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Abstract

Few-shot cross-lingual transfer, fine-tuning
Multilingual Masked Language Model
(MMLM) with source language labeled data
and a small amount of target language labeled
data, provides excellent performance in the
target language. However, if no labeled data in
the target language are available, they need to
be created through human annotations. In this
study, we devise a metric to select annotation
candidates from an unlabeled data pool that
efficiently enhance accuracy for few-shot
cross-lingual transfer. It is known that training
a model with hard examples is important to
improve the model’s performance. Therefore,
we first identify examples that MMLM cannot
solve in a zero-shot cross-lingual transfer
setting and demonstrate that it is hard to predict
peculiar examples in the target language,
i.e., the examples distant from the source
language examples in cross-lingual semantic
space of the MMLM. We then choose high
peculiarity examples as annotation candidates
and perform few-shot cross-lingual transfer.
In comprehensive experiments with 20
languages and 6 tasks, we demonstrate that the
high peculiarity examples improve the target
language accuracy compared to other candidate
selection methods proposed in previous studies.
The code used in our experiments is available
at https://github.com/hwichan0720/
fewshot_transfer_with_peculiarity.

1 Introduction

Sufficient labeled data is essential to train an accu-
rate model. However, few languages have abundant
language resources for both labeled and unlabeled
data like English (Joshi et al., 2020). In addition,
constructing a large amount of labeled data through
human annotators is costly and time-consuming.
The use of Multilingual Mask Language Models
(MMLMs) is one way to overcome this problem

*Now at Hitotsubashi University

Figure 1: UMAP (McInnes et al., 2018) visualization
of hidden states of source (English) and target (Arabic)
language examples (NER task). We indicate the source
language examples in yellow and target language ex-
amples in blue to red based on their accuracy in the
zero-shot cross-lingual transfer setting. We use BOS hid-
den states of the last layer from XLM-R, which is an
MMLM.

as they show good zero-shot cross-lingual perfor-
mance in target languages by fine-tuning with only
task-specific labeled data of source language, such
as English. While this zero-shot cross-lingual trans-
fer ability is promising for the target languages
with no or limited task-specific resources, there is a
divergence in accuracy between the source and tar-
get languages, meaning the zero-shot cross-lingual
transfer ability is imperfect.

To analyze the characteristics of hard examples
for predictions in zero-shot cross-lingual transfer,
we visualize representations of the source and tar-
get languages’ examples and highlight the target
ones with accuracy in the zero-shot setting, as
shown in Figure 1. We can observe that the ac-
curacies of target language examples distant from
the source language examples are low compared
to others. We refer to these as peculiar examples
of the target language. We should address peculiar
examples to further enhance performance in the
target language.

Few-shot cross-lingual transfer, adapting
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MMLM with a small number (0.1k–1k) of
task-specific labeled examples in the target
language, is a promising approach to enhance
performance for target languages. Specifically,
Lauscher et al. (2020) showed that a small number
of examples randomly selected from labeled
dataset significantly improves the accuracy for the
target languages. However, if there are no labeled
examples at all, we should create them by selecting
annotation candidates from an unlabeled data
pool. From this perspective, Kumar et al. (2022)
evaluated candidate selection methods proposed
in active learning research for selecting the
annotation candidates for few-shot cross-lingual
transfer. They split the target languages based on
their zero-shot cross-lingual transfer performance
into “good” and “poor” (or “good”, “fair”, and
“poor”) language groups1 and demonstrated that
effective methods vary for each language group.
Our preliminary analysis (Figure 1) suggests that
adapting MMLM for peculiar examples is crucial
to improve performance for the target language
and recommends selecting peculiar examples as
annotation candidates.

Therefore, in this study, we first propose a met-
ric to measure peculiarity of the target language
examples. Note that peculiarity is defined without
labels of the downstream tasks. Then, we select
high peculiarity examples as annotation candidates
and conduct few-shot cross-lingual transfer using
languages with “good” and “poor” zero-shot cross-
lingual performance. Our experiments show that
the proposed metric peculiarity is very simple yet
effective in selecting candidates for few-shot cross-
lingual transfer. Our contributions in this study are
threefold:

1. We propose a simple metric to measure pecu-
liarity and show that the prediction accuracy
of high peculiarity examples is low compared
to others in the zero-shot setting.

2. We conduct few-shot cross-lingual transfer
using high peculiarity examples and demon-
strate that these examples can improve accu-
racy compared to other candidate selection
methods regardless of language groups in few
(2–3) label classification tasks. In addition,
our analysis shows that peculiarity is robust

1They referred the language groups as “C1” and “C2” (or
“C1”, “C2”, and “C3”), respectively.
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Figure 2: Overview of zero-shot and few-shot cross-
lingual transfer.

for hyperparameters and brings consistent per-
formance in few-shot cross-lingual transfer.

3. However, high peculiarity examples do not
work well for the “poor” language group in
many-label (5) classification and sequence-
tagging tasks. Our analysis indicates that
these examples are redundant to fine-tuning
MMLM. Therefore, we design a method that
combines existing methods to select diverse
examples. Our experiments demonstrate that
our method enhances accuracy across target
languages.

2 Notation and Task Setting

In this section, we define notations and explain
our task setting. We denote the source and tar-
get language as S and T , respectively. For the
source language S, we assume that labeled data
exist for downstream tasks DS = (XS , YS), where
XS = {x1S , ..., xiS} are monolingual data and
YS = {y1S , ..., yiS} are corresponding labels. For
the target language T , we only have monolingual
data XT = {x1T , ..., xjT }. We denote an MMLM
as M and one fine-tuned by DS as M

S. We use
M

S to the target language inputs in the zero-shot
cross-lingual transfer setting.

In this study, we conduct few-shot cross-lingual
transfer. In this setting, we select annotation candi-
dates X ′

T ⊂ XT and limit ∣X ′
T ∣ to n. Then, human
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annotators annotate labels Y ′
T for X ′

T
2. We addi-

tionally fine-tune M
S using D

′
T = (X ′

T , Y
′
T ) and

denote the model as M
S→T. To support under-

standing of zero-shot and few-shot cross-lingual
transfer, we provide an overview of zero-shot and
few-shot cross-lingual transfer in Figure 2. The
objective of our task is to select the candidates X ′

T

that lead to better performance of MS→T in the
target language T .

3 Related Works

Zero-shot cross-lingual transfer. mBERT (De-
vlin et al., 2019) and XLM-R (Conneau et al., 2020)
are the representative MMLMs. mBERT is an ex-
tension of BERT that is pre-trained on Wikipedia
data in various languages. XLM-R is trained on
2.5T data of more than 100 languages extracted
from Common Crawl (Wenzek et al., 2020). The
most interesting property of these MMLMs is that
they show a strong zero-shot cross-lingual transfer
performance even though they did not explicitly
use bilingual data.

Several studies have analyzed their zero-shot
cross-lingual transfer ability and indicated that
source-target languages’ similarity is important for
the transfer. Pires et al. (2019) analyzed the abil-
ity of mBERT in NER and POS tagging tasks and
demonstrated that more overlap in WALS (Dryer
and Haspelmath, 2013) features between the source
and target languages, better transfer. Lauscher
et al. (2020) quantitatively measured the similar-
ity between the source and target languages using
LANG2VEC (Littell et al., 2017) and showed that
it has a strong correlation with the zero-shot cross-
lingual transfer performance.

