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Abstract

Large-scale pre-trained models (PTMs) show
great zero-shot capabilities. In this paper, we
study how to leverage them for zero-shot visual
question answering (VQA). Our approach is
motivated by a few observations. First, VQA
questions often require multiple steps of reason-
ing, which is still a capability that most PTMs
lack. Second, different steps in VQA reasoning
chains require different skills such as object
detection and relational reasoning, but a single
PTM may not possess all these skills. Third, re-
cent work on zero-shot VQA does not explicitly
consider multi-step reasoning chains, which
makes them less interpretable compared with
a decomposition-based approach. We propose
a modularized zero-shot network that explic-
itly decomposes questions into sub reasoning
steps and is highly interpretable. We convert
sub reasoning tasks to acceptable objectives of
PTMs and assign tasks to proper PTMs with-
out any adaptation. Our experiments on two
VQA benchmarks under the zero-shot setting
demonstrate the effectiveness of our method
and better interpretability compared with sev-
eral baselines.

1 Introduction

Visual Question Answering (VQA), the task of
answering textual queries based on information
contained in an image, is a multimodal task that
requires comprehension and reasoning of both vi-
sual and textual content (Agrawal et al., 2017;
Hudson and Manning, 2019). Most previous
work on VQA either trains VQA models from
scratch (e.g., Fukui et al. (2016); Anderson et al.
(2018)) or fine-tunes pre-trained vision-language
models for VQA (e.g., Li et al. (2019); Lu et al.
(2019)). Thus, they rely heavily on labeled VQA
data, which are expensive to obtain. VQA models
based on supervised learning are also hard to gen-
eralize to new domains or new datasets (Xu et al.,
2020; Chao et al., 2018; Zhang et al., 2021).

Recently, large-scale pre-trained models (PTMs)
have demonstrated strong transferability to dif-
ferent downstream tasks under zero-shot settings,
i.e., without any training data for the downstream
tasks (Brown et al., 2020; Radford et al., 2021).
With increased pre-training data size, these mod-
els show strong zero-shot performance on various
down-stream tasks, such as image classification and
face detection with the CLIP model (Radford et al.,
2021) and sentiment analysis and commonsense
question answering with the GPT-3 model (Brown
et al., 2020). However, few studies have focused
on zero-shot VQA from pre-trained models.

Despite the power of these PTMs, it is not
straightforward to directly apply them to VQA un-
der zero-shot settings, because they are not pre-
trained with the same objective as VQA. Some
recent work converts images to tokens that pre-
trained language models can understand so that
VQA can be converted to text-based QA (Yang
et al., 2022b; Tiong et al., 2022; Tsimpoukelli et al.,
2021; Jin et al., 2022; Dai et al., 2022). However,
this approach requires either a strong pre-trained
image captioning model that can capture sufficient
visual details or auxiliary training to obtain such a
captioning model. Some other work converts VQA
into a multimodal matching problem so that pre-
trained vision-language models (PT-VLMs) such
as CLIP can be used (Song et al., 2022; Shen et al.,
2022). However, complex VQA questions such as
those found in the GQA dataset (Hudson and Man-
ning, 2019) often require spatial reasoning and/or
multi-step reasoning, which PT-VLMs may not be
strong at (Subramanian et al., 2022; Thrush et al.,
2022).

VQA questions can be complicated and often
require different reasoning steps such as object
detection and spatial reasoning, as the example
question in Figure 1 illustrates. Previously, people
proposed Neural Module Networks (Andreas et al.,
2016; Hu et al., 2017), which are modularized net-
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Figure 1: An overview of our proposed method. Instead of training modules in NMN, we propose a modularized
zero-shot VQA method leveraging pre-trained models to perform different reasoning tasks.

works where each pre-defined module performs a
specific reasoning task. These pre-defined mod-
ules are trained end-to-end from labeled VQA data.
Motivated by the idea of modularization, in this
paper, we propose a modularized zero-shot net-
work for VQA (Mod-Zero-VQA) by decomposing
questions into sub-tasks and assigning appropriate
sub-tasks to PTMs without any adaptation. Given a
question, we first parse the question into basic rea-
soning steps explicitly. These reasoning steps will
then be reconfigured and mapped to different PTMs
based on a set of rules we define. Specifically,
we consider the following PTMs: OWL (Minderer
et al., 2022) as the object detector, MDETR (Ka-
math et al., 2021) for reference expression localiza-
tion (including several skills such as relational and
spatial reasoning) and CLIP (Radford et al., 2021)
as the answer generator for open-ended questions.
Considering the limited capabilities of current pre-
trained vision-language models in spatial relation
understanding (Subramanian et al., 2022), we also
define simple and general heuristics to aid spatial
reasoning. Note that only when we decompose
questions and reasoning chains step by step can
we insert human heuristics for spatial reasoning,
because we have the intermediate outputs such as
objects’ bounding boxes from previous steps.

We evaluate the proposed method on the GQA
dataset (Hudson and Manning, 2019) where ques-
tions are compositional and require multi-step rea-
soning. The experiment result shows that the pro-
posed model surpasses the baselines significantly
on GQA, with near 13% of relative improvement
over the strongest baseline (from 41.9 to 47.3). The
results confirm the benefit of modualarization when
using PTMs for zero-shot VQA. In addition, our
method is interpretable because of the explicit rea-
soning steps generated.

The contributions of our work can be summa-
rized as follows: (1) We propose a novel mod-
ularized zero-shot VQA method that utilizes dif-
ferent pre-trained models for different reasoning
steps; (2) We design rules to map different VQA
reasoning steps to suitable PTMs so that we can
leverage these PTMs without any adaptation; 3)
Experiment results show the effectiveness of the
proposed method, especially when questions con-
sist of multiple steps of reasoning.

2 Background

Task Definition. Given an image I and a ques-
tion Q, a VQA system is expected to return an
answer a. Traditional fully supervised VQA relies
on a training set consisting of (image, question, an-
swer) triplets. For zero-shot VQA, no such training
data is given. However, in this paper we assume
that we can use pre-trained models (PTMs) to help
us with zero-shot VQA.

