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Abstract
Recommending a diversity of product types
(PTs) is important for a good shopping experi-
ence when customers are looking for products
around their high-level shopping interests (SIs)
such as hiking. However, the SI-PT connec-
tion is typically absent in e-commerce prod-
uct catalogs and expensive to construct man-
ually due to the volume of potential SIs, which
prevents us from establishing a recommender
with easily accessible knowledge systems. To
establish such connections, we propose to ex-
tract PTs from the Web pages containing hand-
crafted PT recommendations for SIs. The ex-
traction task is formulated as binary HTML
node classification given the general obser-
vation that an HTML node in our target
Web pages can present one and only one PT
phrase. Accordingly, we introduce TRENC,
which stands for Tree-Transformer Encoders
for Node Classification. It improves the inter-
node dependency modeling with modified at-
tention mechanisms that preserve the long-
term sibling and ancestor-descendant relations.
TRENC also injects SI into node features for
better semantic representation. Trained on
pages regarding limited SIs, TRENC is ready
to be applied to other unobserved interests. Ex-
periments on our manually constructed dataset,
WEBPT, show that TRENC outperforms the
best baseline model by 2.37 F1 points in the
zero-shot setup. The performance indicates
the feasibility of constructing SI-PT relations
and using them to power downstream applica-
tions such as search and recommendation.

1 Introduction

Customers of e-commerce websites fall in various
stages of the purchase funnel1 in their journey to
purchase specific products. While lower-funnel
customers target specific products or product cat-
egories, a customer in the middle to upper fun-
nel only has vague shopping interests (SIs) and

∗All work performed while interning at Amazon.
1https://en.wikipedia.org/wiki/Purchase_funnel
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Figure 1: Example of the system and results to deliver
as a response to searching for the SI “hiking”.

requires additional guidance to determine the right
products to purchase. Existing e-commerce web-
sites are limited today in their ability to assist them
in this kind of interest-oriented shopping. For ex-
ample, a customer searching for COVID-19 crisis
gets top results showing product types (PTs) such
as books and test kits, while missing other essential
categories such as the face mask, thermometer, or
medicine. Moreover, the search result is a random
assortment of products, without a clear organiza-
tion that helps upper-funnel customers discover
products within relevant categories.

The main problem is the concept of “shopping
interest” is generally absent in e-commerce cat-
alogs, which makes it difficult to directly estab-
lish the SI-PT connections and give correspond-
ing recommendations. To circumvent such system
limitations, customers today are accustomed to re-
searching their products on hand-curated “hub Web
pages”2, each related to an SI and presenting PT

2E.g., hikinginthesmokys.com/hiking-checklist for hiking.
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suggestions as organized lists, before returning to
e-commerce websites. This stretches the total time
spent on a purchase. We aim to find SI-related
PTs directly on the e-commerce website, reducing
customer effort for all their interest-oriented needs.
Figure 1 shows the desired search experience.

The first step to this end is collecting hub pages,
which is realized by querying Google Search with
automatically selected prompts (appendix A). The
rest of the paper focuses on PT extraction from the
HTML pages, which presents several challenges.
First, hub websites are heterogeneous in their for-
mat and terminology, with PTs often interspersed
among long descriptive paragraphs, making it chal-
lenging for any solution designed for one or a few
websites to work well for others. Second, our page
collection approach assumes that all PTs presented
on a page are related to the same SI, which may
not hold true in practice, requiring us to filter out
irrelevant PTs. Finally, our goal to find PTs for a
wide range of SIs motivates us to consider a zero-
shot learning setup (Xian et al., 2019) w.r.t. SIs, to
generalize to interests not seen during training.

Representing an HTML document by a Docu-
ment Object Model (DOM) tree whose nodes are
HTML tags with text sequences, we formulate PT
extraction as a node classification task that entails
checking whether its text sequence represents a PT
phrase. It is based on the empirical discovery that in
our collected hub pages, a PT phrase generally oc-
cupies a single DOM node within a coherent group
of enumerated HTML elements such as section ti-
tles or bullet points, where knowing one PT phrase
suggests the potential presence of other PT phrases
in the neighboring elements (Figure 3a). Node clas-
sification emphasizes learning inter-node structural
dependencies rather than intra-node token interac-
tions, which results in better generalization to a
wide variety of HTML structures.

Due to the absence of a dedicated DOM tree
encoding method, we propose TRENC (Tree-
Transformer Encoders for Node Classification)
to fill in the blanks. Adapted from the Trans-
former (Vaswani et al., 2017), TRENC incorpo-
rates ancestor-descendant and sibling node rela-
tions using modified self-attention mechanisms and
positional embeddings that are suited to the unique
DOM node arrangement of the rendered hub pages.
The ancestor-descendant relation provides relative
structural information between nodes in the DOM
node hierarchy, whereas the sibling relation tracks

the semantical connection among sibling nodes.
The modified attention mechanisms reconstruct the
tree architecture from the linearized input nodes
and facilitate long-term dependency modeling. To
capture the relevance between an SI and a node,
we leverage a gating network to dynamically inte-
grate SI semantics with a node’s textual semantics,
which generalizes TRENC to unseen SIs.

Evaluated on our dataset WEBPT with 453 Web
pages covering 95 interests, TRENC achieves 2.37
absolute F1 performance gain over the strongest
baseline method. Our contributions include
• a novel and practical research topic of product

type extraction from the Web pages associated
with a given shopping interest;

• TRENC, a Transformer encoder-based model
with structural attention mechanisms for recov-
ering the DOM tree architecture from the node
sequence to promote classification;

• a dataset WEBPT, and comprehensive evalua-
tions of graph encoding techniques to verify the
effectiveness of our model design.