Yang et al. (2022) analyzed relations of align-
ment quality between the source and target lan-
guages and the transfer performance. Specifi-
cally, they measured the alignment quality between
languages in cross-lingual semantic space of an
MMLM using CKA (Kornblith et al., 2019) and
showed a strong correlation between the CKA
scores and the zero-shot cross-lingual transfer per-
formances. They also proposed a method to im-
prove the alignment quality using pseudo-bilingual
data and demonstrated that it enhances the zero-
shot cross-lingual transfer performance. In addi-
tion, there have been several attempts to enhance
the zero-shot cross-lingual transfer ability using ad-

2In our experiments, since we employ previously annotated
labels, we do not annotate the candidates ourselves.

ditional bilingual resources (Lample and Conneau,
2019; Cao et al., 2020; Chi et al., 2021; Dou and
Neubig, 2021; Yang et al., 2021).

Few-shot cross-lingual transfer. Few-shot cross-
lingual transfer is another approach to improve the
performance for target languages. Lauscher et al.
(2020) randomly selected annotation candidates
X

′
T from XT and conducted few-shot cross-lingual

transfer. They demonstrated that these candidates
surprisingly boost performance compared to the
zero-shot cross-lingual transfer setting (e.g., gains
are 27.3 points in POS tagging task).

The most relevant previous work is Kumar et al.
(2022) who conducted few-shot cross-lingual trans-
fer and evaluated representative candidate selection
methods used in active learning research, such as
entropy and BADGE (Ash et al., 2020). BADGE is
a method to select diverse and uncertain examples.
It first calculates gradient embeddings (GEs) for
each example xT ∈ XT , which are vectors of hid-
den states multiplied by M

S’s confidences about
each example, and then selects the most typical
examples in the GEs space. However, BADGE is
expensive for sequence-tagging tasks takes because
it has to calculate the GE for each token. There-
fore, Kumar et al. (2022) simplified the GEs to
loss embeddings (LEs), which are vectors consist-
ing of cross-entropy loss for each token, by taking
M

S’s prediction as actual labels. Their experi-
ments showed that the method using LEs obtains
consistent gains over other methods for sequence-
tagging tasks.

The methods using embeddings, such as GEs
and LEs, can select diverse candidates from XT .
However, we consider that these methods also se-
lect the candidates well aligned with the source
language examples XS , which are predicted accu-
rately in the zero-shot cross-lingual transfer setting
(Figure 1). Therefore, in this study, we propose a
metric, peculiarity, which isolates examples that
cannot be covered by source language data XS ,
and select the candidates based on our metric.

4 How to Measure Language Peculiarity

Sorscher et al. (2022) revealed that training with
hard examples for a neural model can improve the
model performance exponentially beyond power
law scaling, both in theory and practice. In terms
of few-shot cross-lingual transfer, we need to fine-
tune M

S using target language examples that will
not be predicted correctly. Therefore, we study
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how to extract these examples as the annotation
candidates from XT without knowing their labels.

Yang et al. (2022) showed that there is a corre-
lation between cross-lingual transfer performance
and language-level alignment quality. Based on
the preliminary analysis (Figure 1), we infer that
there are correlations not only at the language-level
but also at the example-level, which means that the
accuracy of the target language examples depends
on whether they are aligned with the source lan-
guage examples. This analysis indicates that we
can detect hard examples for MS from XT if we
can measure the example-level alignment quality.

Therefore, we devise a simple but effective met-
ric to isolate the examples based on their alignment
quality without additional language resources. Intu-
itively, the examples that have no source language
examples in the neighborhood in cross-lingual se-
mantic space are not well aligned3. In addition,
Figure 1 shows that accuracies of these examples
are low compared to the others. We use this aspect
instead of the example-level alignment quality as
a proxy to detect the hard examples for MS. We
refer to this aspect of whether there are source lan-
guage examples in the neighborhood as peculiarity
and define peculiarity of xjT ∈ XT as:

Peculiarity(xjT ;MS)
= 1

k
∑

xi
S∈k-NN(xj

T )
distance(xj

T ,x
i
S) (1)

where distance serves as a metric for measuring
the distance between input hidden states, encom-
passing options such as Cosine and Euclidean dis-
tance. xiS ∈ XS is a source language example of k
nearest neighbor based on distance and k is a hy-
perparameter. xi

T and x
j
S are hidden states of BOS

tokens from the final layer of MS. Peculiarity is
higher when there are no source language examples
in the neighborhood of the input target language
example. In experiments, we first confirm whether
the peculiarity can isolate the examples with low
or high prediction accuracy in the zero-shot set-
ting. Then, we select high peculiarity examples as
annotation candidates and conduct few-shot cross-
lingual transfer.

3To strictly measure the example-level alignment quality
for each xT ∈ XT , we should translate xT into the source lan-
guage and calculate similarities between their representations.
However, this method is costly because it requires a human
translator or a high-quality machine translation system.

All Lowest Highest

XNLI 72.4 73.5 64.7
PAWS-X 81.4 99.6 67.0
MARC-2 89.9 99.4 53.2
MARC-5 54.2 70.6 50.8

NER 76.9 89.3 50.3
POS 74.4 79.0 69.5

Average 75.0 85.1 59.2

Table 1: Accuracy of each task in the zero-shot setting.
“Lowest” and “Highest” are the scores of validation
data, and “Lowest” and “Highest” are the scores of
10% examples of the lowest and highest peculiarity.
The scores are the average for all languages, except for
English (source language).

5 Experimental Settings

We explain experimental settings, which are largely
similar to those used in previous works such as
Lauscher et al. (2020) and Kumar et al. (2022),
including the dataset and training hyperparameters.

5.1 Tasks and datasets

We experiment with XNLI (Conneau et al., 2018)
for a classification task, and NER, POS-tagging for
sequence tagging tasks. We use WikiANN (Rahimi
et al., 2019) and Universal Dependency tree banks
(UD, Nivre et al. (2016)) for NER and POS-tagging,
respectively. In addition, we use PAWS-X (Yang
et al., 2019) and Multilingual Amazon Review Clas-
sification (MARC, Keung et al. (2020)) as datasets
for classification tasks. There are two- and five-
label classification settings in MARC, and we refer
to them as MARC-2 and MARC-5, respectively.

WikiANN, UD, and XNLI include several lan-
guages. We use the same languages used in Ku-
mar et al. (2022)’s experiments. For PAWS-X and
MARC, we use all languages. The previous studies
(Lauscher et al., 2020; Kumar et al., 2022) indi-
cated that the effectiveness of candidate selection
methods in each language depends on the accu-
racy of downstream tasks in the zero-shot setting.
Therefore, we evaluate each method by splitting
the target languages into “good’ and “poor” groups,
where the target languages achieve the median or
higher accuracy and lower than the median accu-
racy, respectively. We detail the languages of each
group and the datasets in Appendix B.
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100-shot 500-shot 1,000-shot
All Good Poor All Good Poor All Good Poor

XNLI

Random 0.97 0.79 1.40 1.16 0.75 1.70 1.24 1.11 1.62
Entropy 1.02 0.79 1.53 1.17 0.85 1.64 1.41 1.17 1.87
KM 1.23 0.86 1.83 0.99 0.69 1.48 1.27 1.06 1.60
GE-KM 0.94 0.79 1.24 0.89 0.51 1.32 1.39 0.94 1.92
peculiarity 1.31 1.04 1.84 1.25 0.94 1.75 1.52 1.35 1.95

PAWS-X

Random 2.99 2.61 2.97 3.90 2.86 4.32 3.47 2.33 4.09
Entropy 3.87 3.00 4.22 3.95 3.16 4.14 2.92 2.73 2.91
KM 3.69 3.01 3.97 3.78 2.88 4.04 3.96 3.11 4.16
GE-KM 3.83 2.85 4.24 3.66 2.95 3.79 3.67 3.20 3.72
peculiarity 4.01 3.45 4.28 4.23 3.45 4.52 4.18 3.45 4.36

MARC-2

Random 0.54 0.17 1.10 0.80 0.45 1.32 1.09 0.77 1.57
Entropy 0.96 0.45 1.72 0.68 0.43 1.05 1.15 0.87 1.57
KM 0.71 0.25 1.35 0.79 0.42 1.35 1.16 0.77 1.75
GE-KM 0.72 0.30 1.35 0.75 0.50 1.12 1.11 0.78 1.60
peculiarity 0.99 0.55 1.10 1.11 0.78 1.60 1.42 1.18 1.77

Table 2: Evaluation on few-label classification tasks. These scores are differences in accuracy between 0-shot and
each n-shot model, averaged across languages in each group. They are the average of three models. We indicate the
best improvement scores in bold.

