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Abstract

Recent work attributes progress in NLP to
large language models (LMs) with increased
model size and large quantities of pretrain-
ing data. Despite this, current state-of-the-art
LMs for Hebrew are both under-parameterized
and under-trained compared to LMs in other
languages. Additionally, previous work on
pretrained Hebrew LMs focused on encoder-
only models. While the encoder-only archi-
tecture is beneficial for classification tasks,
it does not cater well for sub-word predic-
tion tasks, such as Named Entity Recognition,
when considering the morphologically rich na-
ture of Hebrew. In this paper we argue that
sequence-to-sequence generative architectures
are more suitable for large LMs in morpho-
logically rich languages (MRLs) such as He-
brew. We demonstrate this by casting tasks in
the Hebrew NLP pipeline as text-to-text tasks,
for which we can leverage powerful multilin-
gual, pretrained sequence-to-sequence models
as mT5, eliminating the need for a separate,
specialized, morpheme-based, decoder. Using
this approach, our experiments show substan-
tial improvements over previously published
results on all existing Hebrew NLP bench-
marks. These results suggest that multilin-
gual sequence-to-sequence models present a
promising building block for NLP for MRLs.

1 Introduction

In recent years, large pretrained language models
showed impressive results in a variety of NLP tasks
(Devlin et al., 2019; Raffel et al., 2020), domains
(Beltagy et al., 2019; Araci, 2019), and languages
(Antoun et al., 2020; Chan et al., 2020). These
models were trained in a self-supervised fashion on
large corpora with language modeling objectives.
By doing this, models are taking advantage of in-
formation available in the training data without any
access to explicit labels (Petroni et al., 2019). Re-
cent works (Kaplan et al., 2020; Hoffmann et al.,
2022) argue that language models capabilities scale

Figure 1: Finetuning mT5 on Hebrew tasks in text-to-
text settings. See Fig. 2 for an English translated ver-
sion.

as a power-law with model size, dataset size, and
the amount of compute used for training.

Following the success such models achieved on
English benchmarks, analogous language-specific
models were developed to improve benchmark re-
sults in a variety of languages such as Arabic and
French to name a few (Antoun et al., 2020; Mar-
tin et al., 2020). Hebrew NLP was no different,
with a number of encoder-based BERT variations
proposed, specifically HeBERT (Chriqui and Ya-
hav, 2022), AlephBERT (Seker et al., 2022), and
recently AlephBERTGimmel (ABG), a variation of
AlephBERT with a much larger vocabulary (Guetta
et al., 2022).

Despite the scaling laws proposed in Kaplan et al.
(2020), all of the Hebrew variations of BERT are
trained with a relatively small set of pretraining
data, and are under-parameterized. In terms of
training data, HeBERT and AlephBERT (and simi-
larly ABG) were trained on 10.5GB and 16GB of
Hebrew pretraining data respectively. mT5 (Xue
et al., 2021) in comparison, was trained on mC4,
where its public replica (Dodge et al., 2021) is a
27TB collection of natural text in 101 languages
drawn from the public Common Crawl, 66GB of
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which is Hebrew (4.125x more Hebrew training
data compared to AlephBERT). In terms of pa-
rameterization and model size, ABG, the largest
Hebrew LM, has 60x and 945x fewer parameters
compared to English T5 XXL (Raffel et al., 2020)
and GPT3 (Brown et al., 2020), respectively, lan-
guage models that were released two years earlier.
Crucially for downstream use, although English T5
is a much larger model than available Hebrew lan-
guage models, it can still be fine-tuned on common
GPUs. See Appendix A for more details.

In addition to scale differences, all previous He-
brew LMs use an encoder-only architecture, even
though the morphological complexity of Hebrew
and other morphologically rich languages (MRLs)1

pose challenges for the efficacy of this model. Con-
sider, for instance, the task of POS tagging. Assign-
ing POS tags for the phrase “babayit halavan"2

requires to initially segment the phrase to its mor-
phemes and only then assign each morpheme its
matching POS tag. Since the number of input to-
kens does not match the number of output tags
(2 input words and 5 output tags, one for each
morpheme), a one-to-one token-to-tag classifica-
tion head, as commonly employed in encoder-only
models, is not feasible. The same problem appears
in semantic tasks like Question-Answering (QA)
and Named Entity Recognition (NER). For exam-
ple, the named entity for “babayit halavan"
is “habayit halavan". This goes beyond what
encoder-only models can do by requiring the model
to label a string that is not part of the input text.