Existing Zero-shot VQA Methods. Work on
zero-shot VQA is very limited. We can orga-
nize existing work into the following categories.
One line of work leverages the question answering
capability in pre-trained language model (LMs).
Some of them adopt prefix language modeling with
weakly-supervised data other than VQA data (i.e.,
image-text pairs) to convert visual information into
discrete tokens (prefix) that LMs can understand.
Frozen (Tsimpoukelli et al., 2021), VLKD (Dai
et al., 2022) and FewVLM (Jin et al., 2022) fall
under this category. Some directly convert VQA
images into textual descriptions so that the task of
VQA changes to text-based QA and LMs can be ap-
plied. Methods in this category include PICa (Yang
et al., 2022b) and PnP-VQA (Tiong et al., 2022).
Recent work (Song et al., 2022; Shen et al., 2022)
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converts VQA to an image-text matching problem
and prompts the CLIP model (Radford et al., 2021),
a large-scale vision-language model pre-trained on
the image-text matching task. The prompts can be
either question irrelevant such as Quesion: [Ques];
Answer: [MASK] (QIP by Shen et al. (2022)) or
question-related by converting questions into a
masked statement (TAC-P by Song et al. (2022)).

However, a limitation with these methods is that
several of them still require training, although the
training data is not in the form of VQA. Besides,
converting images to captions and leveraging text-
based QA may lose important visual details dur-
ing the caption generation step. The two methods
above using CLIP do not address the issue that
CLIP model lacks compositional and spatial rea-
soning abilities, which has been observed in previ-
ous work (Subramanian et al., 2022; Thrush et al.,
2022).

3 Modularized Zero-shot VQA

Our method is motivated by Neural Module Net-
work (NMN) based VQA, which decomposes ques-
tions into reasoning steps, where each module in
the NMN is pre-defined to perform a specific rea-
soning task. The idea allows us to select appropri-
ate pre-trained models to handle different reasoning
tasks in a question. Specifically, in NMN-based
VQA, we first manually define a set of reasoning
steps such as object detection and spatial reasoning,
each represented by a module. A question is then
explicitly decomposed and converted into a layout
of modules, which is an executable program show-
ing the reasoning chain to reach the final answer.
The top section of Figure 1 shows the layout corre-
sponding to the sample question. To train an NMN-
based VQA system, usually a layout generator is
separately built first, which either uses hand-crafted
rules over dependency parses of questions or is a
trained seq2seq model. Then, the parameters of
the various VQA modules are learned from VQA
training data.

For our work, we do not want to use VQA data
for training. But we observe that many modules in
NMN-based VQA can be supported by pre-trained
models that have already acquired the capabilities
needed by these modules. The key component of
our method is therefore to map a layout of modules
produced by traditional NMN-based VQA to a sim-
plified layout of zero-shot components that can be
implemented directly using pre-trained models.

3.1 Traditional VQA Modules

There is not any standard set of modules for VQA.
We largely adopt the design of modules introduced
by Hu et al. (2017) with some minor changes. We
assume that the image has been pre-processed and
N bounding boxes have been detected, each rep-
resented as an embedding vector, collectively de-
noted as V = (v1,v2, . . . ,vN ). An attention map
α is defined to be a distribution over the N bound-
ing boxes.

Table 1 lists the most important traditional VQA
modules that we will replace with pre-trained mod-
els. The full list of modules can be found in Table 7
in the appendices. It is worth explaining that be-
sides taking in V and α as either input or output,
many modules also take in the word embeddings of
some text description extracted from the question.
These text embeddings are arguments to control the
behaviors of the modules. For example, the Find
module’s objective is to locate an object among all
the bounding boxes given. The textual input gOBJ
is therefore the word embedding of the name of the
object to be found. Similarly, gRELA ,gATTR and
gQUERY are word embeddings for the description
of relation (e.g., to the left of ), attribute (e.g., red)
and aspect to query (e.g., querying name).

Module Inputs

Find V, gOBJ
Relocate α, V, gRELA
Filter α, V, gCONDI

Choose α1, α2, V, gRELA1 , gRELA2

Query α, V, gQUERY

Table 1: A subset of the modules in traditional NMN
that we replace with pre-trained models. Modules in
the first block output an attention map and those in the
second block generate an answer.

Traditionally, the parameters of the modules in
Table 1 need to be learned from VQA training data.
In other words, these modules’ underlying capabili-
ties such as object recognition and relational reason-
ing need to be acquired from VQA data. However,
we hypothesize that recently developed pre-trained
models may already have some of these capabili-
ties and can therefore directly equip these modules
with such capabilities. For example, the Find mod-
ule is mainly responsible for object recognition,
and previously the parameters of Find have to be
learned from scratch using VQA data. Now with
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a powerful pre-trained model such as OWL (Min-
derer et al., 2022) that can recognize a wide range
of objects, we can presumably directly use a model
like OWL to replace the traditional Find module.

3.2 Pre-trained Models

We utilize three pre-trained models that we believe
are highly relevant to VQA.

OWL. The Vision Transformer for Open-World
Localization (OWL) model (Minderer et al., 2022)
is a model for open-vocabulary object detection. It
is first pre-trained on large-scale image-text pairs
and then fine-tuned with added detection heads and
medium-sized detection data. Given the category
name of an object and an image, the model is able
to locate bounding box(es) in the image containing
the object together with a confidence score for each
box.

MDETR. The modulated DETER (DEtection
TRansformer) model (Kamath et al., 2021) is an
end-to-end detector that can detect an object in an
image conditioned on a piece of textual description
of the object such as its attributes and its relation
with another object in the image. The model is
pre-trained on image-text pairs with explicit align-
ment between phrases in the text and bounding
boxes of objects in the image. Given an image
and the description of an object, MDETR is able
to locate the bounding box(es) in the image con-
taining the object satisfying the description. Note
that different from OWL, MDETR is able to un-
derstand textual descriptions that may contain at-
tribute information and/or complex visual relations.
For example, given the description a man holding
a yellow cup is talking, MDETR will detect the
bounding box containing the man holding a yellow
cup in the given image, whereas OWL is not able
to use the description and will only recognize all
bounding boxes containing a man. Note that we
use the version of MDETR pre-trained on general
modulated detection without fine-tuning for any
downstream tasks.