5.2 Model and training

We use XLM-R Base4 as the MMLM in all ex-
periments5. Following Devlin et al. (2019); Pires
et al. (2019), we attach token-level and sentence-
level classifiers to the last layer of XLM-R to train
sequence-tagging and classification models, respec-
tively.

We use English as the source language and fine-
tune XLM-R with English dataset of each task. We
limit the sequence length to 128 subword tokens
and set the batch size as 32. For the sequence-
tagging tasks, we fix the number of training epochs
to 20 and the learning rate as 2 ⋅ 10−5. For the
classification tasks, we set the training epochs to 3
and learning rate as 3 ⋅ 10−5.

For few-shot cross-lingual transfer, we con-
duct additional fine-tuning with combined English
data and sampled target language examples. We
change the training epochs to 1 for the classification
tasks and use the same hyperparameters mentioned
above.

4
https://huggingface.co/xlm-roberta-base

5In the previous studies (Lauscher et al., 2020; Kumar
et al., 2022), mBERT Base cased and XLM-R Base were
used in the experiments, with XLM-R achieving better cross-
lingual performances. In addition, they showed these MMLMs
performing with the same trend.

5.3 Candidate selection methods

We select n annotation candidates, and set n to
100, 500, and 1,000. We compare our method with
the methods (Random, Entorpy, GE-KM, and LE-
KM) used in Kumar et al. (2022)6 and an additional
method (KM).

Random. We select the candidates randomly.

Entropy. We select the candidates with the high-
est entropy. We average the entropy per each token
for the sequence-tagging tasks.

KM. We cluster BOS hidden states of the last
layer using k-means++ (k is the same number of
n) and select medoids, most typical candidates,
from each cluster following Chang et al. (2021);
Hacohen et al. (2022). We use scikit-learn7 for
performing k-means++.

GE-KM or LE-KM. We use the gradient embed-
dings (GEs) for the classification tasks and the loss
embeddings (LEs) for the sequence tagging tasks
instead of the hidden states and apply the same

6They also employed a method named Data Cross-Entropy
(DCE). However, their experiments showed DCE is not effec-
tive for few-shot cross-lingual transfer compared to the other
methods. Therefore, we exclude DCE in our experiments.

7
https://scikit-learn.org/stable/
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1,000-shot
All Good Poor

MARC-5

Random 1.74 1.26 2.45
Entropy 0.88 1.00 0.70
KM 1.81 1.35 2.50
LE-KM 1.61 1.16 2.27
peculiarity 1.83 1.71 2.00

NER

Random 12.27 4.79 21.16
Entropy 11.43 4.75 19.36
KM 12.39 4.88 21.35
LE-KM 12.38 4.86 21.30
peculiarity 11.84 5.11 20.22

POS

Random 16.84 6.28 25.72
Entropy 16.30 5.88 25.16
KM 16.86 6.23 25.93
LE-KM 16.94 6.24 25.92
peculiarity 17.08 6.66 25.87

Table 3: Evaluation on many-label classification and
sequence-tagging tasks.

steps with KM8. We use Yuan et al. (2020)’s imple-
mentation for GE-KM and our re-implementation
for LE-KM.

Peculiarity (ours). We select the candidates with
the top-n peculiarity according to Equation 1. We
use Faiss (Johnson et al., 2019) library9 to search
the k-NN source language examples. We set 20 and
Euclidean distance as k and distance, respectively,
in all experiments.

6 Experimental Results

In this section, we confirm the effectiveness of
peculiarity. We first show that peculiarity isolates
the examples based on their accuracy in the zero-
shot cross-lingual transfer setting (Subsection 6.1),
and then demonstrate that the examples of high
peculiarity are useful for few-shot cross-lingual
transfer (Subsection 6.2).

6.1 Zero-shot transfer for peculiar examples
First, we examine whether peculiarity (Equation
1) can isolate the examples predicted correctly and
incorrectly in the zero-shot setting. We construct
two subsets by extracting 10% examples of bottom
and top peculiarity from each language’s valida-
tion data and measure their accuracy. We show the

8GE-KM and LE-KM correspond to the methods proposed
by Ash et al. (2020) and Kumar et al. (2022), respectively.

9
https://github.com/facebookresearch/faiss

1,000-shot
Good Poor

XNLI
KM 0.10 0.08
peculiarity 0.09 0.08

PAWS-X
KM 0.10 0.09
peculiarity 0.10 0.08

MARC-2
KM 0.14 0.09
peculiarity 0.16 0.09

MARC-5
KM 0.10 0.10
peculiarity 0.08 0.75

NER
KM 0.24 0.14
peculiarity 0.20 0.09

POS
KM 0.22 0.13
peculiarity 0.19 0.10

Table 4: Token type ratio per each langauge group.

average accuracy of all languages for each subset
in Table 1 and more details about each language
in Appendix B. This table shows that the exam-
ples with high peculiarity cannot be predicted ac-
curately in the zero-shot setting. Specifically, the
average score is 85.1% in “Lowest”, but is 59.2%
in “Highest”. This result indicates that peculiarity
can extract the examples of low accuracy in the
zero-shot setting without their labels.

6.2 Enhancing few-shot transfer with high
peculiarity candidates

We conduct few-shot cross-lingual transfer using
candidates extracted by peculiarity. We show the
experimental results for few-label (2–3) classifica-
tion tasks (XNLI, PAWS-X, and MARC-2) in Table
2 and many-label (5) classification and sequence-
tagging tasks (MARC-5, NER, and POS) in Table
310. We report delta scores in accuracies between
0-shot and n-shot models following Kumar et al.
(2022). These scores are the average across lan-
guages in each group.

Table 2 shows that the methods proposed in the
previous studies enhance accuracy for each lan-
guage group but do not outperform random base-
line consistently. However, peculiarity consistently
achieves the highest scores regardless of the lan-
guage groups. Therefore, we conclude that pecu-
liarity is useful for selecting annotation candidates

10In Appendices B and C, we provide more detailed results
including statistical significance tests.
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(a) Finnish (“good” group) (b) Arabic (“poor” group)

Figure 3: Visualization of the source (English) and target (Finish or Arabic) examples. We indicate the source
language in yellow and the target language in light blue. We color the candidates extracted by peculiarity and KM
in blue and red, respectively.

All Good Poor

MARC-5
Best 1.83 1.71 2.50
peculiarity-KM 1.88 1.47 2.62

NER
Best 12.39 5.11 21.35
peculiarity-KM 13.13 5.50 22.27

POS
Best 17.08 6.66 25.93
peculiarity-KM 17.26 6.75 26.17

Table 5: Evaluation of peculiarity-KM under 1,000-
shot setting. The scores of Best for “good” and “poor”
groups are those of peculiarity and KM, respectively,
and are the highest scores in Table 3.

that could improve the performance for these few-
label classification tasks.

On the contrary, for MARC-5, NER, and POS
the best methods differ in each language group. In
the “good” group, peculiarity consistently achieves
the highest improvements in the all tasks and n-
shots. However, in the “poor” group, peculiarity
does not work as well as in the “good” and is worse
than random in some settings. In addition, the
scores show that the methods considering the diver-
sity of candidates (KM, GE-KM, and LE-KM) are
the best choice for the “poor” group11.