The dataset is made publicly accessible at
https://github.com/Yinghao-Li/WebIE to promote
future research.

2 Related Works

Web Information Extraction Information ex-
traction from the semi-structured Web data is a
long-studied topic (Chang et al., 2006; Banko et al.,
2007; Sleiman and Corchuelo, 2013). The works
most relevant to ours are those on product attribute
extraction (Zheng et al., 2018; Xu et al., 2019;
Lockard et al., 2020; Zhou et al., 2021; Wang et al.,
2022; Deng et al., 2022). For example, Zheng
et al. (2018) train a BiLSTM-CRF network (Huang
et al., 2015) for each attribute to locate its cor-
responding values on text sequences. Xu et al.
(2019) scale it up by injecting the attribute name
into the network as an attention objective. Wang
et al. (2022) encode the DOM tree with graph at-
tention network (Veličković et al., 2018) to incor-
porate the dependencies between nodes. However,
attribute extraction is different from our PT extrac-
tion task at two major points. First, attributes are
typically extracted from product detail pages, each
of which mentions multiple attributes; and the at-
tribute name-value pairs cluster around titles, bullet
points and descriptions. In contrast, a hub page gen-
erally focuses on a single SI, with PTs scattered
throughout the page. Unlike attribute extraction
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approaches that limit the searching scope to certain
regions, the characteristics of hub pages require us
to consider a page holistically instead of a small
part. Second, attribute extraction is performed as
token-level entity recognition in previous works,
while PT extraction requires a node-level classifi-
cation, which prevents approaches for the former
from being directly applied to the latter. To our
best knowledge, no applicable DOM node classifi-
cation or similar dataset exists in openly available
benchmarks such as OGB (Hu et al., 2020).

Graph Transformers Recently, graph neural
networks (GNNs) such as the graph convolutional
network (GCN, Kipf and Welling, 2017) and graph
attention network (GAT, Veličković et al., 2018;
Brody et al., 2022) have dominated the graph en-
coding research. But some works try to model
graphs using Transformers (Dwivedi and Bresson,
2020; Maziarka et al., 2020; Ying et al., 2021; Park
et al., 2022; Wu et al., 2022), to which our work is
more related. For example, Maziarka et al. (2020)
add inter-atomic distances into the self-attention
heads to parameterize the molecular graph struc-
ture. Also targeting molecules, Graphormer (Ying
et al., 2021) takes a step further and introduces
centrality encoding, edge encoding and spacial en-
coding to evaluate the atom importance and capture
the edge and graph structure. Park et al. (2022) and
Wu et al. (2022) extend Transformers to knowl-
edge graphs with partial message-passing tricks.
Although applicable, the hierarchical and acyclic
nature of DOM trees is different from the graphs
for which the approaches were designed. Directly
applying them to DOM trees leads to sub-optimal
performance, as shown in § 5.

3 Problem Setup

We possess the DOM tree of a Web page asso-
ciated with a given shopping interest C. The
DOM tree can be represented by a set of nodes
V = {V1, V2, . . . , V|V|} as well as a set of edges
E = {E1, E2, . . . , E|E|} that connect the parent
and children nodes. |V| and |E| are the sizes of
node and edge sets respectively. We aim to design
a binary node classifier f : V∪E∪{C} 7→ {0, 1}|V|
to judge whether the text sequence in each node is
a phrase representing a product type. The nodes
with positive labels are referred to as “PT nodes”
and the labels are denoted by ym = 1,m ∈ 1 : |V|.
We focus our discussion on one DOM tree and use
m ∈ 1 : |V| as its node index.
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Figure 2: Model structure. It adopts path and sibling at-
tention mechanisms to model the ancestor-descendant
and sibling relationships among DOM nodes.

4 Method

We propose TRENC to model the DOM tree of
hub Web pages for PT extraction. Figure 2 shows
the model architecture. We treat the problem as a
DOM node classification task that entails detecting
whether its textual sequence defines a PT phrase.
We first create a node representation that integrates
three basic signals of a node that may be indicative
of a PT (§ 4.1). We then adapt the Transformer
architecture by adding two attention mechanisms,
namely path attention and sibling attention, that al-
low capturing of inter-node dependencies presented
by their HTML structure (§ 4.2.1). We also include
three kinds of positional encodings that assist the
attention layers with the node’s unique positional
information within the DOM tree (§ 4.2.2). Finally,
we integrate the outputs from the path and sibling
attention layers, which are used in a classification
layer to predict node labels (§ 4.2.3). The imple-
mentation details are in appendix B.1.

4.1 Node Features

Besides the SI C associated with the tree, we con-
sider two features for each node Vm: 1) its HTML
tag tm ∈ T where T is a finite tag set; and 2) the
text sequence Sm = {wm,1, wm,2, . . . , wm,|Sm|},
where |Sm| is the length and w is the token.
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Figure 3: An example of the model inputs, including the DOM tree components, positional indices and attention
masks. The path sets and sibling sets in (b) are defined by the global positional indices in (a). In the attention
masks, white elements have values 0 and the black ones are −∞.

HTML Tag HTML tags are a finite vocabulary
of keywords that define how browsers display their
content. Specifically, they convey the semantic
nature of their enclosed content. For example, <p>
denotes a paragraph, while <ul> represents a list.
Based on the observation that some tags tend to
contain PT phrases more than others, we capture
the tag information as a distinct structural feature
and encode tm with a vector tm ∈ Rdmodel using
an embedding layer. Here, dmodel is the model
dimensionality as in Transformers.

Text Sequence Text sequences convey the se-
mantic character of an HTML document. In ad-
dition to directly indicating a PT phrase, they can
also serve as useful contextual information about
the neighboring nodes’ propensity to contain a PT
phrase. For example, a node stating “Essentials for
camping” is a clear indicator that what follows is
likely a set of camping-related PT nodes.

