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Abstract

Pre-trained language models (PLMs) have been
widely used to underpin various downstream
tasks. However, the adversarial attack task has
found that PLMs are vulnerable to small pertur-
bations. Mainstream methods adopt a detached
two-stage framework to attack without consid-
ering the subsequent influence of substitution
at each step. In this paper, we formally model
the adversarial attack task on PLMs as a se-
quential decision-making problem, where the
whole attack process is sequential with two
decision-making problems, i.e., word finder
and word substitution. Considering the attack
process can only receive the final state with-
out any direct intermediate signals, we propose
to use reinforcement learning to find an ap-
propriate sequential attack path to generate ad-
versaries, named SDM-ATTACK. Extensive
experimental results show that SDM-ATTACK
achieves the highest attack success rate with
a comparable modification rate and semantic
similarity to attack fine-tuned BERT. Further-
more, our analyses demonstrate the general-
ization and transferability of SDM-ATTACK.
The code is available at https://github.
com/fduxuan/SDM-Attack.

1 Introduction

Nowadays, pre-trained language models (PLMs)
have shown strong potential in various downstream
tasks (Devlin et al., 2018; Brown et al., 2020). How-
ever, a series of studies about adversarial attack
(Jin et al., 2020; Li et al., 2020a,b) have found that
PLMs are vulnerable to some small perturbations
based on the original inputs. The adversarial attack
is essential to develop trustworthy and robust PLMs
in Artificial Intelligence (AI) community (Thiebes
et al., 2021; Marcus, 2020).

Despite the adversarial attack achieving success
in both image and speech domains (Chakraborty
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Figure 1: Illustrative example of modeling the adversar-
ial attack into sequential decision making. The entire
attack process is a sequence with two decision-making
problems, i.e., word finder and substitution, until the
adversary against the victim model is successful.

et al., 2018; Kurakin et al., 2018; Carlini and Wag-
ner, 2018), it is still far from perfect in the natural
language processing (NLP) field due to the dis-
crete nature of language (Studdert-Kennedy, 2005;
Armstrong et al., 1995). The main problem is to
find an appropriate search algorithm that can make
perturbations to mislead the victim models (i.e.,
PLMs) successfully (Morris et al., 2020; Yoo and
Qi, 2021). As mentioned in recent studies (Jin et al.,
2020), the challenges are preserving the following
properties: 1) human prediction consistency, mis-
leading the PLMs while keeping human judges
unchanged; 2) semantic similarity, keeping the se-
mantics of the original inputs; 3) language fluency,
ensuring the correctness of grammar.
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Mainstream solutions are typically a detached
two-stage framework. Specifically, they first rank
the importance scores of all tokens according to
the original input and then orderly substitute these
tokens via heuristic rules. Previous studies pro-
pose different strategies to rank the editing order
of tokens, such as temporal-based algorithm (Gao
et al., 2018), probability-weighted saliency (Ren
et al., 2019; Li et al., 2020b,a; Jin et al., 2020), and
gradient-based ranking (Yoo and Qi, 2021). How-
ever, these methods face two limitations. On the
one hand, they use a threshold to filter the unsatis-
factory substitutions at last, but neglect to integrally
consider the properties during computing impor-
tance scores. On the other hand, their editing order
only depends on the original input without con-
sidering the subsequent influence of substitution,
as computing the importance score at each step is
computationally burdensome in practice.

To solve the issues mentioned above, in this pa-
per, we formally propose to transform the adver-
sarial attack problem into a sequential decision-
making task as shown in Figure 1. Rather than
computing the importance scores all at once based
on the original input, we regard the entire attack
process as a sequence, where scores in the next step
are influenced by the editing results in the current
step. Furthermore, there are two types of decision-
making problems during each step in the attack
sequential process: 1) word finder, choosing the ap-
propriate token to edit; 2) word substitution, replac-
ing the token with a suitable substitution. Mean-
while, selecting edited tokens at each step should
take the attack success rate and crucial properties,
such as fluency, into account.