CLIP. CLIP is a well-known large-scale vision-
language model by OpenAI. It is pre-trained with
400M image-caption pairs through contrastive
learning. Given an (image, text) pair, CLIP uses
its separate image encoder and text encoder to turn
the image and the text each into a vector, and the
cosine similarity between the two vectors directly
measures the compatibility of the two. Recent work

has shown that CLIP can be directly used for VQA
in a zero-shot setting, if we can come up with a set
of candidate answers and transform each (question,
answer) pair into a statement (Song et al., 2022).

3.3 Zero-shot NMN using Pre-trained Models

Based on the descriptions of the traditional VQA
modules in Section 3.1 and of the three PTMs we
consider in Section 3.2, we can see that there are
obvious connections between the capabilities de-
sired by the traditional modules and the capabilities
that these PTMs have already acquired.

However, the mapping between them is not triv-
ial. First of all, there is no simple one-to-one map-
ping from traditional VQA modules to the PTMs.
For example, the MDETR model can already per-
form multiple steps of reasoning to locate the de-
sired object, so it can be used to cover a sequence
of modules in an NMN layout. Second, there may
be capabilities required when applying PTMs but
not captured by modules defined in NMN-based
VQA. In particular, the MDETR model always as-
sumes that the object to be grounded exists in the
given image, but for those questions asking for the
existence of a specified object, we cannot directly
use MDETR.

To address these challenges, we carefully design
a mapping mechanism that can map an NMN-based
module layout to a simplified layout consisting of
a few zero-shot modules. Three of these zero-shot
modules (OWL, MDETR and CLIP) correspond exactly
to the three PTMs introduced earlier. The rest of the
zero-shot modules are defined by simple heuristic
rules. We list these zero-shot modules in Table 2.

Module Inputs Output

OWL I , OBJ B, s
MDETR I , SENT B, s
CLIP B, I , V Ans.

Count B Num.
Exist B, (ATTR/RELA) Yes/No
And Exist1, Exist2 Yes/No
Or Exist1, Exist2 Yes/No

Table 2: Zero-shot modules with either pre-trained mod-
els or heuristics. The I is the VQA image, V is the
answer vocabulary and B is the set of bounding boxes.

We now give a high-level summary of the map-
ping mechanism below. We first look at the last
module in the NMN layout. If the last module
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is one of Choose, Compare and Query, we know
that the input to this last module is either a single
attention map or two attention maps, where each
attention map essentially tries to capture an object
matching some textual descriptions. By tracing
the path in the layout leading to the attention map,
we choose either the zero-shot OWL module (when
the path has a length of 1) or the zero-shot MDETR
module (when the path is longer than 1 hop). This
is because when the path length equals to one, it
involves only object detection (corresponding to a
single Find module in the NMN layout for genera-
tion of the attention map). When the path length is
more than one, it indicates the generation of the at-
tention map in the NMN layout involves other mod-
ules such as Filter and Relocate, which calls for
the other abilities than object detection, such as
language understanding, attribute recognition and
relational reasoning. Different from NMN modules
which takes in image features and object embed-
dings to generate an attention map, our zero-shot
OWL and zero-shot MDETR takes in the raw image
and raw texts to locate (OBJ for OWL and SENT for
MDETR) to generate a set of detected bounding boxes
B = {bn}Nn=1 together with their confident scores
s ∈ RN , where bn ∈ R4 represents the relative po-
sition and size of the detected bounding box in the
image. We keep only the bounding box from either
OWL or MDETR with the highest confident score and
feed it to CLIP. We generate an answer by leverag-
ing the capability of multimodal matching of CLIP.
Specifically, given B, we generate an input image
(which we refer to as I in) by either masking regions
not containing those detected boxes (|B| = 2) or
cropping the image so that only the part contain-
ing the box remains (|B| = 1). If the final NMN
module is Choose, we generate a masked template
by question conversion as in (Song et al., 2022);
otherwise the masked template will be a simple
“[MASK]”. Then we match the image I in with the
template where the [MASK] token is replaced by
each of the answer candidates in V. We then select
the answer that, when placed inside the template,
best matches the image.

If the module is Exist, we trace back the path
leading to Exist to determine whether the module
is asking for the existence of an object, an attribute
or a relation. For object existence (e.g., is there
a car), we use the zero-shot OWL module. For at-
tribute existence and relation existence, we first
verify whether all mentioned nouns (objects) de-

tected by a POS tagger in the question exist with
the OWL module. Once we detect an object that
does not exist, the predicted answer will be no.
If all objects exist, then we generate correspond-
ing bounding boxes leveraging either OWL or MDETR
following the method described in the paragraph
above. For attribute existence, we generate a pair
of a positive and a negative descriptions: (ATTR,
not ATTR), e.g., (red, not red). We then find which
description aligns better with the cropped image
according to b. If the image aligns better with
the positive statement, then the answer will be yes;
otherwise, no. For relation existence, we generate
the masked image I in according to b1 and b2 (the
bounding boxes of the two objects whose relation is
to be checked) and a pair of opposite statements re-
garding the relation to be checked, following (Song
et al., 2022). For example, if the question is to
check whether A is holding B, the two opposite
statements will be A is holding B and A is not hold-
ing B. For both attribute and relation existence, we
use zero-shot CLIP for the alignment between the
input image and the statements. More details and
the work flows of existence-related questions are
provided in Appendix C.

If the module is Count, we directly count the
number of bounding boxes in B returned either
from OWL or MDETR. Finally, if the last module is
a logical AND or logical OR, we further trace to the
inputs of this module, which should both be an
Exist module. We then use the same mechanism
described above for Exist to process the module.
By receiving the outputs from the Exist modules,
logical operations will be applied to determine the
output. The deterministic logical operations can be
found in Appendix B.

3.4 Spatial Heuristics

As mentioned in (Subramanian et al., 2022), CLIP
is less capable of spatial reasoning. Using CLIP
for answer generation may not be enough when
it involves spatial relation understanding. Follow-
ing (Subramanian et al., 2022), we define simple
and general heuristics to perform certain types of
spatial reasoning. Note that only when we decom-
pose questions explicitly can we insert the spatial
heuristics into CLIP-based answer generation be-
cause we have the intermediate outputs from previ-
ous reasoning steps.

First of all, given the coordinates and the size
of a bounding box, we use manual rules (named
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as SpD) to decide its position in the image as left,
right, bottom, top. Besides, we define heuristics,
denoted as SpC, to solve spatial relations between
two bounding boxes (e.g., to the left of and to the
right of ).

