to update S:

S∗ ≈ S′ = S − ηs∇SL(W
′, S,DB-val). (5)

Gradient of the loss function with respect to S is
calculated using the chain rule. W ′ is an implicit
function of S.

∇SL(W
′, S,DB-val) =

∇SL(W − ηw∇WL(W,S,DB-train), S,DB-val)

= ∇SL(W
′, S,DB-val)− ηw×

∇2
S,WL(W,S,DB-train)∇W ′L(W ′, S,DB-val)

Solving for S′ involves an expensive matrix-vector
product, whose computational complexity can be
reduced by a finite difference approximation:

∇2
S,WL(W,S,DB-train)∇W ′L(W ′, S,DB-val) =

∇SL(W
+, S,DB-train)−∇SL(W

−, S,DB-train)

2ε
,

(6)

where

W± =W ± ε∇W ′L(W ′, S,DB-val),

ε =
0.01

‖∇W ′L(W ′, S,DB-val)‖2
.

This procedure is carried out iteratively until con-
vergence, at which time the Finetune phase starts.
With the trained S′ from the concluded first phase,
the whole model is further finetuned for optimal
weights W (S′) on the entire training data in Dtrain

with S′ fixed. This allows the model parameters to
be tuned on the unseen DB-val as well as DB-train.

Algorithm 1 Optimization algorithm
Split training dataset Dtrain into two halves,
{DB-train,DB-val}.

# Search phase
while not converged do

Update model weights W using Eq.(4) on
DB-train

Update similarity matrix S using Eq.(5) on
DB-val

end while

# Finetune phase
With the learned S′, learn for optimal W on
Dtrain until convergence.

3.6 Dimensionality reduction of S

The dimension of S is V × V which is generally
difficult to optimize when V is very large. In this
section, we discuss ways to reduce the dimensional-
ity of S, making it substantially more convenient to
optimize. We propose two different ways to reduce
the dimension of S from V × V to V ×K where
K � V .

BFTSS Top-K : After the S matrix initialization
as stated in Section 3.2, we choose the K words
with the highest similarity scores and their corre-
sponding indices from each row in the S matrix.
The entries corresponding to the top-k words in
each row of the S matrix are updated, thus reduc-
ing the dimension from V ×V to V ×Ktop-K where
Ktop-K � V .

BFTSS U-V : From Section 3.2, we initialize S
as follows,

S = I + f({ÊT Ê}d) = I + Ŝ

where Ŝ = f({ÊT Ê}d). S is a full rank matrix
because of the added identity matrix, but Ŝ may
not be a full-rank matrix.5 Ŝ can be decomposed
into a product of two lower-rank matrices. Thus to
efficiently reduce the dimension of the S matrix,
we apply rank reduction on Ŝ. We use PARAFAC
(Bro, 1997) to decompose Ŝ into two factors U and
V ∈ RV×KU-V of rank KU-V� V such that,

S = I + f({ÊT Ê}d) = I + Ŝ ≈ I + U × V T

5There is an interdependency between similar words mak-
ing their corresponding rows dependent.
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Reconstruction of S matrix is not needed to per-
form soft embedding operations. The following
operation is performed instead,

ê
(t)
i = e

(t)
i × S(t) × {E(t)}T

= {E(t)
i }

T
+ h(((e

(t)
i × U)× V T )× {E(t)}T ),

(7)

where h is the Top-K operation which selects sim-
ilar words dynamically contrary to the static se-
lection in BFTSS Top-K. Multiplication is per-
formed in a specific order to avoid reconstruc-
tion of S matrix everytime for soft embeddings.
(e

(t)
i × U) ∈ RKU-V is a KU-V-dimensional vector.

V ∈ RV×KU-V . Thus, it boils down to product of a
KU-V-dimensional vector with KU-V × V dimen-
sional matrix (V T ). It is then multiplied with the
embedding matrix to get a H dimensional soft em-
bedding vector. Thus the computational complexity
is of the same order as BFTSS Top-K approach.

4 Experiments

4.1 Datasets

We perform experiments on several datasets from
GLUE (Warstadt et al., 2018; Wang et al., 2019).
The GLUE datasets span a wide range of tasks
such as linguistic acceptability (CoLA), semantic
textual similarity (STS-B), paraphrase (QQP), nat-
ural language inference (RTE, QNLI, MNLI), and
sentiment classification (SST-2). To simulate a
low-resource finetuning scenario, 100, 300, and 1k
examples are sampled from the original training
dataset for training. The models are evaluated on
the original development set following Xu et al.
(2021).

4.2 Baselines

Many different baselines are compared with the
proposed method in this paper. Vanilla finetuning
is the classic finetuning method where the whole
training dataset is used for training. RecAdam
(Chen et al., 2020) is an advanced version of weight
decay with time-varying coefficients for the cross-
entropy loss term and the regularization loss term.
Child-D and Child-F (Xu et al., 2021) are meth-
ods where a mask is applied to the gradients to
restrict the number of parameters being updated to
avoid overfitting. Top-K-layer finetuning (Houlsby
et al., 2019) only updates the top K layers, and
Mixout (Lee et al., 2019) randomly replaced the
updated parameters with the pretrained parameters.
Finally EDA (Wei and Zou, 2019) is a popular data

augmentation method with a dependency on the
knowledge resource WordNet (Fellbaum, 1998).

All baselines are evaluated with the pretrained
BERT-base and BERT-large models. They are fine-
tuned on the subsampled training datasets. The
averaged results on the original development set
over ten random seeds are reported following Xu
et al. (2021). For BFTSS Top-K and BFTSS U-V,
top 50 words and U-V dimension of 100 worked
the best among other choices. More information
about the hyperparameter tuning process can be
found in the appendix.