We leverage the power of pre-trained language
models (PLMs) such as BERT (Devlin et al., 2019)
to properly encode their semantics. For a given
sequence, BERT generates an embedding wm,i ∈
RdBERT for each token wm,i, i ∈ 1 : |Sm|, besides
two special tokens wm,0 and wm,|Sm|+1 represent-
ing the start and end of the sequence. We derive
the sequence embedding sm ∈ Rdmodel by taking
an average of all the token embeddings and passing
it through a feed-forward network (FFN) layer:

sm = W seq(GELU(
1

|Sm|+ 2

|Sm|+1∑

i=0

wm,i)),

(1)
where W seq ∈ Rdmodel×dBERT are parameters.

Shopping Interest Although we assume that a
DOM tree is associated with only one SI C, in
rare cases this assumption does not hold. We are
thereby motivated to capture the relevance between
a node and the interest. Accordingly, we incorpo-
rate C with an embedding vector c ∈ Rdmodel in a
similar manner as that for node text sequence (1),
and let the model learn the relevance between C
and related PTs to rule out any false positive cases.

Feature Integration We integrate node features
into the node embedding em ∈ Rdmodel in two steps
to honor the distinctiveness between the structural
feature tm and semantic features sm and c.

First, we merge the semantic features. Since dif-
ferent nodes have differing levels of correlations
with the interest, we use gating vectors (Hochre-
iter and Schmidhuber, 1997) to automatically con-
trol how much interest embeddings c should be
integrated into the sequence embedding sm. We
calculate the weights g as:

g(x1,x2) = σ(W1x1 + W2x2 + b), (2)

where x1 and x2 are feature vectors; W1 and W2

are trainable square matrices; b is the bias, and
σ is the sigmoid function. With (2), the updated
sequence embedding vector becomes

s′m = g(c, sm)� c + sm,

where � is the element-wise product.
Then, we integrate the semantic and structural

embeddings using concatenation followed by an
FFN layer to maintain the embedding dimensional-
ity. The integrated node embedding em is

em = W emb[s′m
T

; tTm]T,
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where [·; ·] represents vector concatenation and
W emb ∈ Rdmodel×2dmodel is an FFN layer.

4.2 TRENC Architecture

Compared with conventional GNNs that generally
aggregate only 1-hop neighboring messages in each
layer, Transformers are better at tracking long-term
dependencies.However, applying the Transformer
encoder to DOM trees as is can lead us astray be-
cause it is not designed to naturally accommodate
the hierarchical structure of a tree. To address this
limitation, we adapt the Transformer architecture
by adding structural attention mechanisms with
node positional encodings to better encode unique
information within the DOM trees with the existing
abilities of the Transformer architecture.

4.2.1 Structural Attentions

The DOM tree structure presents two kinds of re-
lations that convey how nodes are related. The
ancestor-descendant relation, represented by the
edges E , conveys the granular nature of a node
(high or low) within the DOM hierarchy. The sib-
ling relation between nodes conveys how they se-
mantically represent a coherent group, as shown in
Figure 3a. We incorporate these relationships via
structural attention mechanisms, namely path at-
tention and sibling attention. Correspondingly, we
represent these two views of the DOM tree by two
types of node sets: path node sets and sibling node
sets. A path set NP ⊂ V is the ordered collection
of all nodes in an HTML path, from the root node
to an arbitrary node, as illustrated in Figure 3b.
A sibling set N S ⊂ V consists of the immediate
children of a non-leaf node. Thereupon, we de-
velop path and sibling attention mechanisms, as
described below, to explore the potential of model-
ing tree structures with Transformers.

Path Attention The path attention mechanism
captures the granularity of a node Vm within the
DOM tree, which carries useful information about
the node’s tendency to present a PT phrase. It
limits the attention target of a DOM node to its
ancestors or descendants only, echoing the edges E
that define the DOM tree structure. Path node sets
help define an attention mask toward this purpose
by leaving out all “off-path” elements during the
self-attention message passing operation.

Suppose the input is HP ∈ R|V|×dmodel , in each
attention head, the path attention scores aP

m ∈

(0, 1)1×|V| of Vm attending to all DOM nodes are

aP
m = SoftMax(

HP
mWQ(HPWK)T√

dk
+ MP

m).

(3)
Here W ∈ Rdmodel×dk are the FFN layers that map
the latent features to the reduced dk-dimensional
single-head attention space, as in (Vaswani et al.,
2017). MP ∈ {0,−∞}|V|×|V| is the path attention
mask as shown in Figure 3b. ∀u, v ∈ 1 : |V|,

MP
u,v =

{
0, ∃NP s.t. Vu ∈ NP, Vv ∈ NP;

−∞, otherwise.
(4)

aP
m has non-zero values at positions corresponding

to Vm’s ancestors or descendants. The single-head
attention output of Vm becomes

AttnP
m = aP

mHPWV. (5)

The rest of the architecture such as the layer norm
and the residual connection is the same as in the
Transformer and thus is omitted.

Sibling Attention Although sibling relations are
not described by the edges E , encoding them can
provide a useful contextual signal based on the
observation that sibling PT phrases often form a
group. Accordingly, analogous to path attention,
we develop sibling attention by imposing an atten-
tion mask MS, which forces a node to focus only
on its siblings via self-attention. The sibling node
set N S helps define the mask. Its calculation is
identical to (3)–(5), except that the variables are
superscripted by sibling “·S” instead of path “·P”.