7 Analysis

7.1 Redundancy of high peculiarity examples

As mentioned above, peculiarity outperforms the
other methods in the few-label classification tasks

11We confirm that GE-KM and LE-KM achieve the highest
scores in 500-shot settings. The results for 100- and 500-shot
experiments are in Appendix C.

(XNLI, PAWS-X, and MARC-2), but the KM-
based methods perform better in the “poor” group
for sequence-tagging and many-label classification
tasks (NER, POS, and MARC-5). The KM-based
methods select candidates by considering their di-
versity, but peculiarity does not.

Therefore, we assume that peculiarity selects
more redundant candidates than KM-based meth-
ods. To confirm our assumption, we measure the
token type ratio (TTR) of the candidates extracted
by KM and peculiarity. Table 4 shows the results
and that the TTRs of KM and peculiarity are al-
most the same in the few-label classification tasks.
By contrast, the TTRs of peculiarity are lower than
that of KM in the sequence-tagging and many-label
classification tasks, which means that peculiarity
selects redundant candidates in these tasks. Intu-
itively, training a model with only similar exam-
ples harms generalization performance because the
model is optimized only for limited data. We con-
sider that the redundancy is one of the causes of
peculiarity not working well across languages.

Then, we verify why peculiarity works well in
the “good” group but not the “poor” group. To do
this, we chose an NER task and Finish and Arabic
from the “good” and “poor” groups, respectively,
and visualize the hidden states of the candidates
extracted by KM and peculiarity (n = 1, 000). We
compress the hidden states to two dimensions us-
ing UMAP (McInnes et al., 2018) and show the
results in Figure 3. This figure shows that peculiar-
ity selects local candidates compared to KM in the
both languages. For Finnish, these candidates are
enough to cover the Finish examples that are not
covered by English (source language). However,
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Figure 4: Overlap rates of candidates extracted by pecu-
liarity measured at each k.

for Arabic, the candidates selected by peculiarity
cannot complement all of the Arabic examples be-
cause almost all of the examples are not covered
by English examples. Several studies (Yuan et al.,
2020; Hacohen et al., 2022) have suggested that
training a model with representative and diverse ex-
amples, in other words, examples that approximate
the entire data pool, is beneficial to enhance the
model’s performance when the training examples
are limited. In the case of few-shot cross-lingual
transfer, we should fine-tune M

S using source and
target language examples that approximate an unla-
beled data pool in the target language XT . Figure
3 indicates that peculiarity selects ideal candidates
in Finish, but not in Arabic. Therefore, it is recom-
mended to select examples by considering diversity
for the “poor” group, such as Arabic.

Motivated by the previous analyses, we design a
new candidate selection method that considers pe-
culiarity and diversity of candidates. Specifically,
first, we extract 50% of candidates X ′′

T ⊂ XT using
peculiarity. Then, we select candidates X ′

T ⊂ X
′′
T

by adapting KM to X
′′
T . We denote this method as

peculiarity-KM and provide evaluation results on
NER, POS, and MARC-5 tasks in Table 5. Pecu-
liarity-KM achieves the highest scores in the both
“good” and “poor” groups for the NER and POS
tasks, which means that we can mitigate the weak-
ness of peculiarity by considering the diversity.
However, the scores drop 0.24 points compared
to peculiarity in the “good” group of MARC-5.
Therefore, there are still challenges to address in
the candidate selection method that can efficiently
enhance few-shot cross-lingual performance across
languages and tasks.
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Figure 5: Accuracy of the models fine-tuned by the
examples selected by peculiarity measured by each k.

7.2 Robustness of peculiarity

Peculiarity (Equation 1) has two hyperparameters
k and distance. Finally, we analyze the robustness
of the hyperparameters of peculiarity.

We measure peculiarity using various k (1, 5, 10,
20, 40, 80, and 160) and extract 1,000 candidates
based on each peculiarity. Figure 4 shows overlap
rates between each subset of extracted candidates
in MARC-2 and NER tasks averaged across all lan-
guages. We indicate the overlap rates for the other
tasks in Appendix C. The overlap rates gradually
decrease as the k value changes. However, even
the lowest overlap rates (between 1 and 160) are
0.72 and 0.74 in MARC-2 and NER, respectively.
Therefore, this figure reveals that peculiarity se-
lects almost same examples regardless of k. We
also conduct few-shot cross-lingual transfer with
these candidates. In this experiment, we chose Ger-
man (De) and Chinese (Zh) from the “good” and
“poor” groups and use MARC-2 and NER tasks.
Figure 5 shows the evaluation results. The figure
demonstrates that the accuracy are almost consis-
tent between each k value. This result reveals that
peculiarity can lead to robust performance regard-
less of k.

In previous experiments, we adopted Euclidean
distance as distance; however, Cosine distance is
another option. We extract 1,000 candidates based
on Euclidean and Cosine distances and measure
the overlap rates between each subset of extracted
candidates. The overlap rates averaged across all
languages are 0.93, 0.99, 0.98, 0.97, 0.96, and 0.93
in XNLI, PAWS-X, MARC-2, MARC-5, NER, and
POS tasks, respectively. This indicates that pecu-
liarity extract consistent candidates regardless of
distance metric.
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8 Conclusion

In this study, we proposed a simple metric called pe-
culiarity, which measures whether source language
examples exist in the neighborhood of target lan-
guage examples. We showed that high peculiarity
examples are not predicted correctly in the zero-
shot setting and demonstrated that these examples
can enhance accuracy for few-shot cross-lingual
transfer regardless of language groups.

In addition, we showed that peculiarity-KM, the
candidate selection method that considers pecu-
liarity and diversity, further boosts few-shot cross-
lingual transfer performance compared to peculiar-
ity or KM alone. However, there are some config-
urations in which peculiarity-KM does not work
well, such as the “good” group in MARC-5. There-
fore, we would like to attempt to analyze the causes
of this result and develop a new candidate selection
method that enhances the few-shot cross-lingual
performance across languages and tasks.

Limitations

Although we demonstrated that the proposed metric
peculiarity is useful for selecting candidates for
few-shot cross-lingual transfer, our current work
has the following limitations.

Lack of evaluations to argue the usefulness of
peculiarity. We demonstrated that peculiarity se-
lects candidates to efficiently enhance few-shot
cross-lingual performance in several tasks and lan-
guages. In addition, peculiarity is robust for hy-
perparameter k. However, further verification is
required to evaluate the usefulness of peculiarity.

In this study, we only used XLM-R as the
MMLM in the experiments, because previous
works (Lauscher et al., 2020; Kumar et al., 2022)
have demonstrated that mBERT and XLM-R show
the same trend and XLM-R achieves better zero-
shot and few-shot cross-lingual performance. How-
ever, it is not obvious that peculiarity will work
well in mBERT. In addition, recently, Lin et al.
(2022) proposed XGLM, a pre-trained multilingual
causal language model, that demonstrates strong
multilingual capabilities. We would like to experi-
ment using these pre-trained multilingual models
to show the usefulness of peculiarity regardless of
models.

We fine-tuned the MMLM using a standard train-
ing objective, predicting true labels or tags for in-
puts. On the contrary, Zhao and Schütze (2021)

revealed that fine-tuning in a prompting format
encourages better zero-shot and few-shot cross-
lingual transfer than the standard fine-tuning. It
is worthwhile to examine few-shot cross-lingual
transfer performance when fine-tuning the MMLM
with high peculiarity examples in a prompting for-
mat because it may be possible to achieve higher
accuracy in the target languages with a smaller
amount of examples.