4.3 Main Results

Table 1 shows the results of the average scores6 for
the proposed and baseline methods. Models trained
with our methods are most accurate compared to
the baselines over all the sampled data sizes for
both BERT-base and BERT-large models, often by
large margins. This improvement indicates that our
approach to using bi-level optimization to learn a
task-dependent similarity structure for finetuning
without any external knowledge is very effective in
boosting the model’s performance over baselines.
Among baseline methods, Mixout and Top-K-layer
Tuning perform better than other baselines. How-
ever, there is still a substantial performance gap
between these methods and our proposed methods.
For example, BFTSS Top-K method achieves an
average gain of 10.58%, 4.73%, and 1.50% over
mixout in 100, 300, and 1K training examples sce-
nario, respectively, on the BERT-base model . Our
BFTSS U-V method achieves an average gain of
10.75%, 4.77%, and 1.39% over mixout in 100,
300, and 1K training examples scenario, respec-
tively, on the BERT-base model . The trend is
similar for BERT-large models and also when com-
pared to Top-K-layer Tuning.

Because Mixout proposes to replace randomly
sampled model parameters with pretrained model
parameters while finetuning (Lee et al., 2019), and
Top-K-layer Tuning only tunes the Top-K layers
while freezing the remaining bottom weights, they
both can be considered as putting restrictions on
model capacity to avoid overfitting. Different from
these methods, the proposed methods utilize in-
formation about unseen words in the form of a
task-dependent similarity structure to serve as an
informative prior for the model in finetuning. The
model, especially the embeddings of the unseen

6Task performance values are in the appendix.
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Method 100 300 1000

Vanilla 33.11 46.17 65.28
RecAdam 36.65 44.46 68.28
Child-D 38.38 52.65 66.88
Child-F 38.09 50.89 66.52
Top-K-layer 39.91 58.01 68.47
Mixout 43.97 58.28 68.80
EDA 52.95 56.95 62.92

BFTSS Top-K 54.55 63.01 70.30
BFTSS U-V 54.72 63.05 70.19

(a) Test Results (%) on all datasets with a BERT-base model.

Method 100 300 1000

Vanilla 38.70 56.80 69.31
RecAdam 36.53 56.92 70.16
Child-D 48.05 64.14 71.37
Child-F 47.51 63.05 70.18
Top-K-layer 51.86 64.94 72.05
Mixout 52.98 64.22 72.32
EDA 52.75 60.14 65.04
BFTSS Top-K 58.00 66.53 72.86
BFTSS U-V 58.10 66.50 73.11

(b) Test Results (%) on all datasets with a BERT-large model.

Table 1: Experiment results of the baseline methods
and proposed methods. The reported numbers are the
averaged evaluation metrics across all tasks with differ-
ent number of sampled training data examples. Bold
indicates the highest number, and italic indicates the
second highest.

words, receives informative updates from limited
training data. Results here show that by providing
more information about unseen words in the vocab-
ulary instead of restricting the tunable parameters,
models can be trained to have better generalization
without overfitting.

We also compare to the popular data augmenta-
tion method, EDA (Wei and Zou, 2019). Different
from the baselines above, an external lexical re-
source, WordNet, is used in EDA for synonym
replacement. Our method outperforms EDA in all
datasplits despite having no access to any addi-
tional data. On the BERT-base model , our BFTSS
Top-K method outperforms EDA by an average
performance gain of 1.6%, 6.06%, and 7.38% in
100, 300, and 1000 training examples scenarios.
Similarly, on the BERT-base model, our BFTSS
U-V method outperforms EDA by an average per-
formance gain of 1.77%, 6.1%, and 7.27% in 100,

Figure 2: Averaged scores of Vanilla S-W tuning
and our approaches with BERT-base and BERT-large
model, on 100 data split settings.

300, and 1000 training examples scenarios. The
trend is similar for the BERT-large models.

EDA can be seen as creating symbolic data aug-
mentations by replacing words according to a gen-
eral similarity structure coupled with other opera-
tions such as random swap, insertion and deletion.
With increasing training examples, the accuracy
improvement of our method over EDA increases.
This result indicates that initially, the general sim-
ilarity structure is helpful due to low amount of
training data compared to no augmentation at all.
However, as the training data increases, the gen-
eral similarity structure along with other heuristics
brings more noise than information, resulting in
smaller gains and even performance loss compared
to Vanilla finetuning. The task-specific similarity
structure from our method can benefit the models
in all cases, because it is close to the general simi-
larity structure when the training data is small, and
moves to a similarity structure tailored for the task
when training data increases.

Finally, the two dimensionality reduction meth-
ods, Top-K and U-V, perform quite similarly under
different conditions, which indicates that both di-
mensionality reduction methods provides similar
benefits to model training.

4.4 Ablation experiments
4.4.1 Vanilla S-W
The effectiveness of the bi-level optimization train-
ing is examined in the Vanilla S-W experiments,
where Vanilla S-W method represents training the
similarity structure S and the model W on the
whole training dataset, DB-train, without the BFTSS
framework. We use the U-V procedure for the
dimensionality reduction of S. Fig. 2 compares
our method with Vanilla S-W on BERT-base and
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Method(Top-K) BERT-base BERT-large

Vanilla 33.11 38.70
Random S 40.04 43.78
Initial S 42.33 51.01
BFTSS Random 50.68 51.13
BFTSS 54.55 58.00

(a) Impact of initialization of S and using BFTSS Top-K
at 100 data split settings. We report the average scores on
all datasets

Method (U-V) BERT-base BERT-large

Vanilla 33.11 38.70
Random S 29.30 28.45
Initial S 42.51 52.46
BFTSS Random 37.01 33.56
BFTSS 54.72 58.10

(b) Impact of initialization of S and using BFTSS U-V at
100 data split settings. We report the average scores on all
datasets.

Table 2: Results of experiments showing the impact
of initialization of S. The Top-K and U-V indicate if
Top-K or U-V, respectively, was used for dimensional-
ity reduction of S.

BERT-large in 100 training examples scenario. Re-
sults show our method outperforms Vanilla S-W
by a large margin. In Vanilla S-W , both the S and
W parameters are learned on the training dataset
without the bi-level optimization framework. Com-
pared to Vanilla finetuning where S is not used,
performance from Vanilla S-W models are much
higher, indicating that the initial similarity struc-
ture is already helpful for updating all parts of the
model. However, the bi-level learning of S and W
is able to provide further benefit for model learning.

4.4.2 Initialization of S
Initial values in the S matrix are important to the
success of the BFTSS. Experiments are conducted
using the following initialization methods:

• Random S: Use a randomly initialized S for
Finetune phase of the optimization algorithm
without learning for a task-dependent similar-
ity matrix.