4.2.2 Node Positional Encodings
Different from graphs, a DOM tree is acyclic and
heterogeneous; the order of nodes influences their
relations and how the elements are rendered. As
Transformers do not encode such node order, po-
sitional embeddings are critical to capture such
positioning. (Yun et al., 2020). We consider three
types of absolute indices: global, level and sib-
ling positional indices, as shown in Figure 3a. The
global positional index iGm represents the position
of each node in the tree in the depth-first order. It
helps TRENC understand how the nodes are or-
ganized in the rendered HTML pages. The level
index iLm and sibling index iSm on the other hand are
developed to assist the path and sibling attentions.
iLm describes the level or depth of a node, to help
distinguish a parent from its children during the

7513



path attention, while the iSm captures the relative
order among siblings within the sibling attention.

We encode positional indices by first applying
sinusoid functions (Vaswani et al., 2017) to convert
them to vectors iGm, i

L
m, i

S
m ∈ [0, 1]dmodel , followed

by applying an affine transformation that maps each
of them into distinct latent spaces:

îGm = WGiGm; îLm = W LiLm; îSm = W SiSm,

where W ∈ Rdmodel×dmodel are FFN parameters.

4.2.3 TRENC Layers
In each layer, the path and sibling signals are mod-
eled by two parallel branches, which are identical
except for the positional embeddings and attention
mechanisms (Figure 2). Denoting the input feature
of layer l by H(l) ∈ R|V|×dmodel , we have3

HP
m = H(l)

m + îLm; HS
m = H(l)

m + îSm, (6)

which are passed into the attention sublayers (3)–
(5) for message passing.4 The branch outputs ĤP

and ĤS are aggregated by a gating layer that gen-
erates the layer output Ĥ(l):

Ĥ(l)
m =g(ĤP

m, Ĥ
S
m)� ĤP

m+

(1− g(ĤP
m, Ĥ

S
m))� ĤS

m.
(7)

The input of the first layer is the summation of the
node embedding and global positional embedding
H

(1)
m = em + îGm, while the last output Ĥ(N) is

fed into a classification layer to predict node labels,
assuming the model has N layers in total.

4.3 Training and Inference
We use binary cross-entropy as our training objec-
tive. Suppose the predicted logit is ŷ, then the loss
at the level of a DOM tree is calculated as

` = −
|V|∑

m=1

ym log σ(ŷm)+(1−ym) log σ(1−ŷm).

During inference, we use 0.5 as a hard classifica-
tion threshold for the predicted probability σ(ŷ).

5 Evaluation

In this section, we first describe a new dataset of in-
terests and their associated webpages, specifically
created to benchmark methods for the PT extraction

3Other positional encoding approaches such as (Chen et al.,
2021) show similar performances.

4We omit the layer indicator ·(l) if possible for simplicity.

problem. We then evaluate TRENC on the same,
pitting it against a range of applicable baselines. Fi-
nally, we look at the effectiveness of various model
components via ablation studies.

5.1 Experiments
Dataset We constructed a dataset containing 95
shopping interests and queried Google for hub
pages using automatically selected prompts such
as “[hiking] equipment list”, where “hiking” is the
SI. For each SI, we downloaded the top 100 re-
turned pages and labeled them with PT nodes using
a semi-automatic process. First, we applied simple
heuristic rules to create noisy PT labels, based on
structure and tag matching. Thereafter, for each SI,
we presented roughly 5 webpages having a noisy la-
bel to a human annotator to further refine the labels.
Even so, the dataset is not entirely noise-free given
the subjective nature of the labeling process, with
many ambiguous cases, such as deciding whether a
software such as “VSCode” makes a valid product
type. The pages without any positive human label
were discarded. This process ultimately resulted
in a collection of 453 HTML webpages having
94,167 nodes, among which 12,548 nodes are pos-
itive. Further details are described in appendix A.

Setup We focus on a zero-shot setup w.r.t. SIs
since our goal is to evaluate various methods on
SIs not seen during training. Therefore, we split
the collection of webpages stratified by their asso-
ciated SIs (recall that a webpage is assumed to be
associated with only one SI) into training (75%),
validation (10%) and test partitions (15%), ensur-
ing that no SI is shared across partitions. As our
dataset is small, we randomly split the collection 5
times and generated 5 distinct datasets, each with
the three partitions. This approach is aimed to miti-
gate the impact of random factors while measuring
real model performance. We identify the datasets
as WEBPT-n, where n ∈ 1 : 5 is the split index.

Baselines We consider the following simple to
complex methods. 1) Heuristic rules are heuristic
functions we manually designed to locate PT nodes
from the DOM trees, which were also used to gener-
ate the initial, noisy node labels. 2) Text similarity
decides whether a node is positive based on the co-
sine similarity between text and SI embeddings. 3)
Fine-tuned BERT (BERT-FT) fine-tunes a BERT-
base model to independently classify each tree node
based on its text. 4) Multilayer perceptron (MLP)
also classifies each node independently, but with

7514



Models WEBPT-1 WEBPT-2 WEBPT-3 WEBPT-4 WEBPT-5 F̄1 ( precision / recall )

Heuristic
Methods

Similarity 40.12 39.14 35.84 36.55 33.80 37.09 ( 28.52 / 52.44 )
Rules 56.53 62.44 56.90 59.68 58.28 58.77 ( 44.20 / 88.02 )

Supervised
Methods

MLP 66.65 66.28 66.31 74.71 61.90 67.17 ( 72.11 / 63.38 )
BERT-FT 72.50 71.63 73.03 77.87 65.69 72.14 ( 68.32 / 76.65 )

Graphormer 71.09 81.76 75.73 66.81 69.67 73.01 ( 76.61 / 70.89 )
GAT 71.31 85.45 74.83 78.40 67.84 75.57 ( 77.07 / 74.28 )
GCN 76.13 84.07 79.16 81.50 71.92 78.56 ( 84.44 / 73.57 )

TRENC 79.65 88.26 78.99 82.40 75.35 80.93 ( 84.06 / 77.81 )

Table 1: Test F1 scores on each dataset WEBPT-n and the macro-averaged results (in %).
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Figure 4: Test F1 scores against the DOM tree depths.

fixed BERT text embeddings followed by a set of
FFN layers. 5) Graph neural networks (GNNs)
propagate node semantics throughout the graph by
aggregating neighboring node embeddings. GNN
family has many variances, and we focus on GCN
and GAT. 6) Graphormer (Ying et al., 2021), de-
signed for molecular graphs, adds special encod-
ings and attention masks to the Transformer model.
Please see appendix B.2 for implementation details.