We experimented using English as the source
language. However, if possible, it is better to use
a language that is linguistically close to the target
language as the source language (Pires et al., 2019;
Lauscher et al., 2020; Chai et al., 2022). In our ex-
periments, we did not show that peculiarity works
well regardless of source languages. Therefore,
verifying this aspect is also a remaining challenge.

Definition of annotation cost. In this study, we
defined annotation cost in terms of the number of
candidates following previous studies (Pires et al.,
2019; Lauscher et al., 2020; Chai et al., 2022).
However, a small number of candidates does not
necessarily mean less work for annotators. If a
candidate (sentence) length is long or hard, it is
considered to take longer to understand. On the
other hand, if the candidate length is short or easy,
annotation time per candidate will be shorter, and
the annotators can annotate more candidates in the
same time. Therefore, we should evaluate candi-
date selection methods based on total time required
for annotation.

In addition, aligning the cross-lingual represen-
tations between source and target languages using
bilingual data is one approach to enhance accu-
racy for the target languages (Lample and Con-
neau, 2019; Cao et al., 2020; Chi et al., 2021; Dou
and Neubig, 2021; Yang et al., 2021). To align
the representations, we should create bilingual data
through a human or automatic translator. Verifi-
cation whether labeling or translating is less labor
intensive and further boosting performance is one
of the future goals.

Developing a better peculiarity-based candidate
selection method. In this study, we used the
BOS hidden states to measure peculiarity; in other
words, it measures example-level peculiarity. In
classification tasks, using example-level peculiar-
ity to select candidates is intuitive because we pre-
dict labels based on the BOS hidden states. On
the other hand, in the sequence-tagging tasks, we

755



predict token tags based on hidden states of each to-
ken. In addition, we consider that it is necessary to
fine-tune M

S with peculiar tokens, tokens that are
not covered by the source language, to ensure that
the model predicts tags of these tokens correctly.
Therefore, we will attempt to select candidates that
contain peculiar tokens by using token-level pecu-
liarity and conduct few-shot cross-lingual transfer
in the sequence-tagging tasks.

We observed that peculiarity selects more redun-
dant candidates compared to the KM-based meth-
ods and argued that this aspect is the reason that
peculiarity does not work in the “poor” group. We
consider the possibility of other reasons for this be-
havior. Several studies (Swayamdipta et al., 2020;
Sorscher et al., 2022; Hacohen et al., 2022) have
suggested that if only a small amount of examples
can be used for training, it is important to use not
only hard (atypical) examples but also some easy
(typical) examples for training in order to improve
model performance. In terms of few-shot cross-
lingual transfer using peculiarity, we should fine-
tune MS with the both highest and lowest peculiar-
ity examples. In addition, using typical examples
selected by KM instead of the lowest peculiarity
examples is one of the approaches. For future work,
we would like to verify the effectiveness of these
methods for few-shot cross-lingual transfer.

Ethics Statement

Impact of our work. Thanks to the efforts of var-
ious researchers, pre-trained models have been pro-
posed that can solve NLP tasks with high accuracy.
However, labeled data is essential for fine-tuning
these models, and few languages have abundant
language resources like English. In addition, con-
struction of labeled data is not easy. Therefore, at-
tempts to train high-quality models with little effort,
as in our study, are very important for low-resource
languages. Although our method and study have
the limitations mentioned above, our experiments
provided useful insights into selecting annotation
candidates for few-shot cross-lingual transfer. In
addition, we will publish the code used in our ex-
periments, which will facilitate the reproduction of
our experiments and contribute to further research.

Potential risks for bias. In recent years, bias in
data has become an issue. Training a model on
such data can lead to unwarranted predictions or
generate negative sentences for a particular per-
son or group. When the training data is small and

contains biases, such problems may be more pro-
nounced because the model is optimized only for
the provided data. In this study, we did not take
into account this issue, and our proposed method is
not designed to select bias-less candidates. There-
fore, when using the proposed method, sufficient
attention should be paid to the problem of bias.
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WikiANN UD

train dev test train dev test

En 23,234 11,624 11,594 359,550 56,194 76,817
Ar 20,912 10,460 10,438 553,404 73,707 96,888
Bg 23,422 11,628 11,670 143,528 18,615 18,095
De 24,834 12,398 12,430 3,459,957 379,232 437,084
El 23,658 11,827 11,837 48,402 12,086 12,106
Es 21,153 10,548 10,565 844,454 91,608 91,776
Eu 12,126 12,144 11,966 69,285 22,793 23,095
Fi 22,968 11,421 11,472 309,406 36,006 77,710
He 22,931 11,468 11,414 141,995 11,716 12,625
Hi 5,279 1,067 1,060 592,684 74,192 107,210
It 22,732 11,266 11,361 – – –
Ja 53,242 26,551 26,988 221,320 15,982 74,428
Ko 22,444 11,185 11,241 146,605 15,297 41,244
Ru 21,904 10,934 10,942 1,293,061 181,397 203,482
Sv 25,156 12,523 12,643 149,979 34,271 70,270
Th 103,972 50,880 52,213 – – –
Tr 21,926 11,095 11,046 143,180 22,997 55,59
Ur 20,148 1,001 1,003 231,161 31,000 31,667
Vi 20,704 10,321 10,371 – – –
Zh 40,354 20,470 19,983 31,667 17,780 54,261

Table 6: Example numbers for each datasets.

A Experimental Settings

We experiment with WikiANN12, UD13, XNLI14,
PAWS-X15, and MARC (MARC-2 and MARC-
5)16 datasets. Example numbers of train, dev,
and test data are the same across all languages
in the XNLI (392,702, 2,418, and 5,010), PAWS-
X (49,401, 2,000, and 2,000), MARC-2 (160,000,
4,000, and 4,000), and MARC-5 (200,000, 5,000,
and 5,000) datasets. We show example numbers
for the other datasets in Table 6.

B Zero-shot Cross-lingual Transfer

We show the accuracy of the test and validation
datasets for each target language in zero-shot cross-
lingual transfer in Tables 7, 8, 9, 10, and 11. Low
and High are subsets of extracted 10% examples of
the lowest and highest peculiarity from the valida-
tion dataset. These scores are the average accuracy
of three models. The accuracies of High are obvi-
ously lower than others in all languages and tasks.
Therefore, these tables indicate that peculiarity can
isolate the languages depending on their zero-shot
cross-lingual performance. We also indicate the
median (Mdn.) and macro-average (Avg.) scores

12
https://huggingface.co/datasets/wikiann

13
https://huggingface.co/datasets/universal_

dependencies
14
https://github.com/facebookresearch/XNLI

15
https://huggingface.co/datasets/paws-x

16
https://huggingface.co/datasets/amazon_

reviews_multi

(excluding the English score). We underline the
scores higher than the median score in the valida-
tion dataset, and we use those languages as “good”
group and the others as “poor” group.

C Few-shot Cross-lingual Transfer

We show the accuracy of the test datasets for each
target language in few-shot cross-lingual transfer in
Tables 12, 13, 14, 15, and 16. We perform pairwise
t-Test to measure statistical significance. The † (or
‡) indicates the statistical significance (p < 0.1)17

between peculiarity (or peculiarity-KM) and the
underlined method that achieves the highest aver-
age score except for the peculiarity-based methods.
In addition, the ⋆ indicates the statistical signifi-
cance between peculiarity and peculiarity-KM.

In PAWS-X, MARC-2, and MARC-5 (Tables 15
and 16) tasks, the peculiarity-based methods con-
sistently achieves the highest accuracy. In NER,
POS, and XNLI tasks (Tables 12, 13, and 14), the
peculiarity-based methods bring the best perfor-
mances in almost all languages. We also show
differences in accuracy between 0-shot and each n-
shot model averaged across all languages in Table
17.