Details of the implementation of the spatial rela-
tion solvers can be found in Appendix D.

4 Experiments

4.1 Dataset

We evaluate the proposed modularized zero-shot
VQA method on two benchmarks: GQA (Hud-
son and Manning, 2019) and VQAv2 (Goyal et al.,
2017). The GQA dataset consists of questions re-
quiring multi-step reasoning and various reasoning
skills. Around 94% of the questions require mul-
tiple reasoning steps. We regard it as the main
dataset to demonstrate the effectiveness of the pro-
posed method compared with the baselines. Com-
pared with GQA, questions on the VQAv2 dataset
require fewer reasoning steps and are of diverse
semantics. We use VQAv2 to show the validity
of our method in real-world VQA. We report stan-
dard accuracy for the GQA dataset while soft ac-
curacy (Goyal et al., 2017) for VQAv2 dataset as
there are multiple ground-truth answers. We report
the statistics of the datasets in Appendix E.

4.2 Implementation Details

We conduct experiments on NVIDIA Tesla V100
GPU. The thresholds for the OWL and the MDETR
model to filter out detected bounding boxes of low
confidente scores are set to be 0.2 and 0.7 respec-
tively. We follow (Song et al., 2022) for the gener-
ation of the answer vocabulary V for open-ended
questions. More details about answer vocabulary
generation can be found in Appendix G and more
information about experiment settings can be found
in Appendix G.

4.3 Main Results

Zero-shot VQA performance of the baselines men-
tioned in Section 2 and our proposed method are
summarized in Table 31.

First of all, we observe that the proposed Mod-
Zero-VQA method ismore effective on the GQA
dataset, which contains many multi-step reason-
ing questions. Mod-Zero-VQA clearly surpasses

1For FEWVLM and PNP-VQA model, we show their re-
ported performances on GQA test-dev, which should have
similar distributions as the validation split of GQA.

Method GQA VQA

Frozen - 29.5
VLKDViT-L/14 - 42.6
FEWVLMbase 27.0 43.4
FEWVLMlarge 29.3 47.7
PNP-VQA6M 34.6 54.3
PNP-VQA11B 41.9 63.3

QIP 35.9 21.4
TAP-C 36.3 38.7
Mod-Zero-VQA 47.3 41.0

Table 3: Experimental results on the GQA and VQA
datasets. The first block are models using the text-based
QA capability of LMs and the second blocks are models
incorporating CLIP.

all baselines on GQA. The results suggest that it
is effective under zero-shot settings to decompose
questions when questions are compositional and re-
quire several steps of reasoning to reach the answer.
Such decomposition allows us to take advantage
of the capabilities of different pre-trained models.
We also test the validity of the proposed method on
real-world VQAv2 dataset, where questions require
fewer reasoning steps and of diverse semantics.
We can see that our method still achieves the best
performance among zero-shot methods that utilize
CLIP. Although better performance is achieved by
several methods that utilize large language models
(as shown in the first block of Table 3), it is worth
pointing out that these methods often require cap-
tion generation as a pre-processing step, and this
step poses challenges. For example, PNP-VQA
generates 100 captions per question, which is la-
borious. There may also be redundancy because
many captions are irrelevant for question answer-
ing. Another advantage of our Mod-Zero-VQA
method over the other zero-shot baselines is that
our method offers high interpretability by showing
the explicit multi-step reasoning chain, which has
not been considered by any previous work. With
question decomposition, we can design modular-
ized networks and assign reasoning tasks to pre-
trained models (PTMs) which are more capable of
the tasks, and with more powerful pre-trained mod-
els coming out, our method can be easily extended
to utilize newer and more effective PTMs. Mean-
while, it is easier to pinpoint the weakest chain in
a system and insert human heuristics to aid these
modules.
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Detector Yes/No Qns Other Qns Overall

CLIP-FR 56.80 33.82 41.39
OWL 69.26 36.48 47.28
GT 76.48 38.06 50.72

Table 4: Performance of Mod-Zero-VQA with different
object detectors on GQA.

Method PT-VLMs Overall

QIP
CLIPViT-B/16 35.93
CLIPRes50×16 35.11
ALBEF 34.75

TAP-C
CLIPViT-B/16 36.32
CLIPRes50×16 38.16
ALBEF 38.36

Mod-Zero-VQA
CLIPViT-B/16 47.28
CLIPRes50×16 46.49
ALBEF 48.68

Table 5: Performance of the Mod-Zero-VQA model
with different PT-VLMs as the zero-shot CLIP for an-
swer generation on GQA.

4.4 Ablation Study

In our Mod-Zero-VQA method, PTMs play an im-
portant role. In this section, we show the perfor-
mance of Mod-Zero-VQA when we replace PTMs
listed in Section 3.2 with alternative models.
Replacing OWL: We tried replacing OWL with
other object detectors. First, we consider an object
detector combining Faster-RCNN (Ren et al., 2015)
and CLIP (CLIP-FR). Specifically, Faster-RCNN
is used to detect objects in an image and CLIP is
applied to classify each detected object. Second,
we use the ground-truth object annotations from
Visual Genome (Krishna et al., 2017) to replace
object detection results (GT), which serves as an
upper bound. Results of our zero-shot NMNs with
different object detectors are provided in Table 4.
We divide the questions into Yes/No (bindary) ques-
tions and other questions. We observe that the
quality of object detection is important to the per-
formance of zero-shot NMNs. Our model with
OWL surpasses the one with CLIP-FR, which has
poorer detection performance than OWL. We also
observe more substantial performance drop with
binary questions. We believe that this is because
these questions are mostly about the existence of
objects, so the object detection results affect the
VQA performance more. Using Mod-Zero-VQA
with the ground-truth object detection results would
further improve the performance, as shown in the