Metrics We evaluate each model with the F1
scores corresponding to each split WEBPT-i and
the macro-averaged F1 score F̄1 = 1

5

∑5
n=1 F1n

with the corresponding macro precision and recall.
All trainable methods are equipped with early

stopping techniques based on validation F1 scores.
To further reduce the influence of random factors
without increasing training pressure, we store 5
snapshots of the models that perform the best on
the validation dataset during training. During the
test, we predict 5 sets of labels from the model
snapshots and use the majority-voted labels as the
final model predictions. It can be regarded as a
simplified model ensemble method often used to
improve model robustness (Dong et al., 2020).

5.2 Main Results
Table 1 shows the results of our comparative evalu-
ation. As seen, TRENC outperforms all methods,
exceeding the strongest baseline, GCN, by a mar-

gin of 2.37 absolute F1 on average. Considering
the small size of our datasets, it is not surprising
that the test F1 scores have relatively large vari-
ation across different data splits, as the correla-
tion of data distributions of the training and test
sets is susceptible to random factors. Nonetheless,
TRENC achieves the best performance on 4 out
of 5 splits as well as exceeds by a good margin on
average, which strengthens the confidence of eval-
uation. Surprisingly, Graphormer underperforms
GNN models and barely outperforms BERT-FT, a
model that treats nodes independently without con-
sidering the tree structures. It indicates that models
designed for other graphs such as molecular graphs
are not directly applicable to our case. Instead
of helping, the features Graphormer emphasizes
prevent the model from learning a reasonable repre-
sentation of the DOM tree. Table 1 also shows that
the cosine similarity between SI and PT embed-
dings does not present a good performance. This
is not unexpected as SI and PTs are not usually
semantically similar, making it a sub-optimal way
to directly compare their embeddings.

We also compare TRENC with GCN at varying
levels of DOM tree complexity. Figure 4a shows
tree-level F1 scores of each DOM tree against its
depth, which is the average depth of its nodes
1
|V|

∑|V|
m=1 i

L
m and roughly echos the tree complex-

ity. Figure 4b divides the depth equally into 5 levels
and presents the average F1 for each level. As seen,
TRENC has better overall performance than GCN
at all depths. In addition, the gap between TRENC
and GCN increases when the tree is deeper, which
indicates that TRENC can better encode complex
trees due to the global message-passing ability of
the self-attention mechanism.

5.3 Ablation Studies

We ablate input features and model components
from TRENC to understand their effectiveness. Ta-
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Models Average F1 Gap

TRENC 80.93 -

Input
features

w/o SI 79.83 1.10 ↓
w/o tag 78.82 2.11 ↓
w/o text 57.98 22.95 ↓

Model
components

w/o gating 80.39 0.54 ↓
Transformer 78.44 2.49 ↓
w/o pos emb 79.60 1.33 ↓
w/o pth attn 78.98 1.95 ↓
w/o sbl attn 78.04 2.89 ↓

Sequence
encoding

BERT-large 79.36 1.57 ↓
RoBERTa 78.54 2.39 ↓

Sentence-BERT 74.73 6.20 ↓

Table 2: Ablation study F1 scores (in %). “Pth” is short
for path; “sbl” is short for sibling; and “pos emb” rep-
resents positional embeddings.

ble 2 shows the ablation results.

Input Features As seen, although removing any
input feature (§ 4.1) impairs the model perfor-
mance, text sequence is the most critical feature
for TRENC. We further notice that without text se-
quence, TRENC performs quite close to the heuris-
tic rules that utilize very limited lexical features
(Table 1). This may indicate that TRENC exhausts
the structural information available in a DOM tree.

Although not as significant as text sequences,
incorporating SIs and tags does enhance the model
performance. Injecting SIs turns the model’s at-
tention to their correlation with PTs. But such
improvement is limited as the correlation is not
strong, as discussed in § 5.2.

Model Components We investigate the function-
alities of model components by removing them sep-
arately. The Transformer model discards edges E
and treats the tree as a linearized sequence of nodes
arranged by their global positional indices iG. Al-
though it learns certain structural dependencies, as
indicated by its advance in comparison with MLP
(Table 1), missing explicit edge knowledge still
affects the model’s judgment.

The results also show that path attention, sibling
attention and positional encodings all contribute to
better tree encoding. The row “w/o pos enc” re-
moves the level and sibling encodings iL, iS but
keeps the global encoding iG. Without iL and
iS, the model cannot properly identify the hierar-
chy and sibling order between nodes and therefore
performs worse. Compared to path attention, sib-
ling attention demonstrates a higher importance in
context understanding, even though removing path

SI Node text sequence

FP
at-home-spa Esthetics or Skin Care

hiking Merrell Overlook Tall 2 WP Boot
running Credit card

FN fishing Rods for River Fishing
canoeing Water bottle - 1 litre is good

Table 3: Examples of common mistakes made by
TRENC. FP/FN indicates false positives/negatives.

attention means a node no longer has access to any
other nodes from the tree.

Sequence Encoding In our implementation, we
use the uncased BERT-base model with dBERT =
768 as our encoders for sequence embeddings e
and concept embeddings c.5 The embeddings are
fixed during the training process.