Finally, we show overlap rates of examples ex-
tracted by peculiarity measured at each k and ob-
serve that they are higher than 0.70. Therefore,
peculiarity is robust for hyperparameter k.

17We set p value following Kumar et al. (2022).
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En Ar Bg De El Es Eu Fi Fr He Hi It Ja Ko Ru Sv Th Tr Ur Vi Zh Mdn. Avg.

Test 91.7 67.5 89.2 88.5 87.5 83.4 79.8 88.8 84.3 75.8 75.6 88.2 68.9 74.6 80.8 89.2 21.2 83.9 60.1 83.5 69.0 82.1 76.9
Valid 92.1 67.3 89.5 88.7 87.2 83.5 79.8 88.5 85.3 75.4 75.1 88.5 67.8 75.1 81.3 88.8 21.5 83.7 61.8 83.0 68.8 82.1 76.9
Low – 93.7 96.7 97.8 95.6 98.1 96.8 97.9 98.0 90.1 96.0 98.6 76.9 85.7 93.7 98.1 25.6 99.1 95.6 98.1 74.4 96.3 89.3
High – 37.0 57.5 62.1 62.8 49.5 65.3 64.1 56.7 35.9 53.8 55.4 36.6 43.9 53.0 66.9 25.3 54.1 51.3 42.2 32.8 53.4 50.3

Table 7: Zero-shot cross-lingual transfer performance on NER.

En Ar Bg De El Es Eu Fi He Hi Ja Ko Ru Sv Tr Ur Zh Mdn. Avg.

Test 96.0 67.9 91.3 89.0 86.7 89.7 72.9 88.3 56.9 78.1 43.8 61.2 91.6 93.9 73.8 65.8 57.5 75.9 75.2
Valid 96.5 56.2 91.1 87.7 86.7 89.5 72.8 86.4 58.2 79.0 45.8 59.0 91.5 94.7 73.0 64.7 57.2 76.0 74.4
Low – 65.7 91.7 93.0 87.5 92.0 76.9 89.7 69.8 81.7 53.1 64.9 93.3 95.6 78.4 70.2 61.6 80.0 79.0
High – 50.5 88.8 82.2 82.9 79.3 68.1 73.8 47.9 79.3 46.2 54.0 83.2 92.0 62.8 67.4 56.0 70.9 69.5

Table 8: Zero-shot cross-lingual transfer performance on POS tagging.

En Ar Bg De El Es Fr Hi Ru Sw Th Tr Ur Vi Zh Mdn. Avg.

Test 83.0 69.5 76.6 74.7 74.4 77.5 77.0 68.3 75.1 62.6 70.4 71.3 64.1 73.6 75.5 74.4 72.4
Valid 82.4 69.2 74.4 74.5 73.5 76.8 75.5 68.0 74.2 62.5 69.7 71.0 63.5 73.1 76.2 73.5 71.8
Low – 73.9 76.0 78.7 74.8 84.7 86.4 74.4 77.3 64.2 65.2 72.5 45.7 69.8 86.4 74.8 73.5
High – 62.5 74.4 74.4 72.9 77.4 74.4 50.8 76.5 46.1 59.6 53.9 37.9 66.0 74.4 72.9 64.7

Table 9: Zero-shot cross-lingual transfer performance on XNLI.

En De Es Fr Ja Ko Zh Mdn. Avg.

Test 92.9 85.6 86.2 86.2 74.6 71.5 77.7 81.6 80.3
Valid 92.6 83.8 86.5 87.6 75.1 76.5 79.2 81.5 81.4
Low – 99.4 99.8 99.4 99.9 99.0 99.9 99.6 99.6
High – 69.8 71.7 68.5 65.8 65.4 60.9 67.1 67.0

Table 10: Zero-shot cross-lingual transfer performance on PAWS-X.

En De Es Fr Ja Zh Mdn. Avg.

MARC-2

Test 94.0 92.9 92.0 91.8 89.1 85.1 91.8 90.2
Valid 93.5 91.7 91.5 91.5 89.5 85.1 91.5 89.9
Low – 99.9 100.0 100.0 99.5 97.7 99.9 99.4
High – 52.6 55.0 52.9 53.5 52.4 52.9 53.2

MARC-5

Test 60.2 59.8 55.0 54.9 52.8 49.6 54.9 54.4
Valid 59.5 59.0 54.4 54.2 53.8 48.6 54.2 54.2
Low – 66.8 74.9 69.4 64.2 77.7 69.4 70.6
High – 54.6 57.2 55.9 43.4 43.3 54.6 50.8

Table 11: Zero-shot cross-lingual transfer performance on MARC.
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Good Poor

Bg De El Es Fi Fr It Sv Tr Vi Ar Eu He Hi Ja Ko Ru Th Ur Zh

100-shot

Random 90.5 90.0 90.0 89.3 90.3 89.2 90.2 91.8 90.7 86.9† 84.6†‡ 92.0† 82.6 84.5 81.3†‡ 82.5†‡ 87.3 73.5 87.0 83.8†

Entropy 90.2 89.9 89.8 89.7 90.7 88.6 90.3 90.1 89.8 86.7 83.8 87.5 82.1 84.3 78.1 80.7 87.2 63.5 87.3 78.1
KM 90.7 90.3 89.6 89.9† 91.1 88.5 90.4 91.9 90.9 86.9† 83.6 91.8 83.1†‡ 86.8†‡ 80.3 81.2 87.3 73.6 88.9† 83.6
LE-KM 89.2 89.5 89.6 89.0 90.6 87.8 89.9 92.2 91.3†‡ 85.2 83.2 91.6 81.9 83.2 80.8 81.0 86.8 74.4 88.8 81.6
peculiarity 91.5† 90.8† 89.8 89.5 91.6† 89.5†⋆ 90.7† 92.1 90.3 86.5 83.3 87.9 82.3 84.6 80.1 80.2 88.0† 74.7 87.3 80.2
peculiarity-KM 91.2‡ 91.3‡⋆ 89.9 92.3‡⋆ 91.5 89.0 90.5 93.3‡⋆ 89.9 87.1‡⋆ 83.7⋆ 92.8‡⋆ 82.3 84.5 80.8⋆ 81.1⋆ 88.5‡⋆ 75.3‡⋆ 89.7‡⋆ 84.0‡⋆

500-shot

Random 92.1 91.5 90.5 91.2† 92.4 89.8 91.1 94.2 92.3 87.6 86.9 92.8 85.9 88.8 83.3 86.2 89.0 80.1 90.1 85.4
Entropy 92.0 91.3 90.6 88.1 92.5 89.9 91.6 92.6 91.8 88.2 85.7 88.1 84.4 85.7 80.3 85.0 88.1 77.3 90.6 70.7
KM 91.3 91.5 91.8 89.7 91.8 90.0 91.0 94.1 92.1 88.5 87.6† 89.5 86.1† 88.9†‡ 82.3 85.3 89.5 83.1† 91.0 86.4†

LE-KM 90.6 91.5 90.4 90.4 92.2 89.3 91.7 94.3 92.4 88.1 86.8 93.4† 86.1† 85.5 83.8† 86.5†‡ 87.0 81.6 91.3† 85.3
peculiarity 92.4†⋆ 91.6 91.6 90.3 92.6 90.3†⋆ 92.4† 94.3 92.6 88.9† 87.3 93.0 85.6 87.3 82.3 85.1 89.6 80.9 89.6 81.6
peculiarity-KM 92.2 91.9‡ 91.7 94.2‡⋆ 92.4 89.9 92.2‡ 95.1‡⋆ 93.3‡⋆ 90.0‡ 87.5 95.0‡⋆ 86.8‡⋆ 86.5 84.0⋆ 85.0 89.4 83.9‡⋆ 91.2⋆ 87.2‡⋆