• Initial S: Use the initial S for Finetune phase
of the optimization algorithm without learning
for a task-dependent similarity matrix.

• BFTSS Random: Perform the optimization
algorithm on a randomly initialized S.

Table 2 compares our method with the three initial-
ization methods of S described above. The first two
initialization methods do not learn S with task data.
Results show that our method outperforms both ini-
tialization methods emphasizing the need to learn
for a task-dependent S. Interestingly, Random S
Top-K outperforms Vanilla, indicating that when S
is initialized randomly, static similar word selection
strategy (BFTSS Top-K) regularizes the model’s
performance where as dynamic similar word selec-
tion strategy (BFTSS U-V) is injecting noise into
the model that is making the performance worse.
Furthermore, Initial S performs better than Vanilla
and Random S for both the rank reduction methods,
indicating the initialization’s importance.

We further inspect the role of learning of S in
our algorithm. By comparing BFTSS , BFTSS Ran-
dom, and Random S, we can observe that BFTSS
Random performs better than Random S. This ob-
servation indicates that a learned S is more helpful
than a random initialization of S. Furthermore,
BFTSS performs better than BFTSS Random, in-
dicating the initialization of S from pretrained lan-
guage models provides a more informative prior to
the similarity structure than a random initialization.
The proposed initialization of S is derived from
the pretrained model’s embedding layer. Such a
model is pretrained on a huge corpus of texts in
an unsupervised fashion. The model would have
learned a latent representation of the words in the
vocabulary that captures semantic proximity be-
tween them. Thus an Initialized S is better than
a Random S. However, since a pretrained model
is pretrained on a huge corpus of texts, there is no
guarantee that the proposed initialization of S is
task-dependent. Hence, we need to further learn
for a task-dependent S.

5 Conclusion

To mitigate the impact of overfitting leading to low
generalization ability of large language models, es-
pecially in low-resource scenarios, we propose Bi-
level Finetuning with Task-dependent Similarity
Structure-BFTSS, a bi-level optimization frame-
work to learn a task-specfic similarity structure and
further enable the generalization ability of updating
‘unseen’ or ‘similar’ words of language models on a
given task. We also introduce two variants, BFTSS
Top-K and BFTSS U-V, to reduce the dimension-
ality and make computation efficient. Extensive
experimental results on various datasets show the
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effectiveness of our approaches in low-resource
scenarios when comparing to different baseline
methods.

6 Limitation

The way the method applies to larger datasets needs
further exploration. As the number of training ex-
amples increases, the accuracy gain over vanilla
finetuning reduces, indicating that our method best
works in low-resource scenarios. Another limi-
tation is that we performed experiments only in
one language. It will be interesting to apply our
method to tasks in other languages and understand
the impact of task-dependent similarity structure
on the model’s performance in those scenarios.
BFTSS Top-K and BFTSS U-V methods perform
similarly. Scenarios where BFTSS Top-K and
BFTSS U-V differ in performance, should be fur-
ther explored. We plan to address them in our
future works.
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A Baselines

We include the following baselines in our experi-
ments:

• Vanilla: Vanilla finetuning of the language
model on the training dataset.

• RecAdam: Chen et al. (2020) proposed
RecAdam optimizer to mitigate the effect
of catastrophic forgetting while finetuning a
large language model. RecAdam is an ad-
vanced version of weight decay with time-
varying coefficients for the cross-entropy loss
term and the regularization loss term.

• Child-D: Xu et al. (2021) proposed to update
the weights of a sub-network within a large
language model to tackle the fine-tuning insta-
bility and catastrophic forgetting issue. Child-
D estimates a static mask with probability pD
from the fisher information matrix at the be-
ginning of the training. pD = {0.1, 0.2, 0.3}.

• Child-F: Also proposed in (Xu et al., 2021).
Unlike Child-D, Child-F utilizes a dynamic
mask during gradient computation. At every
iteration, a mask is sampled from a Bernoulli
distribution parameterized by pF = {0.2, 0.3,
0.4}.

• Top-K-layer Finetuning: Only the top-K lay-
ers are finetuned with the remaining bottom
layers frozen (Houlsby et al., 2019). K = {0,
3, 6, 12}.

• Mixout: Lee et al. (2019) proposed to replace
the language model parameters with their cor-
responding pretrained weights while finetun-
ing with probability p = {0.1, 0.2, . . . ,
0.8}. This way, the authors propose reduc-
ing the model’s deviation from the pretrained
weights, thereby tackling the catastrophic for-
getting issue.

B Hyperparameter Settings

For all methods, we finetune the pretrained BERT-
base7 and BERT-large8 models provided by Hug-
gingface (Wolf et al., 2020). We follow the same
settings for the models as Devlin et al. (2018).
All models are trained using a batch size of

7https://huggingface.co/bert-base-cased/tree/main
8https://huggingface.co/bert-large-cased/tree/main

16, a warm-up ratio of 10%, and AdamW opti-
mizer (Loshchilov and Hutter, 2019) with β1 = 0.9,
β2 = 0.999, ε = 1e-6.

For one dataset, the averaged task performance
is calculated using model performance evaluated
from ten runs with different random seeds. The
average scores, reported in the result tables in the
main paper, are the averaged value of all task per-
formance numbers. The task performance numbers
are reported in the tables below in the appendix.

For our method the training can be decomposed
into two phases, 1) Search phase and 2) Finetune
phase. We report the hyperparameter settings for
each phase and grid searched for the best hyper-
parameter setting for a task following Xu et al.
(2021).

• Search phase: We grid search for Ktop-K pa-
rameter in {50, 100} and KU-V decompo-
sition dimension in {100, 300}. We split
the training dataset Dtrain into two halves,
{DB-train,DB-val} to be used for stage 3.4.1
and then 3.4.2 of search phase respectively.
We use the Adam optimizer for S with β1 =
0.9, β2 = 0.999, ε = 1e-8. We grid search
for the learning rate of S in {5e-06, 4e-05}.
We follow the same settings for W as Devlin
et al. (2018). We grid search for the learn-
ing rate of W in {4e-05, 2e-05, 5e-06} and
number of epochs in {3, 6, 9}. Since it is an
optimization problem, we search for the hy-
perparameters from the provided choices that
lead to a smooth reduction in the loss curves.
Grid search is performed in a similar fashion
as Xu et al. (2021).