last row of Table 4. This suggests that when more
accurate object detection models are developed,
we can further improve the zero-shot VQA perfor-
mance with our approach.
Replacing CLIP: We show the performance of
replacing zero-shot CLIP (which is CLIPViT-B/16
by default in our experiments), with either
CLIPRes50×16 or ALBEF (Li et al., 2021), in Ta-
ble 5. Because QIP and TAC-P convert VQA to a
multi-modal matching task and both use PT-VLMs
as the answer generator, we also replace the orig-
inal CLIPViT-B/16 in these two baselines with the
other PTMs. We observe that Mod-Zero-VQA
gives stable performance regardless of the vision-
language model used, and it always outperforms
the baselines substantially. This indicates that these
PTMs can all be good substitutes for the zero-shot
CLIP module. Compared with the two CLIP mod-
els (i.e., with either ViT (Dosovitskiy et al., 2021)
or ResNet (He et al., 2016) as the visual backbone),
we also notice that using ALBEF (Li et al., 2021) as
the answer generator can enhance the performance.
To better understand the advantage of using ALBEF
over CLIP, we provide more detailed performance
in Table 9 in Appendix H. ALBEF mostly benefits
the proposed method in the Query type of ques-
tions, which usually ask about objects, attributes
and relations. Consistent with (Zhao et al., 2022),
end-to-end models (i.e., ALBEF in this case) per-
form better than dual-encoder models (i.e., CLIP
in this case) in vision understanding tasks on aver-
age. A future direction may be to select the best
pre-trained model per question.

4.5 Out-of-Domain Generalization

Because our Mod-Zero-VQA method is not trained
on any domain-specific VQA data but rather uti-
lizes pre-trained models that are supposedly trained
on data from a wide range of domains, we suspect
that our Mod-Zero-VQA method is more robust
across different domains compared with VQA mod-
els trained on specific domains and applied in cross-
domain settings. We therefore also compare our
Mod-Zero-VQA with fully-supervised models in
the Out-of-Domain Generalization (OOD) setting.
Specifically, we consider an OOD setting where
test images are related to scenes not observed dur-
ing training. We first identify a set of scene-related
objects and restrict all training images to only those
that do not contain these objects. For example, in
the Indoor OOD setting, none of the training im-
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Method Indoor Food Street

BUTD 39.27 32.28 35.96
NMNs 39.45 32.47 36.05
VilBert 39.87 32.12 36.68
VisualBert 41.14 33.47 38.51
ALBEF 45.55 38.87 41.60

Mod-Zero-VQA 48.86 47.80 49.54

Table 6: Comparison between our Mod-Zero-VQA
method and fully-supervised VQA models under the
out-of-domain setting.

ages should contain sofa, bed or any of the other ob-
jects that we have identified to be related to Indoor
scenes. To build fully-supervised VQA models
for comparison, we consider (1) BUTD (Anderson
et al., 2018), a classic two-stream VQA models,
(2) traditional NMNs (Andreas et al., 2016), and
(3) finetuned pre-trained vision-language models,
including VilBert (Lu et al., 2019), VisualBert (Li
et al., 2019) and ALBEF (Li et al., 2021).

The results are shown in Table 6. We can see
from the table that for those supervised VQA mod-
els, when they are trained on images with different
scenes, their performance on the target domain is
clearly lower than our Mod-Zero-VQA. Further-
more, our Mod-Zero-VQA method achieves steady
performance across different scenes, whereas the
supervised VQA models give fluctuated perfor-
mance in different scenes. This demonstrates the
robustness of our proposed method.

4.6 Case Study

As a case study, we visualize the outputs of the rea-
soning steps from the proposed method and com-
pare the prediction of the proposed method with
those of QIP and TAC-P, which also leverage CLIP
as the answer generator. We show two example
questions and the outputs in Figure 2. Both ques-
tions require multiple reasoning steps.

We can see that our method gives the correct
predictions while the two other methods answer
wrongly. We can also see that by decomposing
the questions, our method assigns each sub rea-
soning task to a pre-trained model capable of the
task (i.e., MDETR for reference expression local-
ization and OWL for object detection). With ques-
tion decomposition, we can also better pinpoint
the weaknesses of pre-trained models and insert
human knowledge by defining simple but general
heuristics (e.g., adding spatial heuristics to zero-
shot CLIP and defining logical operations). More

Question: Is the dog to the left or to the right of the person that holds the cup?

Reason: OWL(dog) -- MDETR(person holding cup) -- SpC([1], [2], [left,right])

Answer: Left QIP: Right TAC-P: Right
1

0.58

2

0.99

Question: Are there both trains and doors in the picture?

Reason: OWL(doors) -- Exist([1]) -- OWL(trains) -- Exist([1]) -- And([2], [4])

Answer: Yes QIP: No TAC-P: No

Yes

1 2 3

Yes

40.78

0.22

0.26

0.27

Figure 2: Visualization of intermediate outputs from
reasoning steps of the Mod-Zero-VQA model.

examples with visualization are provided in Ap-
pendix G.

5 Related Work

5.1 Visual question answering

Although great progress has been made in the su-
pervised VQA setting (Li et al., 2019; Lu et al.,
2019; Li et al., 2022, 2021), few studies have ex-
plored the zero-shot VQA setting. One line of
work converts VQA to text-based QA so that lan-
guage models (LMs) can be applied. Some of
them require auxiliary training though not with
VQA data (Dai et al., 2022; Jin et al., 2022; Tsim-
poukelli et al., 2021). Some suffer from insufficient
visual details (Yang et al., 2022b) or laborious gen-
eration of irrelevant captions (Tiong et al., 2022).
Others (Shen et al., 2022; Song et al., 2022) con-
vert VQA to multimodal matching and leverage
CLIP (Radford et al., 2021). However, CLIP is
limited when compositional reasoning and spatial
reasoning are required (Thrush et al., 2022; Sub-
ramanian et al., 2022). In this work, we propose
to decompose questions and propose a modular-
ized zero-shot VQA method by assigning reason-
ing tasks to proper pre-trained models without any
adaptation.

5.2 Zero-shot applications of pre-trained
models

Models pre-trained on a large corpus have strong
zero-shot transferability when performing down-
stream tasks whose objectives are similar to the
pre-training objectives of these models. For in-
stance, GPT-3 (Brown et al., 2020) is powerful for
zero-shot QA by treating the QA as a text genera-
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tion problem. CLIP (Radford et al., 2021) demon-
strates good zero-shot image recognition capability
by treating the classification task as multimodal
matching. For multimodal QA tasks, LMs can be
applied once information from other modalities are
translated to tokens LMs understand (Tiong et al.,
2022; Yang et al., 2022a). In our work, we de-
compose VQA questions into sub-reasoning tasks
and assign sub-tasks to corresponding pre-trained
models whose pre-training objectives match the
sub-tasks.