1,000-shot

Random 92.6 91.9 91.6 91.5† 92.6 89.6 91.7 95.0 93.3 89.0 87.5 94.2 87.3 87.6 85.0† 86.5 90.0 84.0 91.7 87.2
Entropy 91.8 92.3 92.0 90.1 93.2 90.0 91.6 95.2 92.6 89.4 85.7 93.2 86.7 88.8 82.0 86.4 89.6 79.9 91.2 81.0
KM 92.8 91.9 90.9 91.0 92.4 89.9 92.3 95.3 93.9 89.8 89.0†‡ 94.5† 87.1 87.2 84.8 87.3† 90.4 83.3 92.2† 86.6
LE-KM 93.4†‡ 91.8 91.9 91.1 93.0 90.0 91.7 95.1 93.4 88.5 88.4 94.1 87.8† 86.7 84.5 86.4 89.6 85.4†‡ 90.6 88.2†

peculiarity 92.8⋆ 92.1 92.4†⋆ 90.3 93.3 90.6†⋆ 92.9†⋆ 95.4 93.6 89.8 86.5 90.3 86.4 89.2† 83.8 85.4 90.3 83.3 90.8 82.4
peculiarity-KM 92.2 92.4⋆ 92.0 94.5‡⋆ 93.2 90.1 92.0 96.1‡⋆ 93.7 91.1‡⋆ 88.4⋆ 94.6⋆ 87.9⋆ 89.8‡⋆ 85.1⋆ 88.5‡⋆ 91.1‡⋆ 84.4⋆ 92.8‡⋆ 88.9‡⋆

Table 12: Few-shot cross-lingual transfer on NER.

Good Poor

Bg De El Es Fi Hi Ru Sv Ar Eu He Ja Ko Tr Ur Zh

100-shot

Random 94.7 90.8 94.2 93.6 89.0 87.6 92.8 94.5 87.9 87.4†‡ 94.4 88.3 75.3†‡ 82.0 88.9 86.8
Entropy 92.9 89.6 92.9 92.3 88.0 87.4 92.4 94.7 87.1 85.2 93.6 84.8 68.5 81.3 88.6 87.0
KM 94.5 91.5 93.7 93.5 89.9 88.4 94.2 95.0 87.2 85.5 94.1 86.5 72.6 81.7 88.9 87.4
LE-KM 95.2 91.8 93.7 93.8 90.0 88.6 94.0 84.3 87.5 85.6 95.0‡ 88.3 74.3 82.7†‡ 89.1 87.1
peculiarity 96.0†⋆ 91.7 94.3 94.2† 90.5† 88.7 94.2 95.1 87.7 86.7 94.9⋆ 88.4 74.6 81.8 90.9†⋆ 87.5
peculiarity-KM 95.0 92.2‡⋆ 94.8‡⋆ 94.0 90.2 89.1‡⋆ 94.6‡⋆ 95.0 87.7 86.5 94.5 88.3 74.8 82.3⋆ 90.3‡ 88.6‡⋆

500-shot

Random 99.1 94.0 95.9 94.9 90.1 89.6 94.8 95.8 87.3 90.0 96.4 90.5‡ 77.0 85.4 91.2 90.3
Entropy 99.1 91.4 95.4 94.2 89.6 89.3 94.8 96.0 88.1 89.1 95.9 89.9 76.1 85.1 90.8 90.6
KM 99.1 94.4 96.1 95.3 90.4 89.8 95.6 96.1 87.7 91.0 96.1 89.8 78.0 83.9 91.4 90.7
LE-KM 97.2 94.7 95.9 95.0 90.7‡ 89.9† 95.1 96.0 87.9 91.8†‡ 96.4 90.1 79.3†‡ 85.8 92.2 91.1†

peculiarity 99.2 94.5 96.2 95.9†⋆ 90.8⋆ 89.5 95.3 96.4† 88.4 89.9 96.4 90.6⋆ 76.4 85.5 92.2 90.4
peculiarity-KM 99.2 94.8 96.2 95.6 90.2 89.9⋆ 95.9‡⋆ 96.2 88.2 91.2⋆ 96.4 90.0 78.2⋆ 86.3‡⋆ 92.0 91.5‡⋆

1,000-shot

Random 99.1 94.6 96.5 95.4 90.4 90.4 95.5 96.7 88.2 92.3 96.6 90.9 80.3 86.4 92.8 91.7†

Entropy 99.2 92.2 96.4 94.5 90.1 90.9 95.8 96.6 87.9 92.6 96.4 90.3 78.0 86.4 91.7 90.7
KM 99.2 94.3 96.2 95.3 90.8 90.7 95.7 96.3 88.4 92.4 96.6 90.6 80.5† 87.6 92.6 90.4
LE-KM 98.3 94.4 96.5 95.4 91.0 90.8 95.5 96.6 88.5 92.6 96.7 90.6 80.4 87.6 92.5 91.5
peculiarity 99.2 94.9 96.7 96.0† 91.5† 91.0 95.8 97.1†⋆ 88.5 92.7 96.7 91.5† 79.8 87.7 92.8 90.4
peculiarity-KM 99.2 95.2‡⋆ 96.5 96.2‡ 91.5‡ 91.9‡⋆ 96.3‡⋆ 96.8 88.4 93.0‡ 96.9 91.3‡ 80.8⋆ 88.1‡⋆ 93.2‡⋆ 92.2‡⋆

Table 13: Few-shot cross-lingual transfer performance on POS tagging.

Good Poor

Bg De El Es Fr Ru Zh Ar Hi Sw Th Tr Ur Vi

100-shot

Random 78.1 76.1 75.6 78.4 78.1 76.3† 73.7 72.2 69.2 61.4 71.9 72.4 66.7 75.0
Entropy 77.9 75.9 76.0 78.7 77.9 76.0 73.9 72.5 69.1 63.3 71.9 72.1 66.5 74.7
KM 78.6 76.0 75.9 78.8 77.9 76.1 73.4 72.4† 69.0 63.6 71.7 72.7† 67.9† 75.0
GE-KM 77.9 76.0 75.9 78.8 77.9 75.6 74.1 71.5 69.4 60.5 72.1 72.3 66.5 74.9
peculiarity 78.6 76.1 76.2 78.9 78.3† 75.7 74.1 72.6⋆ 69.9† 64.0† 72.5† 72.4 66.9 75.1

500-shot

Random 77.9 76.1 75.4 78.6 78.1 76.0 73.2 71.6 69.2 64.1 72.5 72.0 66.0 75.2
Entropy 78.0 76.6 75.9 78.5 78.3 75.4 74.0 71.7 69.1 63.3 72.6 72.3 66.4 75.1
KM 77.9 77.2† 75.1 78.6 78.0 75.3 73.4 71.7 69.6 63.4 71.8 71.8 66.0 75.0
GE-KM 77.8 76.1 75.4 78.5 77.9 75.4 73.3 70.6 69.5 62.1 72.2 72.4 66.2 74.9
peculiarity 78.2 76.9 75.6 78.7 78.4 75.7 73.9 71.9 69.9† 64.6† 72.5 72.3 66.7† 75.4

1,000-shot

Random 78.3 76.5 75.9 78.8 78.2 75.5 74.7 72.5 69.9 65.0 72.8 72.2 62.5 75.5
Entropy 78.0 77.2 75.6 79.1 78.4 76.1 74.6 72.2 69.5 62.6 73.2 72.7 64.2 75.3
KM 78.2 77.2 76.0 79.1 78.0 75.6 74.5 71.5 69.1 64.5 73.0 72.1 64.8 74.9
GE-KM 78.2 76.3 75.5 79.0 78.0 75.5 74.2 71.6 69.6 63.8 72.2 73.0† 66.6 75.2
peculiarity 78.5 77.3 75.9 79.4† 78.8† 76.2 74.9 72.9† 70.2† 65.2 73.2 72.7 67.2† 75.6