• Finetune phase: We use the default hyperpa-
rameter settings for learning W ∗ following
Devlin et al. (2018). We train for optimal W
on full training datasetDtrain in this phase. We
use the S∗ obtained in the search phase.

We follow the settings reported in the paper and
use the code provided for all the baselines. For a
fair comparison (Mosbach et al., 2020), we run the
baselines for the same number of training steps as
our entire algorithm (search phase and finetuning
phase). We grid-searched over all choices of hyper-
parameters reported in their respective papers and
report results on the best set of hyperparameters
found. We used Betty library (Choe et al., 2022) for
the MLO implementation. We use the V100 GPU
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Dataset Dev Metrics
CoLA 1.0k Matthews Corr
STS-B 1.5k Spearman Corr
SST-2 872 Accuracy
QQP 40k F1
QNLI 5.5k Accuracy
MNLI 9.8k Accuracy
RTE 277 Accuracy

Table 3: Statistics and metrics of the classification
datasets.

machine for all our experiments. Our algorithm ex-
ecuted in a couple of minutes which is comparable
to the running time of vanilla finetuning.

C Tables

Table 3 describes the datasets used for the training
and evaluation of the models. It reports the number
of examples in the dev set and the evaluation metri-
ces for each task. Tables 4-9, shows the compari-
son of our method with all the baselines mentioned
above for each dataset and split settings. Tables 10-
13 shows the results of our ablation studies with
different initializations of S matrix to understand
the impact of initialization. Last column (Avg) is
the average performance metric of the model for
a given approach across all the tasks. Table 14
shows the comparison of our method with Vanilla
S-W on BERT-base and BERT-large for each task
to understand the impact of BFTSS.
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Method CoLA STSB SST-2 QQP QNLI MNLI MNLI-m RTE Avg

Vanilla
1.32,
2.9

(4.64)

22.49,
23.77

(50.44)

55.44,
4.98

(64.33)

13.0,
18.13

(46.46)

52.47,
11.88

(69.49)

33.71,
3.35

(39.35)

33.93,
3.6

(39.49)

52.56,
3.32

(55.96)
33.11

RecAdam
0.98,
3.19

(8.02)

33.44,
44.13

(63.09)

53.37,
5.46

(63.07)

29.49,
29.59

(59.48)

54.93,
9.12

(64.51)

35.08,
3.83

(38.7)

34.95,
3.8

(39.23)

50.97,
3.91

(55.96)
36.65

Child-D
1.62,
4.04

(10.16)

41.08,
3.91

(47.82)

63.02,
5.98

(71.1)

16.72,
24.87

(60.34)

62.93,
9.01

(70.16)

34.89,
3.5

(40.15)

35.61,
4.22

(41.99)

51.16,
3.49

(55.6)
38.38

Child-F
2.12,
2.77

(6.02)

37.4,
5.45

(44.04)

62.31,
5.98

(72.36)

21.36,
28.21

(64.09)

60.52,
11.41

(69.63)

34.73,
3.39

(40.03)

35.27,
4.02

(41.56)

51.05,
3.05

(54.51)
38.09

Top-K-layer
2.63,
3.71

(7.38)

45.57,
12.88

(61.98)

65.61,
7.24

(75.92)

17.2,
27.71
(59.5)

63.08,
8.59

(69.23)

36.03,
2.85

(39.83)

36.47,
3.35

(40.76)

52.67,
3.0

(56.32)
39.91

Mixout
6.82,
6.98

(17.63)

58.02,
8.65

(72.54)

64.32,
8.12

(77.52)

28.02,
25.66

(63.41)

65.9,
5.38

(70.91)

37.31,
3.23

(41.13)

38.36,
4.15

(42.96)

52.96,
2.98

(57.4)
43.97

EDA
5.72,
7.34

(14.98)

71.3,
4.39

(76.2)

78.26,
5.46

(83.14)

60.06,
2.31

(63.73)

68.94,
3.94

(71.99)

42.28,
3.42

(47.79)

42.4,
4.04

(48.17)

54.66,
3.2

(57.76)
52.95

BFTSSTop-K
16.27,
8.19

(26.51)

78.29,
1.37

(80.47)

74.71,
6.52

(83.03)

57.75,
3.6

(63.5)

71.7,
2.13

(74.81)

39.98,
2.26

(43.1)

41.66,
2.61

(45.3)

56.03,
1.9

(58.48)
54.55

BFTSSU-V
15.84,
8.86

(26.58)

78.56,
1.32

(80.93)

75.54,
4.51

(81.65)

58.37,
3.8

(63.94)

71.84,
2.04

(73.93)

39.98,
2.17

(42.52)

41.72,
2.48

(44.84)

55.96,
2.6

(60.29)
54.72

Table 4: Test Results (%) on BERT-base model in 100 data split settings. For each task, average, standard deviation
and maximum of the evaluation metric over ten random seeds have been reported in the tables. The format used is
average, standard deviation (maximum).

Method CoLA STSB SST-2 QQP QNLI MNLI MNLI-m RTE Avg

Vanilla
3.57,
5.81

(15.07)

67.85,
9.14

(74.6)

73.77,
9.14

(81.88)

28.37,
23.51

(61.32)

66.35,
8.74

(74.19)

37.33,
4.55

(41.77)

38.11,
5.39

(43.49)

54.04,
4.19

(58.84)
46.17

RecAdam
6.25,
6.97

(17.02)

68.17,
3.77

(73.69)

68.85,
9.13

(78.67)

11.34,
23.67

(58.51)

69.22,
4.14

(72.58)

38.32,
3.46

(41.4)

39.16,
3.88

(43.05)

54.4,
2.52

(58.48)
44.46

Child-D
4.61,
6.19

(17.58)

78.6,
4.51

(84.31)

79.77,
4.29

(84.86)

49.2,
21.38

(65.58)

71.97,
4.91

(76.95)

39.74,
3.28

(44.45)

40.98,
3.76

(47.06)

56.32,
2.56

(59.57)
52.65

Child-F
3.84,
5.04

(14.6)