As a sequential decision-making task without
a direct signal in each step, we naturally leverage
reinforcement learning (RL) to find an appropriate
sequential attack path to generate adversaries. In
this paper, we propose a model-agnostic method
based on policy-based RL for modeling the ad-
versarial attack into Sequential Decision Making,
entitled SDM-ATTACK. Given the victim model
as the environment with designed reward functions
and the original input text as the initial state, the re-
inforced agent needs to decide on tokens to edit and
synonyms to replace sequentially, until it attacks
successfully. The experimental results show that
SDM-ATTACK achieves the highest attack success
rate with a comparable modification rate and se-
mantic similarity to attack fine-tuned BERT against

state-of-the-art baselines. Furthermore, we also
demonstrate the effectiveness, generalizability, and
transferability of SDM-ATTACK in our analysis.

The main contributions of this work are summa-
rized as the following:

• To the best of our knowledge, we are the
first to model the adversarial attack on PLMs
into a sequential decision-making problem,
where the whole attack process is sequen-
tial with two decision-making problems, i.e.,
word finder and word substitution.

• Considering the sequential attack process can
receive the final state without any direct inter-
mediate signals, we propose SDM-ATTACK

to use reinforcement learning to ask the agent
to find an appropriate attack path based on our
designed indirect reward signals yielded by
the environment.

2 Preliminaries

As for NLP tasks, given a corpus of N input texts
X = {x1,x2,x3, · · · ,xN} and an output space
Y = {y1, y2, y3, · · · , yK} containing K labels, the
language model F learns a mapping f : x → y ,
which learns to classify each input sample x ∈ X
to the ground-truth label ygold ∈ Y:

F(x) = argmax
yi∈Y

P (yi|x) (1)

The adversary of text x ∈ X can be formulated
as xadv = x + ϵ, where ϵ is a slight perturbation
to the input x. The goal is to mislead the victim
model F within a certain constraint C(xadv):

F(xadv) = argmax
yi∈Y

P (yi|xadv) ̸= F(x),

and C(xadv,x) ≥ λ
(2)

where λ is the coefficient, and C(xadv,x) usually
calculates the semantic or syntactic similarity (Cer
et al., 2018; Oliva et al., 2011) between the input x
and its corresponding adversary xadv.

Recently, the adversarial attack task has been
framed as a combinatorial optimization problem.
However, previous studies (Gao et al., 2018; Ren
et al., 2019; Yoo and Qi, 2021) address this prob-
lem without considering the subsequent influence
of substitution at each step, making attack far from
the most effective. In this paper, we formally de-
fine the adversarial attack as a sequential decision-
making task, where the decisions in the next step
are influenced by the results in the current step.
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Figure 2: The framework of SDM-ATTACK.

3 Methodology

In this section, we model the adversarial attack on
PLMs problem as a sequential decision-making
task as shown in Figure 1, where the entire attack
process is a sequence with two decision-making
problems. Considering the lack of direct signal in
each step during the attack process, we propose
a model-agnostic method, named SDM-ATTACK,
based on policy-based reinforcement learning. The
illustration is shown in Figure 2. During each step
in the attack process, the reinforced agent needs
to take two actions: 1) word finder, choosing the
appropriate token to edit; and 2) word substitu-
tion, replacing the token with a suitable substitution.
Through an attack sequence toward the input, we
obtain its adversary until the attack is successful.

3.1 Environment and Rewards

We regard the victim models (i.e., PLMs) as the
whole environment. Intuitively, the agent needs to
generate adversaries against the environment and
achieve as high a reward as possible. The t-step
environment state is our intermediate generation
xt = [wt

1,w
t
2, ...,w

t
n] containing n words, where

the initial state x0 is the original input.
Considering the lack of direct signal in each step,

our reward consists of a final discriminant signal
rd to present the state of termination and an instant
reward rt on every step. As for the final signal
rd, once the model prediction of t-step state is dif-
ferent from the initial state, the environment will
terminate this episode and yield a success signal.
However, if the model prediction does not change
when all the tokens are replaced or the maximum
number of steps is reached, a failure signal will be

given. Overall, the final signal rd is denoted as:

rd =

{
1, success
−1, failure

(3)

As for the instant reward ri for each step, we
hope that the t-step state xt can not only mislead
the victim model but also ensure semantics simi-
larity and fluency. Firstly, we design one instant
reward to evaluate attack success rates:

rattt =

{
rd, terminated
P (ygold|xt−1)− P (ygold|xt), survive

(4)
where rd is the final reward if the current episode
is terminated. Secondly, we define a punishment
by using an auto-regressive language model (LM)
to measure fluency:

rflut =
∑

i

1

|xt|(LM(xi|xt)−LM(xi|xt−1)) (5)

where LM(xi|xt) is the cross-entropy loss of the to-
ken xi in sentence xt. Thirdly, we also add seman-
tic similarity constraints as another punishment:

rsimt = Sim(x,xt−1)− Sim(x,xt) (6)