To overcome this architectural obstacle in
encoder-only models, the authors of AlephBERT
and ABG (Seker et al., 2022; Guetta et al., 2022)
used Brusilovsky and Tsarfaty (2022)’s three-step
segmentation and tagging approach: contextualize
the input, pass resulting embeddings to an LSTM
decoder, which then generates the segmentation
separated by a space symbol, in a char-by-char
fashion. Then they pass the whitespace represen-
tation to a classification head. While effective for
morpho-syntactic tasks, these additional compo-
nents do not enable full generative capabilities, and
are not pretrained, therefore the representation of
morphemes cannot enjoy the pretrained LMs ad-

1MRLs, in contrast configurational languages (e.g. En-
glish), express grammatical functions at the word level via
phenomena such as inflectional affixes, pronominal clitics, etc.

2Hebrew transcribed to English. Translated as “In the
White House". The phrase is made of the morphemes be-
ha-bayit ha-lavan (in-the-house the-white), but written and
pronounced as “babayit halavan" without explicit boundaries.

vantages.
The departure point of this work is that, in con-

trast to pre-trained encoders, sequence-to-sequence
models can simply take the raw text as input and
for any sequence labeling task, generate the mor-
phemes and tags in a sequence. In POS tagging,
for example, the generated output can be:
be»ADP@@ha»DET@@bayit»NOUN
ha»DET@@lavan»ADJ

where “@@" acts as a morpheme delimiter within a
word and “»" is the morpheme-tag delimiter. See
Sec. 3 for more details. For tasks such as Question-
Answering, we can simply generate the target word
forms without explicitly going through a segmen-
tation phase. This change in approach to using
sequence-to-sequence modeling is relevant for all
MRLs, and in this paper we demonstrate its efficacy
and effectiveness specifically for Hebrew.

This work thus identifies the challenge of current
Hebrew LLMs as a three-faceted problem: Under-
parameterization, limited training data, and the use
of a suboptimal pre-training architecture.3 To ad-
dress these three challenges at once, we propose
using mT5 (Xue et al., 2021), a large multilingual
sequence-to-sequence model that was pretrained
on a vast amount of multilingual data including a
significant amount of Hebrew data.4 To adapt clas-
sification, span prediction, and token/morpheme
classification tasks to mT5’s text-to-text paradigm,
we propose the text-only formulations illustrated
in Figure 1. Subsequently, we report here that
this paradigm change produces empirical improve-
ments on all tasks evaluated compared to previous
state-of-the-art, some of which are dramatic, as a
27.9 F1 increase in Hebrew Question-Answering.

2 Modeling

We use mT5 (Xue et al., 2021), a multilingual
generative text-to-text version of T5 (Raffel et al.,
2020), trained simultaneously on 101 languages.
We evaluate mT5 on all its available sizes — Small,
Base, Large, XL and XXL — ranging from 300M
to 13B parameters. Subsequently, we propose cast-
ing all Hebrew NLP tasks for which evaluation
benchmarks exist as text-to-text tasks: the input
text is fed into the model, and targets are produced
in a generative manner.

3So far we mentioned encoder-only models as an example
for suboptimal modeling choices for MRLs, but this is also
the case when using poor tokenization, small vocabularies etc.

4It is beyond the scope of this paper to examine the factors
that contributed to its improved performance, see Sec. 6.
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Model
Param

ParaShoot
NEMO

BMC
Sentiment

Count Token Morph. Analysis
EM F1 F1 F1 F1 F1

mBERT 178M 32 56.1 79.11 69.78 87.77 84.21
HeBERT 110M 18.2 36.7 81.13 77.29 89.41 87.13
AlephBERT 126M 26 49.6 83.62 77.55 91.12 89.02
ABG 185M - - 86.26 80.39 - 89.51
mT5 - Small 300M 24.52 48.71 66.74 62.08 77.7 87.55
mT5 - Base 580M 36.65 62.97 74.7 69.12 85.5 87.25
mT5 - Large 1.2B 42.6 70.13 84.33 81.85 90.77 88.73
mT5 - XL 3.7B 46.15 73.27 88.65 84.43 93.01 88.9
mT5 - XXL 13B 50.37 77.5 89.86 88.65 93.29 89.61

Table 1: mT5 outperforms previous encoder-only LMs
on a variety of semantic Hebrew downstream tasks.