79.18,
1.94

(83.25)

79.6,
4.61

(82.22)

39.87,
29.02

(66.05)

70.34,
7.04

(76.19)

38.42,
3.47

(43.4)

39.62,
3.82

(45.61)

56.25,
2.71

(61.37)
50.89

Top-K-layer
22.81,
11.79

(34.59)

80.74,
2.31

(84.25)

84.31,
1.14

(85.89)

62.52,
2.63

(67.2)

73.47,
1.84

(75.36)

40.91,
3.23

(45.67)

42.69,
4.05

(48.54)

56.61,
1.78

(58.84)
58.01

Mixout
21.87,
10.88

(37.67)

81.83,
1.56

(83.81)

83.39,
2.09

(85.78)

57.68,
7.06

(68.63)

74.94,
2.53

(78.24)

43.02,
2.36

(46.82)

45.48,
2.42

(49.42)

58.05,
2.5

(62.82)
58.28

EDA
9.45,
2.88

(15.29)

77.69,
3.69

(82.02)

84.47,
1.64

(86.7)

62.29,
1.25

(63.87)

72.17,
1.39

(74.21)

46.23,
3.95

(52.07)

47.69,
4.07

(51.6)

55.56,
1.79

(59.57)
56.95

BFTSSTop-K
33.18,
4.71

(38.29)

83.77,
0.81

(85.37)

84.68,
1.79

(86.47)

66.89,
1.19

(68.14)

76.59,
1.67

(78.82)

48.4,
2.9

(52.37)

51.18,
3.35

(56.05)

59.35,
1.63

(61.37)
63.01

BFTSSU-V
32.86,
5.13

(42.06)

83.8,
0.71

(84.65)

84.87,
1.94

(87.27)

66.25,
1.69

(69.32)

76.97,
0.99

(78.36)

48.97,
2.37

(52.24)

51.64,
2.91

(55.52)

59.03,
2.26

(62.45)
63.05

Table 5: Test Results (%) on BERT-base model in 300 data split settings. For each task, average, standard deviation
and maximum of the evaluation metric over ten random seeds have been reported in the tables. The format used is
average, standard deviation (maximum).
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Method CoLA STSB SST-2 QQP QNLI MNLI MNLI-m RTE Avg

Vanilla
40.90,
6.09

(45.63)

84.05,
1.54

(85.99)

86.37,
0.7

(87.61)

69.21,
1.31

(70.97)

79.64,
0.95

(80.98)

49.78,
3.45

(54.57)

52.63,
4.11

(57.94)

59.71,
2.55

(63.18)
65.28

RecAdam
43.81,
3.78

(49.95)

86.41,
0.72

(86.87)

87.47,
1.16

(89.56)

70.59,
0.74

(72.22)

80.72,
0.98

(82.06)

55.77,
3.47

(59.7)

58.63,
3.12

(62.36)

62.82,
2.94

(66.43)
68.28

Child-D
42.18,
3.46

(44.96)

84.95,
1.43

(86.39)

86.56,
0.96

(87.61)

69.27,
1.82

(71.87)

79.77,
1.22

(81.29)

53.64,
1.72

(57.52)

56.58,
1.87

(61.1)

62.09,
2.48

(66.79)
66.88

Child-F
41.02,
8.80

(45.0)

84.55,
1.43

(86.31)

86.92,
0.96

(87.84)

69.49,
1.82

(71.52)

79.55,
1.22

(81.05)

53.79,
1.72

(57.17)

56.64,
1.87

(59.12)

60.22,
2.48

(64.98)
66.52

Top-K-layer
43.93,

2.0
(47.6)

85.44,
1.0

(86.69)

86.94,
1.24

(89.11)

70.69,
1.08

(72.09)

80.33,
0.67

(81.44)

57.5,
3.17

(60.44)

60.55,
3.05

(63.11)

62.35,
2.61

(65.7)
68.47

Mixout
45.87,
1.75

(48.49)

86.32,
1.17

(87.61)

86.88,
0.87

(88.42)

68.16,
3.15

(71.61)

80.22,
0.89

(81.27)

58.31,
1.88

(61.88)

60.88,
1.72

(64.27)

63.72,
2.0

(67.15)
68.80

EDA
18.75,
5.36

(27.09)

80.95,
1.62

(83.1)

87.27,
0.69

(88.3)

66.14,
1.05

(68.07)

76.95,
1.2

(78.69)

56.96,
2.14

(60.09)

58.64,
2.03

(61.44)

57.69,
1.52

(60.29)
62.92

BFTSSTop-K
44.33,
4.03

(49.66)

87.05,
0.37

(87.35)

87.9,
1.15

(89.68)

71.33,
0.51

(72.05)

81.08,
0.93

(81.97)

61.69,
1.79

(63.64)

63.99,
1.71

(66.02)

65.05,
2.23

(69.31)
70.30

BFTSSU-V
43.77,
2.35

(46.33)

87.18,
0.32

(87.57)

87.66,
0.99

(89.11)

71.15,
0.57

(72.08)

81.3,
0.41

(82.17)

61.46,
1.76

(63.84)

63.97,
1.6

(66.47)

65.05,
2.27

(67.87)
70.19

Table 6: Test Results (%) on BERT-base model in 1000 data split settings. For each task, average, standard
deviation and maximum of the evaluation metric over ten random seeds have been reported in the tables. The
format used is average, standard deviation (maximum).