Finally, our overall instant reward rt is defined as:

rt = β1r
att
t − β2r

flu
t − β3r

sim
t (7)

3.2 Decision Making
During each step in the whole attack process, there
are two types of decision-making problems. The
first is choosing the appropriate token to edit, while
the second is replacing the token with a suitable
substitution. In RL, the agent needs to determine
the decisions according to the yielded rewards.
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Word Finder To find the appropriate token to
edit, we first employ the masked language mod-
els (MLM) as an encoder to represent the state xt.
Due to the setup of the sub-word tokenizer in MLM,
the encoder first converts xt to a token sequence
xt
token = [ot

1,o
t
2, ...,o

t
m]. We reverse the conver-

sion mapping ϕ : xt
token → xt to recover tokens

into words in need. Then we obtain the hidden
states ht = [ht

1,h
t
2, ...,h

t
m], where ht

i ∈ Rd is the
hidden state of token ot

i with d dimensions.
Furthermore, we maintain a word set W to re-

store the words of x that have been already modi-
fied as well as stop words and punctuation. We then
adopt a simple binary representation bt according
to the word set W:

bti =

{
0 ∈ Rd ϕ(ot

i) ∈W
1 ∈ Rd ϕ(ot

i) /∈W
(8)

Then, we fuse both the hidden states ht
i and the

binary representation bti to obtain the final repre-
sentation eti of the environment states:

eti = [ht
i; b

t
i] (9)

where [; ] denotes the concatenation operation.
During the process of training, we first adopt a

simple linear layer to obtain the probability and
further normalize it into a distribution. The proba-
bility distribution p(ot

i|xt) of each token at t-step
can be calculated as follows:

p(ot
i|xt) = softmax(W · eti + b) (10)

where W, b are the weight matrix and the bias vec-
tor, respectively. Then the agent samples the word
wt to substitute according to the distribution and
ensures the sampled word is not in the word set W.

During the evaluation, the agent will directly
select the token with the maximum probability at
each step, which is formulated as follows:

wt = argmax p(ot
i|xt), ϕ(ot

i) /∈W (11)

If the selected token wt is a sub-word, we re-
verse the sub-word into a complete word via the
conversion mapping ϕ as the newly selected word.

Word Substitution Following Jin et al. (2020),
we adopt synonym substitution as our strategy af-
ter obtaining selected word wt in t-step. Firstly,
we gather a synonym set Swt for wt that con-
tains top-k candidates from the external vocab-
ulary, computing via cosine similarity (Mrkšić

et al., 2016). Then, for each s ∈ Swt , we replace
wt

p with s in the sentence xt to get a substitution
xt
s = [w1, ...,wp−1, s,wp+1, ...wn]. Finally, ac-

cording to the instant reward rt in the Equation 4,
we select the substitution with the highest reward
as the final adversaries xt

adv. Meanwhile, the envi-
ronment states further updates as follows:

{
xt+1 = xt

adv

W = W ∪ {wt
p}

(12)

3.3 Agent Training
The training target is to maximize the total return
G(τ), which is an accumulated reward based on
the instant reward rt , defined in Equation 7, with
a discount factor γ ∈ [0, 1):

G(τ) =
T∑

t=1

γtrt (13)

The expected return of the decision trajectory,
i.e., attack path, is defined as follows:

J(θ) = E[G(τ)] (14)

Furthermore, we regard the agent as πθ with
parameters θ and the attack path as τ =
[(af1 , a

s
1), · · · , (afT , asT )], where aft and ast rep-

resent actions of word finder and substitution
in t-th step, respectively. The probability
of this attack path is calculated as πθ(τ) =∏T

t=1 πθ((a
f
t , a

s
t )|st), where πθ((a

f
t , a

s
t )|st) is the

probability of actions in step t based on current
environment state st. Meanwhile, we consider ast a
prior knowledge so that this probability can be sim-
plified. The gradient is calculated by REINFORCE
algorithm (Kaelbling et al., 1996):

∇J(θ) = ∇E[log πθ(τ) ·G(τ)] (15)

Detailed information of reinforce training is shown
in appendix B.