6 Conclusion and Future Work

In this work, we propose a modularized zero-shot
VQA method, motivated by the idea of Neural Mod-
ule Network (NMN). Instead of training modules
in NMN with VQA data, we decompose questions
into reasoning tasks explicitly, leverage pre-trained
models and assign proper reasoning tasks to them.
Experiments show that our model is powerful on
questions requiring multi-step reasoning and appli-
cable for real-world VQA. Besides, the proposed
model is highly interpretable, which helps to pin-
point weaknesses of a VQA system, making it eas-
ier to improve a system. Our model highlights a
future direction of leveraging pre-trained models
for other complicated tasks requiring multiple rea-
soning capabilities.

Limitations

In this section, we discuss few limitations of the
proposed method and point out future directions
to improve the model. First, our method needs
to decompose questions into a symbolic represen-
tation, but such representations are hard for hu-
mans to comprehend, and therefore this decompo-
sition mechanism is hard to be trained with human
annotation. A promising direction is to leverage
pre-trained language models such as ChatGPT 2

to automate this decomposition step, leveraging
ChatGPT’s internal knowledge of decomposing a
complex question into sub-questions. Second, the
execution of the zero-shot NMNs is conducted in a
deterministic manner, leading to high risks of error
propagation if the reasoning chain gets longer. In
the future, we can consider a softer way of reason-
ing over the image with pre-trained models.

2https://openai.com/blog/chatgpt/
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A Modules in VQA

We summarize all modules in traditional NMNs
for VQA (Hu et al., 2017; Gupta et al., 2020; Chen
et al., 2021) in Table 7.

B Logical Operations

In this section we describe the logical modules And
and Or. Both of them receive outputs from two
zero-shot Exist modules. For the And module, if
both outputs are yes, it outputs yes; otherwise, it
outputs no. For the Or module, if both outputs are
no, it outputs no; otherwise, it outputs yes. The
logical operators are deterministic.

C Existence Questions

As mentioned briefly in Section 3.3, for questions
verifying the existence of something, according to
the NMN layout, we classify these questions into
three types: verifying existence of objects, of at-
tributes, and of relations. For the verification of ob-
ject existence, we directly apply the zero-shot OWL.
For both attribute and relation verification ques-
tions, we first make sure all objects mentioned in
the question exist with the help of OWL. If any men-
tioned objects do not exist, the predicted answer
will be No, as illustrated in Figure 3. If the objects
exist, we leverage either zero-shot OWL or MDETR
to locate at objects of interests and verify the at-
tributes and relations, with the utilization of the
CLIP module. Examples are provided in Figure 4
(for attribute verification) and Figure 5 (for relation
verification). We use CLIP for binary matching to
select whether the attribute/relation exists. When
multiple attributes/relations are to be verified, only
when all attributes/relations exist will the predicted
answer be Yes; otherwise, the prediction is No. For
instance, the third example in Figure 4 has a dark
brown table, but the table is not glass, so the third
step outputs no. The final predicted answer to the
question is therefore no.

D Detailed Implementation for Spatial
Heuristics

In this section, we give the mathematical definitions
of the spatial heuristics. The input bounding box
is denoted as b = (x, y, w, h), representing the
relative position and relative size of the object in
the VQA image.
Spatial Determine (SpD) receives an object
bounding box and determines which position in

Question: Is the little dog catching a ball?

Reason: MDETR(little dog) – OWL(ball) -- CLIP([1], [2], 

[catching, not catching])

1

0.74

2

Question: Is the player wearing a hat?

Reason: OWL(player) – OWL(hat) -- CLIP([1], [2], 

[wearing, not wearing])

1 2

0.38

Figure 3: Visualization of existence-related questions
where mentioned objects in the questions do not exist.

the original image the object is at. The position
candidates P are generated according to the ques-
tion. When the question is asking for the horizontal
position of the object, P = {left, right}; When the
question is asking for the vertical position of the
object, P = {top, bottom}. The SpD module is
implemented as:

SpD(b,P) =

{
left, if x < 0.5

right, else
(1)

when P = {left, right}. When P =
{top, bottom}, the spatial heuristic is derived as:

SpD(b,P) =

{
top, if y < 0.5

bottom, else
(2)

The SpD heuristic will be used in the Query mod-
ule when asking about either horizontal or vertical
position.
Spatial Chooser (SpC) receives two bounding
boxes of objects b1,b2 and aims to choose their
spatial relations from the relation candidates in
C (b1 is RELA b2). For instance, when C =
{to the left of, to the right of}:

SpC(b1,b2,C) =

{
left, if x1 < x2

right, else
(3)

When C = {above, beneath}:

SpC(b1,b2,C) =

{
above, if y1 < y2

beneath, else
(4)
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Module Output Functionality
Find(V, gOBJ) Att. Locate a certain object (OBJ) in the image
Relocate(α,V,gRELA) Att. Transit attention from previous attention

map α according to the relation (RELA)
Filter(α,V,gCONDI) Att. Highlight objects that are attended by pre-

vious attention map α and satisfy the con-
dition (CONDI)

Choose(α1,α2,V,gRELA1 ,gRELA2) Ans. Choose the relation from RELA1 and
RELA2 between highlighted regions of two
attention maps

Query(α,V,gQUERY) Ans. Generate a final answer given the atten-
tion map, image representation and item
to query (QUERY)

Count(α) Ans. Outputs a number given the attention map
of the image

Exist(α) Ans. Output a binary answer (yes/no) given the
attention map of the image

And(α1,α2) Ans. Generate a binary answer (yes/no) given
the two attention maps

Or(α1,α2) Ans. Generate a binary answer (yes/no) given
the two attention maps

Table 7: The full list of modules in traditional NMNs. g[·] is the word embedding for the words in [·].

Dataset Train Val
# Ques. # Img. # Ques. # Img.

GQA 943,000 72,140 132,062 10,234
VQA 443,757 82,783 214,354 40,504

Table 8: Statistical distributions of the GQA and the
VQA dataset.