Method CoLA STSB SST-2 QQP QNLI MNLI MNLI-m RTE Avg

Vanilla
8.72,
14.33

(37.75)

51.93,
13.06

(68.51)

58.42,
9.64

(78.33)

9.72,
18.35

(46.86)

61.83,
8.11

(70.05)

33.94,
1.96

(36.33)

33.82,
1.63

(35.81)

51.19,
3.63

(56.32)
38.70

RecAdam
1.48,
2.62

(4.64)

44.85,
13.61

(57.33)

53.56,
2.15

(57.34)

11.98,
23.16

(55.86)

57.02,
4.67

(64.23)

35.92,
2.84

(38.09)

35.71,
3.04

(38.91)

51.7,
2.33

(53.79)
36.53

Child-D
14.62,
11.18

(36.65)

70.62,
14.35

(80.45)

69.69,
8.1

(81.19)

29.64,
28.75
(66.6)

68.09,
5.95

(73.99)

37.91,
3.86

(42.93)

38.78,
3.89

(43.86)

55.09,
4.04

(61.73)
48.05

Child-F
14.42,
10.21

(27.59)

64.23,
16.7

(78.93)

68.58,
8.2

(81.08)

34.19,
25.27

(62.46)

67.8,
5.29

(74.08)

37.69,
2.52

(40.57)

38.41,
3.05

(42.39)

54.8,
4.15

(61.73)
47.51

Top-K-layer
24.67,
15.52

(40.53)

71.88,
6.17

(77.96)

77.13,
7.59

(88.65)

43.79,
25.06

(65.52)

65.09,
6.21

(72.74)

38.17,
3.0

(43.61)

39.28,
4.0

(47.08)

54.84,
4.92

(62.45)
51.86

Mixout
23.37,
13.66

(43.49)

74.03,
9.0

(82.85)

80.22,
8.16

(87.16)

45.21,
15.06

(62.38)

68.56,
5.83

(77.7)

38.2,
3.77

(44.78)

38.82,
3.81

(45.16)

55.42,
4.64

(63.9)
52.98

EDA
7.15,
11.22

(32.74)

71.64,
8.0

(81.33)

82.29,
5.72

(88.76)

53.92,
19.03

(62.52)

70.43,
3.14

(74.04)

41.01,
4.37

(47.35)

41.61,
5.03

(48.6)

53.9,
3.02

(59.21)
52.75

BFTSSTop-K
28.21,
8.83

(38.83)

76.19,
3.48

(81.34)

85.55,
1.81

(87.96)

60.0,
5.9

(68.37)

73.11,
3.91

(77.96)

41.64,
2.01

(44.83)

42.68,
2.42

(45.71)

56.57,
3.5

(63.18)
58.00

BFTSSU-V
30.48,
8.22

(44.52)

76.62,
2.16

(79.55)

87.31,
1.7

(89.68)

58.35,
4.78

(63.24)

71.98,
1.85

(74.35)

40.72,
2.14

(43.76)

41.88,
4.04

(50.16)

57.44,
3.93

(67.51)
58.10

Table 7: Test Results (%) on BERT-large model in 100 data split settings. For each task, average, standard deviation
and maximum of the evaluation metric over ten random seeds have been reported in the tables. The format used is
average, standard deviation (maximum).
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Method CoLA STSB SST-2 QQP QNLI MNLI MNLI-m RTE Avg

Vanilla
41.57,
4.97

(48.7)

75.01,
14.67

(84.06)

83.88,
6.89

(90.37)

40.81,
27.44

(67.27)

74.98,
1.67

(77.54)

39.07,
5.19

(48.02)

40.51,
5.98

(50.34)

58.59,
4.16

(64.62)
56.80

RecAdam
35.42,
9.07

(46.58)

81.05,
1.08

(82.3)

86.03,
1.96

(89.33)

39.19,
29.21

(68.25)

74.93,
3.22

(79.97)

40.13,
2.8

(43.5)

41.27,
5.21

(48.68)

57.36,
4.02

(64.26)
56.92

Child-D
42.32,
3.87

(47.92)

83.19,
2.8

(86.73)

88.75,
1.37

(90.25)

64.39,
3.16

(69.27)

77.53,
4.41

(80.62)

47.27,
5.19

(54.06)

49.68,
6.17

(57.66)

59.96,
3.25

(63.9)
64.14

Child-F
38.7,
7.13

(46.09)

82.55,
2.53

(85.33)

88.76,
1.23

(90.48)

63.27,
6.95

(69.81)

76.0,
2.5

(79.22)

46.62,
5.26

(55.43)

49.08,
5.88

(57.83)

59.42,
3.37

(63.9)
63.05

Top-K-layer
44.64,
4.39

(54.52)

83.48,
2.12

(85.7)

89.24,
0.97

(90.6)

65.08,
5.03

(70.46)

79.11,
1.38

(81.05)

48.01,
4.45

(54.99)

50.24,
5.22

(58.28)

59.75,
3.97

(65.34)
64.94

Mixout
43.46,
5.15

(49.96)

84.75,
2.2

(86.98)

88.67,
0.65

(89.68)

62.97,
7.88

(70.48)

77.37,
2.24

(82.3)

47.33,
7.12

(57.65)

49.12,
8.25

(61.38)

60.11,
2.43

(63.18)
64.22

EDA
13.95,
3.94

(18.07)

81.24,
1.78

(84.65)

89.21,
0.95

(90.48)

63.08,
5.04

(67.34)

74.3,
2.58

(78.13)

51.06,
2.74

(55.08)

53.11,
2.94

(57.5)

55.16,
3.42

(61.01)
60.14

BFTSSTop-K
44.57,
3.28

(49.89)

84.71,
0.9

(86.18)

88.99,
1.0

(90.25)

66.01,
2.74

(70.19)

78.47,
1.57

(81.07)

53.17,
4.65

(57.18)

55.18,
4.86

(59.64)

61.16,
1.59

(63.54)
66.53

BFTSSU-V
44.4,
3.83

(51.31)

85.2,
1.07

(86.84)

89.23,
0.8

(90.83)

66.58,
1.92

(69.65)

78.48,
1.83

(80.62)

52.75,
5.8

(58.63)

55.09,
2.85

(58.93)

60.25,
2.16

(64.98)
66.50

Table 8: Test Results (%) on BERT-large model in 300 data split settings. For each task, average, standard deviation
and maximum of the evaluation metric over ten random seeds have been reported in the tables. The format used is
average, standard deviation (maximum).