4 Experiments

4.1 Experimental Setups
Tasks and Datasets Following Li et al. (2020b);
Jin et al. (2020), we evaluate the effectiveness of
SDM-ATTACK mainly on two standard NLP tasks,
text classification and textual entailment. As for
text classification, we use diverse datasets from dif-
ferent aspects, including news topic classification
(AG’s News; Zhang et al., 2015), sentence-level
sentiment analysis (MR; Pang and Lee, 2005) and
document-level sentiment analysis (IMDB1 and

1https://datasets.imdbws.com/
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Dataset Method A-rate↑ Mod↓ Sim↑ Dataset Method A-rate ↑ Mod ↓ Sim↑

Yelp

A2T 88.3 8.1 0.68

IMDB

A2T 89.9 4.4 0.79
TextFooler 90.5 9.0 0.69 TextFooler 88.7 7.6 0.76
BERT-Attack 89.8 12.4 0.66 BERT-Attack 88.2 5.3 0.78
SDM-ATTACK 95.8 8.2 0.71 SDM-ATTACK 91.4 4.1 0.82

AG’s News

A2T 53.7 13.5 0.57

MR

A2T 58.5 12.6 0.55
TextFooler 66.2 18.4 0.52 TextFooler 80.5 15.8 0.50
BERT-Attack 74.6 15.6 0.52 BERT-Attack 83.2 12.8 0.52
SDM-ATTACK 77.9 15.3 0.53 SDM-ATTACK 85.6 12.3 0.57

SNLI

A2T 70.8 17.2 0.35

MNLI

A2T 66.0 14.4 0.45
TextFooler 84.3 17.2 0.38 TextFooler 76.5 15.0 0.45
BERT-Attack 81.9 16.5 0.38 BERT-Attack 78.1 14.0 0.46
SDM-ATTACK 85.5 15.9 0.43 SDM-ATTACK 78.7 13.8 0.49

Table 1: Automatic evaluation results of attack success rate (A-rate), modification rate (Mod), and semantic
similarity (Sim). ↑ represents the higher the better and ↓ means the opposite. The results of MNLI dataset are the
average performance of MNLI-matched and MNLI-mismatched. The best results are bolded, and the second-best
ones are underlined.

Yelp Polarity; Zhang et al., 2015). As for tex-
tual entailment, we use a dataset of sentence pairs
(SNLI; Bowman et al., 2015) and a dataset with
multi-genre (MultiNLI; Williams et al., 2017). The
statistics of datasets and more details can be found
in Appendix A. Following Jin et al. (2020); Alzan-
tot et al. (2018), we attack 1k samples randomly
selected from the test set of each task.

Baselines We compare SDM-ATTACK with re-
cent state-of-the-art studies: 1) TextFooler (Jin
et al., 2020): find important words via probabil-
ity weighted word saliency and then apply sub-
stitution with counter-fitted word embeddings. 2)
BERT-Attack (Li et al., 2020b): use mask-predict
approach to generate adversaries. 3) A2T (Yoo
and Qi, 2021): adopt faster search with gradient-
based word importance ranking algorithm. We use
open-source codes provided by the authors and
TextAttack tools (Morris et al., 2020) to implement
these baselines. Furthermore, to ensure fairness in
comparing baselines and SDM-ATTACK, we apply
constraints to all methods following Morris et al.
(2020) in Appendix C.

Victim Models We conduct the main experi-
ments on a standard pre-trained language model
BERT following (Jin et al., 2020; Li et al., 2020b).
To detect the generalization of SDM-ATTACK, we
explore the effects on more typical models as dis-
cussed in Section 5.1. All victim models are pre-
trained from TextAttack (Morris et al., 2020).

Implementation Details We adopt BERT as the
MLM model in word finder and GPT-2 (Radford
et al., 2019) to measure fluency when computing

rewards. To keep instant reward and punishment
in a similar range, we set the hyper-parameters β1
to be 1, β2 to be 1 and β3 to be 0.2. Moreover,
the discount factor γ is set to be 0.9 to achieve
a trade-off between instant reward and long-term
return. We set the episode number as M = 200
and the learning rate as α = 3e−6 with Adam as
the optimizer. In word substitution, the parameter
K of the synonyms number is 50. Our experiments
are conducted on a single NVIDIA 2080ti.