In contrast to text-to-text formulations of clas-
sification and span prediction, token classification
is not as common in the literature, and specifically
when the tokens consist of multiple morphemes,
as is the case in MRLs. For example, in POS tag-
ging for MRLs, each morpheme is assigned a POS
tag, therefore multiple tags are assigned per word.
As a result, a generative model cannot simply gen-
erate tag predictions one after the other, but it re-
quires to first segment the text and only then label
it accordingly. E.g., An unsatisfactory generation
for “habayit" is DET, NOUN as we cannot recover
which morpheme belongs to which tag. An accept-
able model output, on the other hand, is ha-DET,
lavan-ADJ as we can recover that ha was tagged
with a DET and lavan with a ADJ. Throughout our
experiments we tested a number of different text-
to-text formulations. The best formulations for the
tasks at hand are depicted in Fig. 1.

3 Experiments

Goal The goal of this study is to assess the perfor-
mance of a sequence-to-sequence large language
model, specifically mT5, that was trained on a large
quantity of multilingual data, compared to existing
Hebrew language models.

Models We fine-tuned different sizes of mT5
(Small to XXL) on all Hebrew tasks in a single-task
fashion for 4096 steps, with a constant learning rate
of 1e-3. For test set evaluation, we used the best-
performing checkpoint from the development set,
as tasks usually converge earlier. We compared the
mT5 models against YAP (More et al., 2019), 5

mBERT (Devlin et al., 2019), HeBERT (Chriqui
and Yahav, 2022), AlephBERT (Seker et al., 2022)
and ABG (Guetta et al., 2022).

5YAP is the only available model trained for Hebrew
lemmatization. YAP’s scores are produced by us.

3.1 Tasks

We assembled an evaluation suite of Hebrew bench-
marks composed of the following tasks: QA (Keren
and Levy, 2021), NER (Bareket and Tsarfaty, 2021;
Mordecai and Elhadad, 2005), Sentiment Analysis
(Amram et al., 2018), and the morpho-syntactic
tasks of segmentation, POS tagging and lemmati-
zation from Sade et al. (2018), where we used the
the latest dataset version, compatible with the ABG
experiments (Guetta et al., 2022).

3.1.1 Question-Answering
Keren and Levy (2021) introduced ParaShoot, a He-
brew Question-Answering dataset which was cre-
ated using the format and crowdsourcing methodol-
ogy of SQuAD (Rajpurkar et al., 2016). We report
token-level F1 and Exact Match scores as no mor-
pheme boundaries are available. ParaShoot scores
are from Keren and Levy (2021). The input is con-
structed by concatenating the context and question,
with the output being the answer. We also con-
ducted manual evaluation of different mT5 models
on this dataset to evaluate the impact of model sizes,
see details in Appendix B.

3.1.2 Named Entity Recognition
Bareket and Tsarfaty (2021) created NEMO, a NER
add-on annotation for the Hebrew UD corpus (Sade
et al., 2018). The authors proposed two dataset ver-
sions: token-level, where entities correspond to
whitespace boundaries, similarly to BMC (Morde-
cai and Elhadad, 2005), and morpheme-level, with
morpheme-based boundaries. The authors addition-
ally revised the common NER evaluation procedure
by comparing predicted and target entities on the
surface form, boundaries and entity types, but not
char positions. Thus, we train the seq-to-seq model
to simply generate all of the sentence entities and
their labels one after the other.

3.1.3 Sentiment Analysis
Correspondingly with previous work, we report F1
scores for Amram et al. (2018), a sentiment anal-
ysis dataset curated by annotating Facebook user
comments with positive/negative/neutral tags.6 In
our sequence-to-sequence formulation the encoder
receives raw text with the decoder generating one
of three labels that correspond to the positive, neg-
ative and neutral tags. We use special tokens to
ensure that generation only requires a single token.