Method CoLA STSB SST-2 QQP QNLI MNLI MNLI-m RTE Avg

Vanilla 47.48
(-)

81.86
(-)

90.25
(-)

71.30
(-)

81.68
(-)

55.72
(-)

61.09
(67.44)

65.09
(-) 69.31

RecAdam
50.66,
2.15

(53.18)

86.97,
1.3

(88.38)

90.28,
0.5

(90.94)

71.46,
1.59

(73.51)

82.74,
1.11

(84.7)

56.41,
4.25

(60.58)

58.72,
4.32

(62.85)

64.04,
2.25

(67.51)
70.16

Child-D 50.37
(-)

82.76
(-)

90.39
(-)

71.79
(-)

83.42
(-)

62.93
(-)

61.24
(67.04)

68.09
(-) 71.37

Child-F 48.44
(-)

82.25
(-)

90.34
(-)

72.15
(-)

83.09
(-)

62.47
(-)

57.19
(65.92)

65.52
(-) 70.18

Top-K-layer
51.73,
2.59

(55.58)

86.95,
1.67

(88.92)

90.56,
0.98

(91.74)

72.66,
1.07

(74.07)

83.4,
0.66

(84.5)

61.13,
3.54

(65.9)

63.55,
3.47

(68.28)

66.39,
3.92

(70.76)
72.05

Mixout
53.52,
2.06

(55.67)

87.91,
0.54

(88.77)

90.4,
0.64

(91.63)

70.75,
2.0

(73.49)

83.03,
1.59

(84.51)

62.06,
3.04

(65.86)

64.92,
3.1

(68.82)

65.92,
2.46

(69.68)
72.32

EDA
22.79,
13.75

(36.45)

85.61,
1.31

(87.14)

90.53,
0.78

(91.97)

68.6,
3.45

(72.24)

79.86,
2.9

(83.14)

56.41,
9.35

(64.02)

58.33,
10.1

(66.52)

58.23,
4.29

(62.45)
65.04

BFTSSTop-K
51.11,
3.67

(55.48)

88.98,
0.5

(89.56)

90.41,
0.3

(90.94)

72.62,
0.76

(73.68)

83.28,
0.68

(84.46)

63.65,
2.61

(67.52)

66.04,
1.73

(68.47)

66.79,
1.48

(68.95)
72.86

BFTSSU-V
51.45,
2.78

(54.95)

89.27,
0.33

(89.94)

90.76,
0.75

(91.63)

72.47,
0.98

(74.06)

83.23,
0.88

(84.39)

64.47,
3.67

(68.24)

66.37,
2.21

(68.39)

66.86,
2.65

(71.84)
73.11

Table 9: Test Results (%) on BERT-large model in 1000 data split settings. For each task, average, standard
deviation and maximum of the evaluation metric over ten random seeds have been reported in the tables. The
format used is average, standard deviation (maximum). The results for Vanilla, Child-D, and Child-F were taken
from the original paper (Xu et al., 2021). The paper only reported the mean of ten seeds.
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Method CoLA STSB SST-2 QQP QNLI MNLI MNLI-m RTE Avg

Vanilla
1.32,
2.9

(4.64)

22.49,
23.77

(50.44)

55.44,
4.98

(64.33)

13.0,
18.13

(46.46)

52.47,
11.88

(69.49)

33.71,
3.35

(39.35)

33.93,
3.6

(39.49)

52.56,
3.32

(55.96)
33.11

Random S Top-K
0.95,
2.0

(4.86)

43.12,
15.71
(69.8)

56.4,
5.5

(65.71)

31.29,
25.64

(63.43)

65.65,
5.08

(69.89)

35.01,
3.28

(40.45)

34.94,
3.65

(42.18)

52.96,
2.58

(57.04)
40.04

Initialized S Top-K
1.99,
3.78

(10.3)

52.45,
9.4

(69.0)

63.28,
7.11

(73.17)

30.54,
27.53

(59.87)

65.31,
9.74

(72.93)

35.76,
4.25

(40.57)

36.8,
5.39

(42.95)

52.49,
2.08

(54.51)
42.33

BFTSSRandomTop-K
4.65,
4.16

(14.97)

73.42,
3.85

(78.04)

65.68,
6.23

(75.8)

62.99,
1.12

(64.48)

69.25,
1.05

(70.88)

38.27,
1.45

(41.28)

38.25,
2.45

(40.97)

52.92,
3.72

(56.32)
50.68

BFTSSTop-K
16.27,
8.19

(26.51)

78.29,
1.37

(80.47)

74.71,
6.52

(83.03)

57.75,
3.6

(63.5)

71.7,
2.13

(74.81)

39.98,
2.26

(43.1)

41.66,
2.61

(45.3)

56.03,
1.9

(58.48)
54.55

Table 10: Impact of initialization of S and using BFTSS(Top-K) on BERT-base at 100 data split settings. For each
task, average, standard deviation and maximum of the evaluation metric over ten random seeds have been reported
in the tables. The format used is average, standard deviation (maximum).

Method CoLA STSB SST-2 QQP QNLI MNLI MNLI-m RTE Avg

Vanilla
8.72,
14.33

(37.75)

51.93,
13.06

(68.51)

58.42,
9.64

(78.33)

9.72,
18.35

(46.86)

61.83,
8.11

(70.05)

33.94,
1.96

(36.33)

33.82,
1.63

(35.81)

51.19,
3.63

(56.32)
38.70

Random S Top-K
6.31,
5.3

(16.75)

62.4,
13.44

(75.49)

61.72,
9.73

(76.83)

36.71,
31.27
(64.6)

59.54,
7.91

(73.55)

35.5,
3.16

(39.87)

35.77,
3.5

(41.12)

52.27,
4.4

(58.12)
43.78

Initialized S Top-K
19.16,
12.01

(36.34)

68.71,
13.74

(78.67)

80.38,
7.73

(87.27)

39.57,
23.47
(60.9)

66.79,
7.0

(72.69)

37.9,
2.39

(40.64)

39.02,
4.14

(44.59)

56.53,
4.14

(63.54)
51.01

BFTSSRandomTop-K
9.68,
10.43

(27.52)

72.11,
4.28

(77.97)

67.63,
12.15

(83.26)

58.16,
5.0

(63.51)

67.98,
4.17

(72.8)

39.43,
3.14

(43.21)

40.2,
3.65

(44.28)

53.83,
4.53

(64.26)
51.13

BFTSSTop-K
28.21,
8.83

(38.83)

76.19,
3.48

(81.34)

85.55,
1.81

(87.96)

60.0,
5.9

(68.37)

73.11,
3.91

(77.96)

41.64,
2.01

(44.83)

42.68,
2.42

(45.71)

56.57,
3.5

(63.18)
58.00

Table 11: Impact of initialization of S and using BFTSS(Top-K) on BERT-large at 100 data split settings. For each
task, average, standard deviation and maximum of the evaluation metric over ten random seeds have been reported
in the tables. The format used is average, standard deviation (maximum).