Automatic Evaluation Metrics Following pre-
vious studies (Jin et al., 2020; Morris et al., 2020),
we use the following metrics as the evaluation cri-
teria. 1) Attack success rate (A-rate): the degraded
performance after attacking target model. 2) Mod-
ification rate (Mod): the percentage of modified
words comparing to original text. 3) Semantic sim-
ilarity (Sim): the cosine similarity between the
original text and its adversary, computing via the
universal sentence encoder (USE; Cer et al., 2018).

Manual Evaluation Metrics We further manu-
ally validate the quality of the adversaries from
three challenging properties. 1) Human prediction
consistency (Con): the rate of human judgement
which is consistent with ground-truth label; 2) Lan-
guage fluency (Flu): the fluency score of the sen-
tence, measured on a Likert scale of 1 to 5 from un-
grammatical to coherent (Gagnon-Marchand et al.,
2019); 3) Semantic similarity (Simhum): the seman-
tic consistency between each input-adversary pair,
where 1 means unanimous, 0.5 means ambiguous,
0 means inconsistent.
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Dataset Con↑ Flu↑ Simhum ↑

IMDB Original 0.95 4.5 0.95SDM-ATTACK 0.90 4.3

MNLI Original 0.88 4.0 0.83SDM-ATTACK 0.79 3.7

Table 2: Manual evaluation results comparing the origi-
nal input and generated adversary by SDM-ATTACK of
human prediction consistency (Con), language fluency
(Flu), and semantic similarity (Simhum).

4.2 Results

Automatic Evaluation As shown in Table 1,
SDM-ATTACK consistently achieves the highest
attack success rate to attack BERT in both text
classification and textual entailment tasks, which
indicates the effectiveness of SDM-ATTACK. Fur-
thermore, SDM-ATTACK mostly obtains the best
performance of modification and similarity met-
rics, except for AG’s News, where SDM-ATTACK

achieves the second-best. For instance, our frame-
work only perturbs 4.1% of the words on the IMDB
datasets, while the attack success rate is improved
to 91.4% with a semantic similarity of 0.82. Al-
though A2T performs better in modification and
similarity metrics in Yelp and AG’s News, their at-
tack success rate is always much lower than SDM-
ATTACK, even other baselines. Because the mod-
ification and similarity metrics only consider the
successful adversaries, we conjecture that A2T can
only solve the inputs which are simpler to attack.
In general, our method can simultaneously satisfy
the high attack success rate with a lower modifica-
tion rate and higher similarity. Furthermore, We
find that the attack success rate on document-level
datasets, i.e., Yelp and IMDB, are higher than the
other sentence-level datasets, which indicates that
it is easier to mislead models when the input text
is longer. The possible reason is the victim model
tends to use surface clues rather than understand
them to make predictions when the context is long.

Manual evaluation In manual evaluation, we
first randomly select 100 samples from successful
adversaries in IMDB and MNLI datasets and then
ask three crowd-workers to evaluate the quality of
the original inputs and our generated adversaries.
The results are shown in Table 2. As for the human
prediction consistency, we regard the original in-
puts as a baseline. Taking IMDB as an example, hu-
mans can correctly judge 95% of the original inputs
while they can maintain 90% accuracy to our gen-

Dataset Model A-rate↑ Mod↓ Sim↑
RoBERTa 84.4 13.9 0.52

MR WordCNN 72.1 10.3 0.48
WordLSTM 80.7 8.9 0.56

RoBERTa 88.3 8.3 0.70
IMDB WordCNN 89.2 3.3 0.85

WordLSTM 89.8 5.4 0.75

SNLI InferSent 78.7 17.0 0.42
ESIM 79.0 17.2 0.41

Table 3: Attack results against other models.