6We use Seker et al. (2022) refined version which does not
include leaks between split sets.
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Model Segmentation POS Tagging Lemmatization
YAP 93.64 90.13 78.6
mBERT 96.07 93.14 -
HeBERT 97.90 95.80 -
AlephBERT 97.88 95.81 -
ABG 98.09 96.22 -
mT5 - Small 94.83 94.55 89.96
mT5 - Base 96.34 95.9 92.09
mT5 - Large 96.76 95.58 92.21
mT5 - XL 98.32 96.91 95.13
mT5 - XXL 98.67 97.46 95.53

Table 2: Morpheme-Based Aligned MultiSet (mset) Re-
sults on the UD Corpus

3.1.4 Word Segmentation, POS Tagging and
Lemmatization

Sade et al. (2018) manually validated the UDv2
version of the Hebrew treebank resulting in a set of
morpho-syntactic tasks. Aligned to previous work
we report word segmentation and POS tagging. We
also evaluate our model on the lemmatization task
and compare it to YAP (More et al., 2019), an
open-source Hebrew parser. In accordance with
previous work in Hebrew, we report aligned Mul-
tiSet (mset) scores. To produce the output for all
these tasks we use two additional tokens: “@@" is
the morpheme delimiter within a word and “»" is
the morpheme-tag delimiter. E.g., segmentation
and POS tagging of “habayit halavan" should re-
sult in the following sequences, be@@ha@@bayit
ha@@lavan and be»ADP@@ha»DET@@bayit»NOUN
ha»DET@@lavan»ADJ, respectively.

4 Results

Tables 1,2 summarize our empirical findings. Our
results demonstrate a marked improvement over
previously published results on existing Hebrew
benchmarks. mT5 produces the biggest perfor-
mance boost for the QA task of ParaShoot, with
mT5-base already surpassing baseline models and
mT5-XXL outperforming AlephBERT by 27.9 F1
points. For NER, mT5 produces better results than
evaluated baselines on both of the dataset annota-
tion levels. The largest performance boost comes
in NEMO’s morpheme-level version where mT5
learns to segment and label entities in an end-to-end
fashion.

For sentiment analysis, mT5 outperforms the
baseline models by a small fraction, however, man-
ual error analysis we performed shows that 34% of
its errors are annotation errors and for further 30%
our annotators were not able to decide on the cor-
rect label. We conclude that work towards a cleaner,

more challenging sentiment analysis dataset in He-
brew is needed. For segmentation and POS tagging
we report error reduction of 30.3% and 32.8% com-
pared to previous state-of-the-art. For the lemma-
tization task we report an increase of 16.93 mset
F1 points compared to YAP. All of these are an
important step towards closing the gap in morpho-
syntactic tasks compared with other languages.

5 Related work

HeBERT (Chriqui and Yahav, 2022) is the first pre-
trained transformer-based language model trained
on Hebrew Wikipedia and OSCAR (Ortiz Suárez
et al., 2020) for the task of user-generated senti-
ment analysis. AlephBERT (Seker et al., 2022)
was pretrained on the same copora in addition to a
very large number of Hebrew tweets.

Guetta et al. (2022) tackled the extreme data
sparseness in MRLs lexica (Tsarfaty et al., 2020)
by pretraining with roughly 2.5x of AlephBERT
vocabulary size, leading to performance improve-
ments. Orthogonally, Keren et al. (2022) proposed
using char-level LMs to mitigate the same sparse-
ness problem, however results were inconclusive.

Xue et al. (2021) showed that mT5 outper-
forms baseline models on a number of multilingual
datasets but did not directly evaluate on Hebrew.
Alternatively, monolingual Hebrew LM papers only
compared against mBERT (Devlin et al., 2019) as
the sole multilingual baseline.

6 Limitations

mT5, compared with previous Hebrew LMs, is
bigger, pretrained on more multiligual data, and
learning to segment and tag in an end-to-end man-
ner. While it was beyond the scope of this paper
to pretrain new LMs and study which factors con-
tributed to the improved performance, identifying
these factors will be useful for determining the
most effective approach for future work.

While larger mT5 models perform better than
available LMs, they require more powerful hard-
ware accelerators and take longer to train and in-
fer. However, this is a reasonable trade-off from
pretraining designated monolingual models from
scratch, a more expensive task by itself. Addition-
ally, the inclusion of data from 101 languages in
the training of mT5 may have negatively impacted
its performance on Hebrew, as some of the data
may not have been relevant or beneficial to this par-
ticular language. Future work will need to address

7703



this issue by training a monolingual Hebrew LM in
order to further improve performance for Hebrew.

An inherent risk in sequence-to-sequence mod-
els is that they can generate inconsistent text with
respect to the input text (Lee et al., 2018; Rohrbach
et al., 2018). While potentially sensitive in different
applications, a number of evaluation frameworks
have been suggested to reduce the number of such
“hallucinations" (Honovich et al., 2021, 2022). An-
other limitation of our evaluation framework is that,
for lack of available datasets, we did not evaluate
mT5 on purely generative tasks such as summariza-
tion and paraphrasing.