We also test other pre-trained language mod-
els, including BERT-large, RoBERTa (Liu et al.,
2019) and Sentence-BERT (Reimers and Gurevych,
2019), which is designed for comparing the se-
quence similarities and claims better sentence em-
bedding performance than BERT. However, Table 2
shows that none outperforms BERT-base (Devlin
et al., 2019). The reason might be the incompati-
bility of their training corpus and objective to our
task. The results indicate that choosing an encoding
model is vital to have good performance.

5.4 Case Studies on Classification Mistakes

Table 3 shows a few false positive (FP) and false
negative (FN) examples to illustrate certain text se-
quence patterns where TRENC fails. As seen from
FP cases, TRENC either struggles to determine
whether it is a broad PT category (1st row), has
challenges discerning a PT from a specific product
(2nd row), or makes mistakes when unavoidable
non-purchasable items are mentioned on the page
along with other valid PTs (3rd row). From the
FN cases, we conjecture that long descriptions may
overwhelm the textual semantics and deviate its
embedding, thereby preventing TRENC predict
correctly (4th & 5th rows). The reason might be
that TRENC have a stronger dependency on the
node semantics than the structure, which is also in-
dicated by the ablation results, and properly balanc-
ing the conditional terms may mitigate this issue.

5https://huggingface.co/bert-base-uncased
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6 Conclusion

In this paper, we consider a new problem of ex-
tracting product types from the Web pages that
are relevant to broad shopping interests such as
camping. We model the problem as a node classi-
fication task and propose TRENC, a Transformer
encoder-based model that leverages unique char-
acteristics of DOM trees to perform product type
extraction. In addition to the node-level signals
including HTML tags, text sequences and shop-
ping interest semantics, TRENC design path and
sibling attention mechanisms based on DOM tree’s
ancestor-descendant and sibling relations. Together
with the tree-based positional embeddings, the
structural attention mechanisms promote the tree
architecture understanding and make the classifi-
cation more effective. Zero-shot experiments on a
new dataset TRENC containing 95 shopping inter-
ests and 453 pages show that TRENC outperforms
the baseline graph encoding models. This work
pushes the frountier of researches of a more or-
ganized and intuitive result recommendation for
middle-funnel customers.

Limitations

Apart from the issues mentioned in § 5.4, another
limitation of TRENC is that it does not integrate
any pre-training process such as BERT, which is
effective in increasing the language understanding
ability and adopted by previous works focusing on
token-level classification tasks (Wang et al., 2022;
Deng et al., 2022). Two factors lead to this deci-
sion. First, we use DOM nodes instead of tokens
as the classification object and focus on relations
between nodes rather than tokens. As the node text
sequence is a composition of an arbitrary number
of tokens, adopting the conventional masked lan-
guage modeling (MLM) training objective (Devlin
et al., 2019) seems impractical since there is no
direct mapping from an embedding vector, one-hot
encoded or not, to a sentence. The second reason
is simply that we do not possess the corpus or com-
putation resources for model pre-training. In fact,
we expect a properly designed pre-training scheme
to bring better node semantics representation and
SI-PT relation modeling. It is an interesting topic
and deserves further study.
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<root> ""
<p2> "Hiking equipment list"

<ul> ""

<li> "long-sleeve shirt"
<li> "Trekking poles"

<p2> "Contact"

<root> ""

<ul> ""

<li> "long-sleeve shirt"
<li> "Trekking poles"

<p2> "Contact"

<p2> "Hiking equipment list"

<footer> "Follow"
<div> "Facebook"
<div> "Twitter"

<div> ""
<div> ""

Original DOM Tree Processed DOM Tree

Figure 5: An example of HTML processing.

A Dataset Details

A.1 Dataset Construction

We build WEBPT to realize a quantitative analy-
sis of different PT extraction methods. WEBPT
is a collection of hub pages relevant to a set of
pre-defined SIs. Its construction process mainly
consists of 5 steps: 1) defining SIs; 2) crawling
hub pages; 3) processing HTML documents; 4)
labeling documents; and 5) splitting data points.

Defining Shopping Interests As the first step,
we establish a set of SIs through brainstorming.
Particularly, we focus on popular activities, sports,
hobbies and special events. Please check Table 6
and 7 for a complete list of SIs.

Crawling Hub Pages The hub pages are the
webpages, each providing PTs related to a specific
SI. Due to the variety of SIs, it is infeasible to focus
on one or several websites for hub page collection.
For example, a website specializing in sports will
not provide information on “sewing” with a high
chance and vice versa. In addition, gathering infor-
mation from different websites may eliminate the
bias probably existing in one website, according to
the law of large numbers.

Considering this situation, we take advantage
of Google Search with a simple query selector to
locate the hub pages. Each SI C is combined with
suffices “equipment list”, “supply list”, “tool list”
and “checklist” before being fed into the search
engine for querying. The system selects the com-
bination with the largest number of results, whose
top-100 query results are saved for later usage. We
keep only the HTML pages and discard other docu-
ments such as PDFs or CSVs, so the actual number
of saved documents may vary.