Dataset Method A-rate↑ Mod↓ Sim↑

AG’s News BERT-Attack 74.6 15.6 0.52
SDM-ATTACK-mlm 76.2 15.0 0.51

MR BERT-Attack 83.2 12.8 0.52
SDM-ATTACK-mlm 84.3 11.5 0.53

Table 4: Attack results of different substitution strate-
gies, where SDM-ATTACK-mlm is replaced with the
same strategy of word finder as BERT-Attack.

erated adversaries, which indicates SDM-ATTACK

can mislead the PLMs while keeping human judges
unchanged. The language fluency scores of adver-
saries are close to the original inputs, where the
gap scores are within 0.3 on both datasets. Further-
more, the semantic similarity scores between the
original inputs and our generated adversaries are
0.95 and 0.83 in IMDB and MNLI, respectively. In
general, SDM-ATTACK can satisfy the challeng-
ing demand of preserving the three aforementioned
properties. Detailed design of manual evaluation
and more results are shown in appendix E.

5 Analyses

5.1 Generalization

We detect the generalization of SDM-ATTACK in
two aspects, 1) attack more language models and
2) adapt to more substitution strategies. Firstly, we
apply SDM-ATTACK to attack extensive victim
models, such as traditional language models (e.g.,
WordCNN) and other state-of-the-art PLMs (e.g.,
RoBERTa; Liu et al., 2019). The results of text clas-
sification tasks in table 3 show that SDM-ATTACK

not only has better attack effects against Word-
CNN and WordLSTM, but also misleads RoBERTa,
which is a more robust model. For example, on
the IMDB datasets, the attack success rate is up
to 89.2% against WordCNN with a modification
rate of only about 3.3% and a high semantic sim-
ilarity of 0.85. As for the textual entailment task,
SDM-ATTACK can also achieve remarkable attack
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Figure 3: The time cost according to varying sentence
lengths in the IMDB dataset, smoothed with Gaussian
function where kernel size is 5.

success rates against InferSent and ESIM.
Secondly, although we directly adopt the word

substitution strategy in Textfooler, this strategy
can actually be replaced by other methods. To
demonstrate this assumption, we further replace
our word substitution strategy with the mask-fill
way in BERT-attack, named SDM-ATTACK-mlm.
As shown in Table 4, SDM-ATTACK-mlm com-
pletely beat BERT-Attack, indicating the part of
word substitution of SDM-ATTACK has generaliza-
tion ability to extend to different types of strategies
and archives high performance. More results are
displayed in appendix E.

5.2 Efficiency

In this section, we probe the efficiency according
to varying sentence lengths in the IMDB dataset
as shown in Figure 3. The time cost of SDM-
ATTACK is surprisingly mostly better than A2T,
which mainly targets obtaining cheaper compu-
tation costs with lower attack success rates in
Table 1. Meanwhile, SDM-ATTACK can obvi-
ously beat BERT-attack and TextFooler, which
need to conduct a model forward process for each
token. Furthermore, with the increase of sentence
lengths, SDM-ATTACK and A2T maintain a sta-
ble time cost, while the time cost of BERT-attack
and TextFooler is exploding. These phenomena
show the efficiency advantage of SDM-ATTACK,
especially in dealing with long texts.

5.3 Transferability

We evaluate the transferability of SDM-ATTACK to
detect whether the SDM-ATTACK trained on one
dataset can perform well on other datasets. We con-
duct experiments on a series of text classification
tasks and use the randomly initialized BERT as a

Yelp IMDB MR AG’s News

Yelp 87.6 85.8 40.5 43.6
IMDB 82.9 89.3 51.4 43.4

MR 81.8 88.2 66.5 39.6
AG’s News 62.4 59.2 29.9 53.2
Random 58.9 56.1 27.8 38.3

Table 5: Transferability evaluation of SDM-ATTACK
generator on text classification task against BERT. Row
i and column j is the attack success rate of SDM-
ATTACK trained on dataset i evaluated on dataset j.

Dataset Acc↑ A-rate↑ Mod↓ Sim↑
Yelp 97.4 95.8 8.2 0.71
+Adv Train 97.0 82.5 13.5 0.63

IMDB 91.6 91.4 4.1 0.82
+Adv Train 90.5 79.2 8.5 0.74

SNLI 89.1 85.5 15.9 0.43
+Adv Train 88.2 78.6 17.1 0.42

Table 6: The results of comparing the original training
with adversarial training with our generated adversaries.
More results can be found in Appendix D.

baseline. As shown in Table 5, SDM-ATTACK has
high transferability scores across different datasets,
which are consistently higher than random. In de-
tail, the performances among Yelp, IMDB and MR,
which all belong to sentiment analysis, are higher
than AG’s News. Moreover, IMDB and MR are
corpora about movies where SDM-ATTACK tends
to learn a general attack strategy in this field and
can transfer well to each other.