7 Conclusions

All of the Hebrew LMs to date are encoder-only
models, which could not directly generate mor-
pheme sequences, and thus necessitate a special-
ized monolingual decoder. In this work we pro-
pose to take advantage of mT5, a publicly available
multilingual large language model that was trained
on a considerable amount of multilingual and He-
brew data. Additionally the generative approach of
text-to-text modeling is more aligned with the mor-
phological challenges inherent in Hebrew and by
that dispense with the need for specially-tuned de-
coders. We fine-tuned and evaluated mT5 on a set
of Hebrew downstream tasks and report dramatic
improvements. Subsequently, we propose that mul-
tilingual sequence-to-sequence models provide a
more suitable pretraining alternative for MRLs,
compared with the smaller, monolingual, encoder-
only models.
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A Running T5 on common GPUs

AlephBertGimmel (Guetta et al., 2022), the largest
Hebrew LM to date, is roughly the same size as
BERT base (Devlin et al., 2019), and even though
T5 is 60 times larger than AlephBertGimmel, we
do not need to horizontally scale our hardware ac-
celerators by 60 to accommodate it.

As models have grown in size, hardware acceler-
ators have also become more advanced. T5 Small,
Base and Large can all be fine-tuned on a 2016
Nvidia P100 or 2017 Nvidia V100 GPU accelera-
tors. T5 XL and XXL can be fine-tuned on the
2020 Nvidia A100 GPU, the same accelerator used
for pretraining AlephBERTGimmel.

Given the widespread availability of these GPU
accelerators, we argue that the T5 models we eval-
uate in this work can be easily fine-tuned and de-
ployed nowadays.

B Qualitative Evaluation of mT5 on the
Question-Answering Task

The mT5-small model performs similarly to pre-
vious state-of-the-art models on the Question-
Answering task of ParaShoot (Keren and Levy,
2021). We conducted a qualitative analysis of mT5-
XXL compared with mT5-small, as a way to anal-
yse the impact of model size while holding other
factors constant, and in order to compare to the
performance of previous state-of-the-art models.

We ran our mT5 experiments using 3 seeds with
the best performing model, mT5-XXL, achieving
77.99 F1 and 50.63 EM scores. Our worst perform-
ing model, mT5-small, reached 47.67 F1 and 24.39
EM scores. From the 519 exact match prediction
mT5-XXL model made, 167 of which mT5-small

Figure 2: Translation of Fig. 1 from Hebrew to English.
For consistently with the original Figure, Right-to-left
presentation is kept. Words with multiple morphemes
are merged in this Figure with the _ sign.

received F1 scored of 0. Based on a manual eval-
uation of the errors made by mT5-small, it can
be concluded that the model often struggled with
comprehending the fundamental meaning of the
question in many instances. As an illustrative ex-
ample, here the model mixes when and where:

Context:7

צרפת על המערכה במסגרת צרפת תבוסת לאחר
לואי פול במושׁבה הצרפתי הצבא מפקד החליט
החופשׁית! צרפת לצד בלחימה Kלהמשׁי Mלזאנטיו
Question:8

צרפת לצד בלחימה Kלהמשׁי הצבא מפקד החליט מתי
! החופשׁית
The gold and mT5-XXL prediction is:9

צרפת! על המערכה במסגרת צרפת תבוסת לאחר
mT5 small’s model predicted:10

!Mלזאנטיו לואי פול .במושׁבה
As known to be a problem with generative mod-

els, both mT5 models made several hallucination
errors, returning answers that were not part of the
original context. Additionally, mT5-XXL failed to
answer 49 questions correctly which mT5-small
was able to provide accurate responses for them.
However, for only three of these questions, mT5-
XXL received an F1 score of 0. Upon manual
evaluation of these errors, it was found that two of
them are alternative correct answers.

7Context translated to English: After France’s defeat in
The Campaign for France, the commander of the French army
in the colony, Paul Legentilhomme, decided to continue fight-
ing with the Free French Forces

8Question translated to English: When did the army’s
commander decide to continue fighting with the Free French
Forces?

9The gold and mT5-XXL prediction translated to English:
After France’s defeat in the campaign for France

10mT5 small’s model predicted translated to English: In
colony Paul Legentilhomme
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