Processing HTML Documents This step aims
to simplify the DOM tree structure to facilitate PT
extraction. The RAW DOM tree is complicated

<root> ""

<ul> ""

<li> "long-sleeve shirt"
<li> "Trekking poles"

<p2> "Contact"

<p2> "Hiking equipment list"
<div> ""

Original DOM Tree

<ul> ""

<li> "Sunscreen"
<li> "First-aid kit"

<li> "Sunglasses"

<root> ""

<ul> ""

<li> "long-sleeve shirt"
<li> "Trekking poles"

<p2> "Hiking equipment list"
<div> ""

<root> ""

<p2> "Contact"

<div> ""
<ul> ""

<li> "Sunscreen"
<li> "First-aid kit"

<li> "Sunglasses"

Separated DOM Trees

Figure 6: An example of separating a DOM tree.

with decorative and supporting scripts irrelevant
to the content, which easily submerges the useful
information we want to extract and decreases the
false positive rate. We prune the trees by remov-
ing all headers, footers, and leaf nodes with empty
text sequences. Then, we replace the nodes with
only one child by their children to decrease the tree
depth. To reduce the tree depth, we delete the nodes
with only one child and then connect their children
with subsequent subtrees directly with their par-
ents. The process is illustrated in Figure 5. Exper-
iments show that this HTML processing strategy
successively simplifies the DOM structure without
sacrificing any targeted content.

Labeling Documents and Splitting Data Points
These two steps are sufficiently discussed in § 5.1
as will not be repeated. The only supplement is
that the heuristic method used for initializing the
noisy labels and compared in Table 1 is empirically
developed. We omit its discussion since it is com-
plex and not the focus of this paper. The detailed
dataset splits are presented in Table 6 and 7.

Data Processing for Transformers One limita-
tion of the Transformer models such as BERT and
TRENC is that they need to set a constraint to the
length of the input sequence |V| since the complex-
ity of the self-attention mechanism is O(|V|2) and
easily explodes when |V| is too large. Considering
this drawback, for the node Transformers including
Graphormer and TRENC, we set 512 as the maxi-
mum size of a DOM tree and split those that exceed
this size. In addition, we guarantee that each split
tree has 64 nodes at minimum. Figure 6 shows an
example of the separation process.

A.2 Dataset Statistics

We present the dataset statistics in Table 4. DOM
trees are larger than molecular graphs but signifi-
cantly smaller than knowledge graphs.
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Attribute Value

# Shopping Interests 95
# DOM Trees 453
# Total Nodes 94,167
# Leaf Nodes 70,161

# Positive PT Nodes 12,548

Average # Nodes per Tree 207.87
Maximum # Nodes in a Tree 2,748
Minimum # Nodes in a Tree 19
Median # Nodes in a Tree 156

Average Tree Depth 7.06
Maximum Tree Depth 18
Minimum Tree Depth 3
Median Tree Depth 7

Average # Trees per SI 4.77
Average # Nodes per SI 991.23

Maximum # Nodes for an SI 3,050
Minimum # Nodes for an SI 363
Median # Nodes for an SI 935

Table 4: Dataset statistics.

A.3 Labeling Quality

The dataset is labeled by one individual as the task
is straightforward. To investigate the labeling qual-
ity, we randomly select 25 DOM trees, removing
their original labels and presenting them to 2 indi-
viduals for re-labeling. Table 5 presents the statis-
tics and results. It shows that our labeling quality
is decent despite some inevitable disagreements on
ambiguous cases, as exampled in Figure 7.

Attribute Value

# DOM Trees 25
# Total Nodes 5,938

# Positive PT Nodes 683
# Disagreement 87

# Fleiss’ κ 98.53

Table 5: Annotation quality investigation.

<root> ""

<strong> "Men's shirt"

<p2> "Shirt"
<div> ""

Ambiguous Case 1

<strong> "Women's shirt"
<span> "..."

<span> "..."

<root> ""

<p> "..."

<p2> "Shirt"
<div> ""

Ambiguous Case 2

<strong> "shirt"
<p> "..."

<p> "..."

Figure 7: Examples of typical ambiguous annotation
cases. In case 1, annotators may regard “men’s shirt”
and “woman’s shirt” as negative as they are subcate-
gories of the PT “shirt”; in case 2, the latter “shirt” may
be regarded as negative as it is a repetition surrounded
by long descriptive sentences.

A.4 Data Usage

All Web pages used by WEBPT are included in
the Common Crawl repository.6 They are intended
to provide information on a topic or interest, so
consistent with that idea, we labeled the product
types on each page. The labels do not contain any
personally identifiable information. We are making
the annotated dataset available to encourage further
research on the product type extraction problem.

The WEBPT dataset is licensed under the Cre-
ative Commons Attribution 4.0 International Li-
cense. To view a copy of this license, visit
http://creativecommons.org/licenses/by/4.0/.

B Implementation Details

B.1 TRENC Hyper-Parameters

We set the model dimensionality dmodel = 128
and the number of TRENC layers N = 12. Each
attention branch has 4 attention heads, and the
single-head attention dimensionality dk = 32. The
feed-forward layer above the attention layer (Fig-
ure 2) first maps the features from dmodel to a 512-
dimensional latent space and then maps it back.
The classification layer consists of 2 FFN sublay-
ers that first downscale the TRENC layer output
to 16-dimensional and then to the 1-dimensional
output logits ŷ. We use the same activation func-
tions and dropout strategy as described in (Vaswani
et al., 2017). Our experiments show that the per-
formance remains similar when we use 6 or 8 as
the number of heads or use model dimensionality
dmodel = 512.

We train the model using 10−4 as the peak learn-
ing rate of the AdamW optimizer (Loshchilov and
Hutter, 2019) with linear scheduler with 0.1 warm-
up ratio. The batch size is 8 and the random seed is
42. We do not take multiple runs for each model on
each dataset as our dataset and evaluation strategies
(§ 5.1) can minimize the impact of random factors.
Using another random seed (0) only changes the
F̄1 scores of TRENC and GCN by 0.03 and 0.05,
respectively. The model is implemented with the
“Transformers” library (Wolf et al., 2020) in Py-
Torch (Paszke et al., 2019). The hyper-parameters
not mentioned above keep their default values.