5.4 Adversarial Training

We further investigate to improve the robustness
of victim models via adversarial training. Specif-
ically, we fine-tune the victim model with both
original training datasets and our generated adver-
saries, and evaluate it on the same test set. As
shown in Table 6, compared to the results with
the original training datasets, adversarial training
with our generated adversaries can maintain close
accuracy, while improving performance on attack
success rates, modification rates, and semantic sim-
ilarity. The victim models with adversarial training
are more difficult to attack, which indicates that our
generated adversaries have the potential to serve as
supplementary corpora to enhance the robustness
of victim models.
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Method Text (MR; Negative) Result Mod↓ Sim↑ Flu↑

Original Davis is so enamored of her own creation that she can not see
how insufferable the character is. - - - 5

A2T Davis is so enamored of her own institution that she can not
behold how unforgivable the hallmark is. Failure 22.2 0.16 3

TextFooler Davis is well enamored of her own infancy that she could not
admire how infernal the idiosyncrasies is. Success 33.3 0.23 3

BERT-Attack Davis is often enamoted of her own generation that she can not
see how insuffoure the queen is. Failure 27.8 0.09 2

SDM-ATTACK
Davis is so captivated of her own creation that she can’t see how
indefensible the character is. Success 11.1 0.57 5

Table 7: Adversaries generated by SDM-ATTACK and baselines in MR dataset. The replaced words are highlighted
in blue. Failure indicates the adversary fails to attack the victim model and success means the opposite.

5.5 Case Study

Table 7 shows adversaries produced by SDM-
ATTACK and the baselines. Overall, the perfor-
mance of SDM-ATTACK is significantly better
than other methods. For this sample from the MR
dataset, only TextFooler and SDM-ATTACK suc-
cessfully mislead the victim model, i.e., changing
the prediction from negative to positive. However,
TextFooler modifies twice as many words as SDM-
ATTACK, demonstrating our work has found a more
suitable modification path. Adversaries generated
by A2T and BERT-Attack are failed samples due to
the low semantic similarity. BERT-Attack even gen-
erates an invalid word “enamoted" due to its sub-
word combination algorithm. We also ask crowd-
workers to give a fluency evaluation. Results show
SDM-ATTACK obtains the highest score of 5 as
the original sentence, while other adversaries are
considered difficult to understand, indicating SDM-
ATTACK can generate more natural sentences.

6 Related Work

Adversarial attack has been well-studied in im-
age and speech domains (Szegedy et al., 2013;
Chakraborty et al., 2018; Kurakin et al., 2018;
Carlini and Wagner, 2018). However, due to the
discrete nature of language, the adversarial attack
against pre-trained language models is much more
difficult. Earlier works mainly focus on designing
heuristic rules to generate adversaries, including
swapping words (Wei and Zou, 2019), transform-
ing syntactic structure (Coulombe, 2018), and para-
phrasing by back-translation (Ribeiro et al., 2018;
Xie et al., 2020). However, these rule-based meth-
ods are label-intensive and difficult to scale.

Recently, adversarial attack in NLP is framed as

a combinatorial optimization problem. Mainstream
studies design a series of search algorithms with
two detached stages In the first stage, they itera-
tively search for modification positions, including
saliency-based ranking (Liang et al., 2017; Ren
et al., 2019; Jin et al., 2020; Garg and Ramakrish-
nan, 2020), gradient-based descent algorithm (Sato
et al., 2018; Yoo and Qi, 2021), and temporal-based
searcher (Gao et al., 2018). In the second stage,
a series of studies designs different substitution
strategies, including dictionary method (Ren et al.,
2019), word embeddings (Kuleshov et al., 2018; Jin
et al., 2020) or language models (Li et al., 2020b;
Garg and Ramakrishnan, 2020; Li et al., 2020a). In
this paper, we formally propose to define the adver-
sarial attack task as a sequential decision-making
problem, further considering that scores in the next
step are influenced by the editing results in the
current step.