Method CoLA STSB SST-2 QQP QNLI MNLI MNLI-m RTE Avg

Vanilla
1.32,
2.9

(4.64)

22.49,
23.77

(50.44)

55.44,
4.98

(64.33)

13.0,
18.13

(46.46)

52.47,
11.88

(69.49)

33.71,
3.35

(39.35)

33.93,
3.6

(39.49)

52.56,
3.32

(55.96)
33.11

Random S U-V
0.51,
2.52

(4.64)

-16.31,
53.34

(55.63)

51.23,
5.33

(62.39)

28.19,
29.72

(58.16)

51.36,
7.12

(67.05)

33.68,
3.08

(38.7)

33.59,
3.02

(38.74)

52.17,
2.71

(55.23)
29.3

Initialized S U-V
2.34,
4.73

(13.68)

52.45,
8.97

(68.62)

63.23,
7.0

(77.06)

31.63,
27.98

(61.44)

65.45,
9.16

(71.54)

36.01,
4.51

(40.87)

36.81,
5.47

(43.1)

52.13,
2.58

(55.23)
42.51

BFTSSRandom U-V
1.39,
2.02

(4.64)

37.29,
26.61
(59.0)

52.61,
5.94

(63.88)

33.26,
28.61

(56.49)

52.64,
4.56

(63.43)

34.27,
2.81

(39.29)

34.47,
3.14

(40.93)

50.18,
4.91

(55.96)
37.01

BFTSSU-V
15.84,
8.86

(26.58)

78.56,
1.32

(80.93)

75.54,
4.51

(81.65)

58.37,
3.8

(63.94)

71.84,
2.04

(73.93)

39.98,
2.17

(42.52)

41.72,
2.48

(44.84)

55.96,
2.6

(60.29)
54.72

Table 12: Impact of initialization of S and using BFTSS(U-V) on BERT-base at 100 data split settings. For each
task, average, standard deviation and maximum of the evaluation metric over ten random seeds have been reported
in the tables. The format used is average, standard deviation (maximum).
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Method CoLA STSB SST-2 QQP QNLI MNLI MNLI-m RTE Avg

Vanilla
8.72,
14.33

(37.75)

51.93,
13.06

(68.51)

58.42,
9.64

(78.33)

9.72,
18.35

(46.86)

61.83,
8.11

(70.05)

33.94,
1.96

(36.33)

33.82,
1.63

(35.81)

51.19,
3.63

(56.32)
38.70

Random S U-V
1.14,
3.03

(6.56)

-14.66,
35.26
(29.0)

50.5,
1.35

(53.56)

22.42,
28.75

(57.26)

52.59,
3.82

(61.47)

32.99,
1.82

(36.94)

33.01,
1.49

(36.07)

49.57,
3.03

(53.07)
28.45

Initialized S U-V
18.82,
10.59

(31.91)

72.48,
7.79

(81.19)

82.49,
4.32

(87.61)

46.12,
18.53
(66.9)

66.71,
7.48

(73.57)

38.38,
2.79

(43.8)

39.18,
3.64

(43.5)

55.52,
3.92

(61.37)
52.46

BFTSSRandom U-V
0.71,
3.28

(5.42)

7.25,
38.19

(53.02)

50.88,
2.18

(55.62)

38.8,
26.77

(57.17)

51.4,
5.45

(65.07)

34.14,
2.38

(38.32)

34.22,
2.76

(40.5)

51.05,
3.38

(55.23)
33.56

BFTSSU-V
30.48,
8.22

(44.52)

76.62,
2.16

(79.55)

87.31,
1.7

(89.68)

58.35,
4.78

(63.24)

71.98,
1.85

(74.35)

40.72,
2.14

(43.76)

41.88,
4.04

(50.16)

57.44,
3.93

(67.51)
58.10

Table 13: Impact of initialization of S and using BFTSS(U-V) on BERT-large at 100 data split settings. For each
task, average, standard deviation and maximum of the evaluation metric over ten random seeds have been reported
in the tables. The format used is average, standard deviation (maximum).

Dataset Vanilla S-W Top-K U-V

CoLA 2.05
(7.38)

16.27
(26.51)

15.84
(26.58)

STSB 55.12
(72.12)

78.29
(80.47)

78.56
(80.93)

SST-2 63.62
(72.36)

74.71
(83.03)

75.54
(81.65)

QQP 16.02
(58.16)

57.75
(63.5)

58.37
(63.94)

QNLI 59.29
(71.77)

71.70
(74.81)

71.84
(73.93)

MNLI 35.60
(40.60)

39.98
(43.1)

39.98
(42.52)

MNLI-m 35.46
(43.27)

41.66
(45.3)

41.72
(44.84)

RTE 51.59
(53.79)

56.03
(58.48)

55.96
(60.29)

Avg 39.84 54.55 54.72

(a) Comparison of Vanilla S −W with our approaches, with
BERT-base model, on 100 data split settings.

Dataset Vanilla S-W Top-K U-V

CoLA 16.29
(35.16)

28.21
(38.83)

30.48
(44.52)

STSB 70.52
(80.68)

76.19
(81.34)

76.62
(79.55)

SST-2 79.02
(86.24)

85.55
(87.96)

87.31
(89.68)

QQP 34.58
(63.55)

60.00
(68.37)

58.35
(63.24)

QNLI 69.24
(75.65)

73.11
(77.96)

71.98
(74.35)

MNLI 38.15
(41.17)

41.64
(44.83)

40.72
(43.76)

MNLI-m 39.46
(43.64)

42.68
(45.71)

41.88
(50.16)

RTE 53.21
(64.26)

56.57
(63.18)

57.44
(67.51)

Avg 50.06 58.00 58.10

(b) Comparison of Vanilla S −W with our approaches, with
BERT-large model, on 100 data split settings.

Table 14: Results for the Vanilla S-W experiments. For each task, average, and maximum of the evaluation metric
over ten random seeds have been reported in the tables.
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