B.2 Baseline Methods

Text Similarity We adopt the same approach as
described in § 4.1 with the uncased BERT-base

6https://commoncrawl.org/
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model to generate the text sequence embedding em
of each node Vm and the concept embeddings c.
Then, we compute their cosine similarity through

simm ∈ (0, 1) =
eTmc

‖em‖‖c‖
.

We decide the classification threshold by exhaust-
ing possible values with 0.01 interval within (0, 1)
and select the one that gives the largest F1 score.
Notice that this threshold searching method is only
applied to the text similarity baseline. Others take
a constant threshold 0.5, as described in § 4.3.

BERT-FT BERT-FT classifies each node Vm in-
dependently by fine-tuning the uncased BERT-base
model with the sequence classification task. The
model input is the combination of the sequence
Sm and the concept C, i.e., “[CLS] Sm [SEP]
C [SEP]”. It does not consider the tag tm. We
append a one-layer FFN to the embedding corre-
sponding to the [CLS] token to map it to a 1-
dimensional logit. The training objective is mini-
mizing the binary cross-entropy.

MLP MLP can be considered as a TRENC
model without TRENC layers. In other words,
it directly feeds the node embeddings e (§ 4.1) into
the classification layer (Figure 2) without consid-
ering any inter-dependencies between nodes. We
increase its classification layer depth until the vali-
dation F1 stops improving for a fair comparison.

GNNs Similar to MLP, GNN models substitute
the TRENC layers in the TRENC model with the
GCN and GAT layers, respectively. The GNN lay-
ers are implemented with the “PyTorch Geometric”
library (Fey and Lenssen, 2019). The number of
GNN layers is fine-tuned according to the valida-
tion performance.

Graphormer We take the original implementa-
tion of Ying et al. (2021) and keep all model com-
ponents.7 The differences are that we initialize the
node features with node embeddings e instead of
atom categories, and we train the model with node
classification instead of graph classification. We
keep its scheme for encoding edges but introduce
only one edge category representing the ancestor-
descendant relationship.

7https://github.com/microsoft/Graphormer.

SI WEBPT-n
1 2 3 4 5

3d-printing tr tr tr tr tr
airsoft-paintball tr tt tr tt tr

archery tr tr tt vl tr
astronomy tr tr tr tr tr

at-home-fitness tr vl tr tt tt
at-home-spa tt tr tr vl tr
badminton tr vl tr tr vl

baking tr tr vl tr tr
bartending vl tr tr tr tr

baseball tr tr tr tr tr
basketball tr tr vl tr tt

billiards-pool tt vl vl tt tr
bird-watching tr tt tr tt tr

boating tr tr tt tr tr
bowling tr tt tt tr vl
boxing tr tr tr tr tr

calligraphy tr tr vl tr vl
camping tr tr tr tr tr

candle-making tr tr tr tt vl
canoeing tr tt tr tr tr

cheerleading tr tr tr tr tr
cleaning tr tr tr tr tr
climbing tt tr tr tr vl

coffee tr tr tr tr tr
comics-manga tr tr tr tr tr

content-creation tt vl tt tr vl
cricket tr tr vl tt tr
crossfit vl tr tr tr tr
cycling tr tr tt tr tr

digital-art tr tr tr vl tr
diy-home-improvement tr tr tr tr tr

dj tr tr tr tr tr
drag-queen tr tr tr tr tt

drawing-and-sketching tr tr tt tr tr
fencing tr tr tt tr tr

field-hockey tr vl vl tr tr
fishing tt vl tr tr tr

floral-arranging tr tr tr tr tr
football vl tr tr tr tr
gaming tt tr tr tr tr

gardening tr tt vl vl vl
golfing tr tr tr tr tr

gymnastics vl tr tr tr tr
hair-care tr tr vl vl tt
hiking tt tr tr tr tr
hockey tr vl tr tr tr

home-entertainment tt vl tr tr tt
home-schooling tr tr tr tr tr

horse-riding tr tr tr tr tt

Table 6: Shopping interests and their splits in each
dataset. “Tr”, “vl” and “tt” represent “training”, “val-
idation” and “test” respectively.
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indoor-plants tr tr tt vl tr
interior-design tr tr tr vl tr

kayaking tr tr tr tr vl
knitting tr tt tr tr tr
lacrosse tr tt tt tr tr

leathercraft vl tt tr tr tr
makeup tr tr tr tr tt

model-trains tr tt tr tr tr
music-production vl tr tr tr tr

nails tr tr tt tr tr
painting tr tr tr tr tt

paper-crafting tr tr tr tr tr
parenting tr tr tr tr tr

party-planning tr tr tr tr tt
pet tt tr tr tt tr

pilates tr tr tr tr tr
pottery tt tr tr tr tr
rugby tr tr tr tt tr

running tr tt tr tr tr
sailing tr tr tr tr tr

scrapbooking tr tr tr tr tr
scuba-diving tr tr tt tr tt

sewing tr tr tr tr tr
skating tr tr tr tr tr
skiiing tt tr tr tr tr

skin-care vl tr vl tr tr
smart-home tr tr tr tr tr

snowboarding vl tr tr tr tr
soap-making vl tr tr tr tt

soccer tr tr tr tt vl
softball tr tr tr tr tr

storage-and-organization tr tt tr tr tt
student-dorm tr tt tr tr tr

surfing tr tr tr vl tr
swimming tr tr tr tt tr
table-tennis tr tr tt tr tt

teaching tt vl tr tt tr
tennis tt tr tr tr tr
travel tr tr tt tr tr

volleyball tr tr tr tr tr
weaving-and-spinning tt vl vl vl tr

wedding tr tt tr tt tr
wine tr tr tr vl vl

work-from-home vl tt tr tt tt
wrestling tr tr tr tr tr

yoga tr tr tt tt tr

Table 7: SIs and splits (cont.).
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