The SpC rule will be applied to the Choose type
of questions if the choices of relations fall into
the sets below: [{to the left of},{to the right of}]
and [{above, on top of},{under, below, beneath,
underneath}]

E Dataset Statistics

In Table 8, we provide statistics of the GQA and
the VQA dataset. Following (Song et al., 2022;
Tsimpoukelli et al., 2021), we use the validation
split for testing. Specifically, we report soft vqa
scores as there may be multiple possible answers
to a question similar to previous works. (Song
et al., 2022; Tsimpoukelli et al., 2021; Anderson
et al., 2018; Fukui et al., 2016).

F Layout Generation

The layout generation can be accomplished either
with syntatic parser or a pre-trained sequence-to-

sequence layout generator. On the VQA dataset,
we follow (Andreas et al., 2016; Hu et al., 2017)
to parse questions with Stanza3 and transform the
parsed tree into reasoning graphs where each node
is a pre-defined module with rules most similar
to (Hu et al., 2017). The graphs are converted
to module sequences with the post-order traver-
sal. The linearlized module sequence is used as
the layout. On GQA dataset, we leverage layouts
generated by the pre-trained sequence-to-sequence
layout generator from (Chen et al., 2021). The
generator adopts a coarse-to-fine two-stage gen-
eration paradigm as in (Dong and Lapata, 2018)
to encode questions and decode the sequence of
module names and module inputs in two stages.

G Answer Filtering

Basically, we follow (Song et al., 2022) to narrow
down the set of possible answer candidates with
the language model T5 (Raffel et al., 2020). For
the VQA dataset, we directly leverage the pub-
lished generated candidate answers for each ques-
tion from the paper (Song et al., 2022). For the
GQA dataset, the Verify and Logical type questions
have binary answers yes/no. For the Compare and

3https://github.com/stanfordnlp/stanza
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Question: Does the purse look brown and old?

Reason: OWL(purse) -- CLIP([1], [brown, not brown])

-- CLIP([1], [old, not old])
1

0.46

Question: Does the freezer to the right of the utensils 

have blue color?

Reason: MDETR (freezer to the right of the utensils) 

-- CLIP([1], [blue, not blue])
1

0.88

Question: Is the table dark brown and glass?

Reason: OWL (table) -- CLIP([1], [dark brown, 

not dark brown]) -- CLIP([1], [glass, not glass])
1

2

Yes No

3

No

2

2

Yes No

3

Figure 4: Visualization of questions asking about exis-
tence of attributes.

Choose, candidate answers are available in the gen-
erated layouts. For the Query type of questions, we
first convert questions into masked templates with
a rule-based converter (Demszky et al., 2018). T5
is applied to retrieve the masked word, which fil-
ters out irrelevant answers in the answer vocabulary
according to contexts.

H Detailed Results

We provide the detailed results for replacing CLIP
with ALBEF (discussed in Section 4.4) in Table 9
considering different types of questions.

I Visualization of Zero-shot NMNs

In this section, we provide more visualization ex-
amples which the zero-shot NMNs answers cor-
rectly while the baselines (QIP and TAC-P) fail.
In Figure 6, we show examples with short rea-
soning chain, specifically, only two-step in Mod-
Zero-VQA. According to the results, we observe
that each intermediate step gives interpretable out-
puts. By question decomposition and leveraging

Question: Is the wood table to the left of a couch?

Reason: MDETR(wood table) – OWL(couch) -- SpC([1], [2], [to the left of, 

not to the left of])

2

0.60

1

1.00

Question: Do you see knives in the full drawer?

Reason: OWL(knfie) – MDETR(full drawer) -- CLIP([1], [2], [in, not in])

1

0. 36

2

1.00

Figure 5: Visualization of questions asking about the
existence of relations.

pre-trained models, our model can focus on rele-
vant regions of the image (e.g., the first and third
example in the first row of Figure 6) so that elimi-
nating noise from backgrounds. Without filtering
irrelevant information in the image, baselines pay
attention to dominant objects in the image, lead-
ing to wrong predictions (e.g., the third example
in the first row which QIP and TAC-P seems to fo-
cus on the ground and the T-shirt when answering
the question). In Figure 7, we visualize questions
with relatively longer reasoning chains. These com-
positional questions usually call several reasoning
capabilities, making it hard for pre-trained VL mod-
els to deal with (Thrush et al., 2022). With question
decomposition, each pre-trained model takes a sub
reasoning task, easing the burden from answering
a complicated question.

According to the visualization, we also find a
frequent error case resulting from the wrongly-
generated NMN layout. The coarse-to-fine two
stage generation suffers from the issue of early
stopping that the generated arguments is incom-
plete. For instance, the ground-truth step should
be Find(coffee table) while the generated result is
Find(coffee).

J Out-of-Distribution Setting
Construction

We consider an Out-of-Domain Generalization
(OOD) setting, where test images are related to
scenes (i.e., Indoor, Food and Street) not observed
during training. For the Indoor scene, we directly
leverage the annotation from Visual Genome (Kr-
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Backbone Yes/No Other
Verify Logical Choose Compare Query Overall

ViT-B/16 69.63 68.63 75.87 48.59 26.36 47.28
Res50× 16 68.51 68.71 75.78 41.84 25.69 46.49
ALBEF 68.08 69.99 75.93 48.40 29.38 48.68

Table 9: Performance of the proposed model with different models for multimodal matching regarding different
question types.

Question: What appliance is behind

the blender?

Reason: MDETR(appliance 

behind blender) -- CLIP([1])

Answer: Coffee maker

QIP: Mixer CLF: Mixer

1

0.70

1

0.31

Question: Which side is the bag on?

Reason: OWL(bag) -- SpD([1], 

hposition)

Answer: Left

QIP: Right CLF: Right

0.29

1

Question: Which color do the shorts have?

Reason: OWL(shorts) -- CLIP([1], color)

Answer: Black

QIP: Green CLF: White

Question: What's the girl wearing?

Reason: MDETR(item girl 

wearing) -- CLIP([1])

Answer: Dress

QIP: Jump CLF: Jump

1

0.97

1

1.00

Question: What is the yellow animal?

Reason: MDETR(yellow animal) 

-- CLIP([1])

Answer: Cat

QIP: Lamp CLF: Lamp

Question: What is the woman using?