Table 14: Few-shot cross-lingual transfer performance on XNLI.
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Good Poor

De Es Fr Ja Ko Zh

100-shot

Random 87.4 89.3 89.1 77.3 76.5 78.8
Entropy 87.9 89.3 89.8 77.0 77.2 82.2
KM 88.1 89.0 89.9 77.3 76.8 81.6
GE-KM 87.7 89.0 89.8 77.3 77.3 81.8
peculiarity 88.8† 89.4 90.3† 77.3 77.4 82.7†

500-shot

Random 87.6 89.4 89.5 77.4 78.1 80.8
Entropy 87.7 89.8 89.9 77.0 78.2 81.2
KM 87.4 89.5 89.6 77.0 78.0 80.9
GE-KM 87.5 89.6 89.7 75.5 77.7 81.9
peculiarity 88.4† 90.0† 90.1 77.8† 78.9† 81.9

1,000-shot

Random 87.5 88.4 89.1 77.0 77.6 81.5
Entropy 87.9 89.0 89.2 75.2 75.7 81.5
KM 87.6 89.9 89.8 76.6 77.7 81.7
GE-KM 88.0 89.9 89.7 75.7 78.0 81.1
peculiarity 88.7† 90.0 90.3† 77.4† 77.9 81.7

Table 15: Few-shot cross-lingual transfer performance on PAWS-X.
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Good Poor

De Es Fr Ja Zh

MARC-2

100-shot

Random 93.0 92.0 92.3 90.2 86.1
Entropy 93.1 92.6 92.3 91.0 86.0
KM 93.2 92.5 91.9 90.6 86.4
GE-KM 93.2 92.2 92.3 90.4 86.4
peculiarity 93.2 92.6 92.5 91.0 86.6

500-shot

Random 92.9 92.4 92.4 90.5 86.2
Entropy 93.1 92.5 92.6 91.0 86.2
KM 93.1 92.6 92.3 90.6 86.3
GE-KM 93.2 92.4 92.8 89.9 86.4
peculiarity 93.4† 93.0† 92.9 91.3† 86.4

1,000-shot

Random 93.7 92.6 92.8 90.7 86.6
Entropy 93.5 92.0 92.6 90.6 86.7
KM 93.9 92.9 92.4 90.8 86.8
GE-KM 93.5 93.0 92.7 90.8 86.1
peculiarity 94.1† 93.2 93.4† 91.2† 86.9

MARC-5

100-shot

Random 60.3 55.3 55.2 53.8 50.5
Entropy 60.2 55.6 54.9 52.7 49.0
KM 60.0 55.7 55.4 54.0 50.1
GE-KM 60.2 55.7 55.1 53.7 50.6†

peculiarity 60.6†⋆ 56.2† 55.7† 54.3† 49.9
peculiarity-KM 60.1 56.1‡ 55.5 54.2 50.7⋆

500-shot

Random 60.6 55.8 55.3 55.0† 51.4
Entropy 60.5 55.7 55.7 52.4 50.0
KM 60.8‡ 56.3 55.9 54.4 51.3
GE-KM 60.8‡ 56.3 55.5 54.5 51.7†

peculiarity 61.1†⋆ 56.5 55.9 54.3 51.0
peculiarity-KM 60.1 56.4 56.0 56.6‡⋆ 51.7⋆

1,000-shot

Random 60.9 56.4 55.9 55.4 51.9†

Entropy 60.8 56.0 55.8 53.1 50.7
KM 61.2‡ 56.5 56.0 55.6† 51.8
GE-KM 61.0 56.2 56.0 55.1 51.9†

peculiarity 61.6†⋆ 56.9†⋆ 56.5† 55.1 51.4
peculiarity-KM 60.0 56.2 56.6‡ 55.8⋆ 51.9⋆

Table 16: Few-shot cross-lingual transfer performance on MARC.
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100-shot 500-shot 1,000-shot
All Good Poor All Good Poor All Good Poor

NER

Random 9.32 2.93 16.81 11.42 4.19 20.07 12.27 4.79 21.16
Entropy 7.91 2.67 14.33 9.63 3.83 16.86 11.43 4.75 19.36
KM 9.42 3.06 16.91 11.57 4.11 20.46 12.39 4.88 21.35
LE-KM 8.82 2.53 16.17 11.19 3.99 19.76 12.38 4.86 21.30
peculiarity 8.87 3.23 15.83 10.91 4.56 18.81 11.84 5.11 20.22
peculiarity-KM 9.88 3.76 17.00 12.19 5.09 20.54 13.13 5.50 22.27

POS

Random 13.73 3.57 22.30 15.96 5.76 24.53 16.84 6.28 25.72
Entropy 12.36 2.70 20.62 15.44 5.15 24.11 16.30 5.88 25.16
KM 13.46 4.05 21.60 16.02 6.03 24.60 16.86 6.23 25.93
LE-KM 13.89 4.15 22.25 16.28 5.71 25.23 16.94 6.24 25.92
peculiarity 14.20 4.36 22.55 16.13 6.51 24.59 17.08 6.66 25.87
peculiarity-KM 14.26 4.47 22.68 16.35 6.01 25.02 17.26 6.75 26.17

XNLI

Random 0.97 0.79 1.40 1.16 0.75 1.70 1.24 1.11 1.62
Entropy 1.02 0.79 1.53 1.17 0.85 1.64 1.41 1.17 1.87
KM 1.23 0.86 1.83 0.99 0.69 1.48 1.27 1.06 1.60
GE-KM 0.94 0.79 1.24 0.89 0.51 1.32 1.39 0.94 1.92
peculiarity 1.31 1.04 1.84 1.25 0.94 1.75 1.52 1.35 1.95

PAWS-X

Random 2.99 2.61 2.97 3.90 2.86 4.32 3.47 2.33 4.09
Entropy 3.87 3.00 4.22 3.95 3.16 4.14 2.92 2.73 2.91
KM 3.69 3.01 3.97 3.78 2.88 4.04 3.96 3.11 4.16
GE-KM 3.83 2.85 4.24 3.66 2.95 3.79 3.67 3.20 3.72
peculiarity 4.01 3.45 4.28 4.23 3.45 4.52 4.18 3.45 4.36

MARC-2

Random 0.54 0.17 1.10 0.80 0.45 1.32 1.09 0.77 1.57
Entropy 0.96 0.45 1.72 0.68 0.43 1.05 1.15 0.87 1.57
KM 0.71 0.25 1.35 0.79 0.42 1.35 1.16 0.77 1.75
GE-KM 0.72 0.30 1.35 0.75 0.50 1.12 1.11 0.78 1.60
peculiarity 0.99 0.55 1.10 1.11 0.78 1.60 1.42 1.18 1.77

MARC-5

Random 0.59 0.36 0.92 1.20 0.65 2.02 1.74 1.26 2.45
Entropy 0.07 0.35 -0.35 0.45 0.76 -0.02 0.88 1.00 0.70
KM 0.63 0.48 0.95 0.63 1.10 1.65 1.81 1.35 2.50
GE-KM 0.66 0.46 0.85 1.36 0.96 1.95 1.61 1.16 2.27
peculiarity 0.75 0.91 0.50 1.21 1.23 1.17 1.83 1.71 2.00
peculiarity-KM 0.92 0.71 1.22 1.33 1.10 1.67 1.88 1.47 2.62

Table 17: Differences in accuracy between 0-shot and each n-shot model.
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(a) NER (b) POS

(c) XNLI (d) PAWS-X

(e) MARC-2 (f) MARC-5

Figure 6: Overlap rates of the examples extracted by peculiarity measured at each k. They are averaged across all
languages.
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