Reason: MDETR(woman using item) 

-- CLIP([1])

Answer: Laptop

QIP: Technology CLF: Screen

1

0.87

Figure 6: Visualization of VQA examples with short reasoning chains.

ishna et al., 2017), where images are classified as
indoors and outdoors. For the other two settings,
we filter out training images containing those scene-
specific objects and make sure a certain protion of
objects in the testing images are about those ob-
jects (in other words, testing images are related to
the scene). Below, we provide the lists of scene
specific objects in the Food and Street scene.

Food: plate, banana, table, food, pizza, donut,
fork, bowl, cheese, napkin, glass, cake, tomato,
bread, apple, carrot, knife, broccoli, vegetable,
fruit, cup, sauce, orange, spoon, meat, pepper, crust,
onion, sandwich, home plate, topping, catcher, tray,
lettuce, container, dish, bottle, batter, umpire, frost-
ing, hot dog, egg, chicken, bat, box, mask, pa-
per, mushroom, mug, pitcher, dispenser, liquid,

label, bacon, tablecloth, nut, leaf, utensil, salad,
hand, crumb, lemon, basket, mound, card, hel-
met, strawberry, lid, pan, seed, chair, menu, jar,
player, sausage, icing, juice, shirt, spinach, sprin-
kle, dugout, counter, bag, flower, berry, goat, sail-
boat, uniform, steering wheel, glove, heel, pastry,
bubble, finger, sugar, beer, oven, heart, dessert,
herb

Street: car, sign, building, pole, letter, tree, tire,
road, wheel, sidewalk, bus, train, street, number,
door, sky, bike, windshield, truck, street light, mo-
torcycle, leaf, traffic light, roof, ground, post, li-
cense plate, arrow, vehicle, fence, cloud, word,
grass, wire, van, bicycle, gravel, bush, platform,
fire hydrant, house, seat, flag, bag, pavement, step,
graffiti, sticker, logo, paint, luggage, cone, chain,
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Question: Is the person to the right or to the left of the vehicle next to the sidewalk?

Reason: OWL(person) -- MDETR(vehicle next to sidewalk) -- SpC([1], [2], [left, right])

Answer: Left  QIP: Right CLF: Right

1

0.32

2

0.99

Question: Are there both sheep and geese in the image?

Reason: OWL(sheep) – Exist([1]) -- OWL(goose) – Exist([1]) – And ([2], [4])

Answer: No  QIP: Yes CLF: Yes
1

0.46 0.50

0.37
0.44

0.48
0.41

2 3 4

Yes No

Question: Does the door of the elevator appear to be open and metallic?

Reason: MDETR(door of elevator) – CLIP([1], [open, not open]) – CLIP ([1], [metal, not metal]

Answer: No  QIP: Yes CLF: Yes

1

0.97

2

No

Figure 7: Visualization of VQA examples with long reasoning chains.

pipe, helmet, bridge, balcony, parking lot, jacket,
plant, stop sign, train car, umbrella, taxi, lamp, box,
crosswalk, flower, bench, brick, store, trash can,
clock, gate, station, jean, grill, suv, driver, hook,
pant, trash, tower, city, stair, rock, coat, rose, chim-
ney, trailer, american flag, entrance

K Experiment Settings

In this section, we discuss the experiment settings
regarding to the size of models, method of choosing
hyper-parameters and the used software packages
and versions.
Model Size: We provide the number of parame-
ters of different models in Table 10. Our model
includes the OWL model, the MDETR model, the
CLIPViT-B/16 and the T5 model for answer filtering.
It consists of 1, 521M parameters, of which the T5
model takes 770M parameters, the OWL model
takes 583M parameters, the MDETR model takes
170M parameters and the CLIP model takes 151M
parameters. After pre-processing object detection
and answer filtering, it takes 6G GPU memory for
inference.
Hyper-parameters: As we focus on the zero-shot

Method # Params (M)

VL-T5no-vqa 288
FEWVLMbase 288
FEWVLMlarge 804
VLKDViT-L/14 713
BNP-VQA6M 669
BNP-VQA11B 1,576
Frozen 1,040
QIPViT-B/16 151
TAC-PViT-B/16 921
Zero-shot NMNs 1,521

Table 10: Number of parameters in VQA models.

learning setting so that there is no training pro-
cess. Here we provide hyper-parameters used as
thresholds. For the OWL model (Minderer et al.,
2022), we set the threshold of confident score as
0.2, which is set empirically, to filter out detected
bounding boxes of which the confident scores are
too long. We show test the robustness of the pro-
posed zero-shot VQA model regarding to the hyper-
parameter of the threshold and provide experimen-
tal results corresponding to the threshold varying
from 0.05, , 0.1, 0.15, 0.2, 0.15, 0.3 in Figure 8. As
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GQA Verify GQA Logical VQA Count

Figure 8: Performances of the zero-shot VQA model regarding to different thresholds of confident scores in the
OWL model.

proven in Section 4.4, the detection result mostly
affects binary questions which rely more on object
detection results, we here provide results for Verify
and Logical type of questions on GQA. Besides,
Count type questions also heavily rely on the qual-
ity of object detection. According to the results, we
observe the zero-shot NMNs achieves relatively sta-
ble performances regarding to different thresholds
for confident scores on Verify type questions, while
less stable for the Logical and Count type ques-
tions. The stability on Verify questions depicts the
robustness of the detection model. As Logical ques-
tions combines results from two Verify questions,
the error may propagate if one predicted answer of
the Verify question is wrong. An interesting find-
ing is that the performance does not drop as the
threshold increases. This may be that answers are
biased to no. With the increment of thresholds, the
model is more likely to answer no. Count questions
are more sensitive to the threshold because lower
thresholds lead to the case that uncertain regions to
be detected while higher thresholds are more harm-
ful that correctly detected objects will be filtered
out. In conclusion, the threshold is important to
the quality of detection and setting it from 0.2 to
0.25 gives good performances. For the MDETR
model, we directly follow their published code for
detection and set the threshold as 0.74.
Package Version: We list the software packages
used as well as the corresponding versions in Ta-
ble 11.

Package Version)

PyTorch 1.9.0
Transformers 4.19.2

Stanza 1.4.0
NLTK 3.2.5

Table 11: Versions of packages used in our experiments.

4https://colab.research.google.com/drive/11xz5IhwqAqHj9-
XAIP17yVIuJsLqeYYJ?usp=sharing
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