The other line of recent studies is sampling-
based methods. Alzantot et al. (2018) and Wang
et al. (2019) apply genetic-based algorithm, Zang
et al. (2019) propose a particle swarm optimization-
based method, and Guo et al. (2021) generate adver-
saries via distribution approximate sampling. How-
ever, their execution time is much more expensive
due to the properties of sampling, so it is unlikely
to generate large-scale adversarial samples. In ad-
dition, Zou et al. (2019) conducts reinforcement
learning on attacking the neural machine transla-
tion task, but their search path is fixed from left to
right. In this paper, SDM-ATTACK can determine
any search order to find the appropriate attack path.

7 Conclusion

In this paper, we formally define the adversarial at-
tack task as a sequential decision-making problem,
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considering the entire attack process as sequence
with two types of decision-making problems, i.e.,
word finder and substitution. To solve this problem
without any direct signals of intermediate steps,
we propose to use policy-based RL to find an
appropriate attack path, entitled SDM-ATTACK.
Our experimental results show that SDM-ATTACK

achieves the highest attack success rate. In this
paper, we use our designed rewards as instant sig-
nals to solve these two decision-making problems
approximately. We will further try to adopt hierar-
chical RL to optimize the solution.

8 Limitations

We define the adversarial attack task as a sequential
decision-making problem and apply policy-based
reinforcement learning to model it. This work must
follow this assumption: the decision process con-
forms to Markov decision process (MDP) that the
conditional probability distribution of the future
state depends only on the current state. Meanwhile,
reinforcement learning training requires additional
time costs and the results may be unstable.

We only conduct the experiments on two NLP
tasks with six selected datasets, which are all En-
glish corpus. Furthermore, our experimental results
are mainly for BERT, with RoBERTa supplemented
in the analysis. Thus, we lack the evaluation of
other novel pre-trained language models, such as
ELECTRA (Clark et al., 2020) and XLNET (Yang
et al., 2019). Therefore, our work lacks multi-task,
multi-model and multilingual verification in terms
of generalization and transferability.

9 Ethics Statement

We declare that this article is in accordance with the
ethical standards of ACL Code of Ethics. Any third
party tools used in this work are licensed from their
authors. All crowd-workers participating in the
experiments are paid according to the local hourly
wages.

10 Acknowledgment

We would like to thank anonymous reviewers for
their insightful and constructive feedback. We ap-
preciate Peng Li and Shuo Wang for their valuable
discussions. We thank Qianlin Liu, Yanqi Jiang and
Yiwen Xu for the crowdsourced work. This work
is supported by the National Key R&D Program
of China (2022ZD0160502) and the National Nat-

ural Science Foundation of China (No. 61925601,
62276152, 62236011).

References
Moustafa Alzantot, Yash Sharma, Ahmed Elgohary,

Bo-Jhang Ho, Mani Srivastava, and Kai-Wei Chang.
2018. Generating natural language adversarial exam-
ples. arXiv preprint arXiv:1804.07998.

David F Armstrong, William C Stokoe, and Sherman E
Wilcox. 1995. Gesture and the nature of language.
Cambridge University Press.

Samuel R Bowman, Gabor Angeli, Christopher Potts,
and Christopher D Manning. 2015. A large annotated
corpus for learning natural language inference. arXiv
preprint arXiv:1508.05326.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. CoRR,
abs/2005.14165.

Nicholas Carlini and David Wagner. 2018. Audio adver-
sarial examples: Targeted attacks on speech-to-text.
In 2018 IEEE security and privacy workshops (SPW),
pages 1–7. IEEE.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua,
Nicole Limtiaco, Rhomni St John, Noah Constant,
Mario Guajardo-Cespedes, Steve Yuan, Chris Tar,
et al. 2018. Universal sentence encoder. arXiv
preprint arXiv:1803.11175.

Anirban Chakraborty, Manaar Alam, Vishal Dey, Anu-
pam Chattopadhyay, and Debdeep Mukhopadhyay.
2018. Adversarial attacks and defences: A survey.
arXiv preprint arXiv:1810.00069.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and
Christopher D. Manning. 2020. Electra: Pre-training
text encoders as discriminators rather than genera-
tors.

Claude Coulombe. 2018. Text data augmentation made
simple by leveraging nlp cloud apis. arXiv preprint
arXiv:1812.04718.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Jules Gagnon-Marchand, Hamed Sadeghi, Md Haidar,
Mehdi Rezagholizadeh, et al. 2019. Salsa-text: self

7330

http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/2003.10555
http://arxiv.org/abs/2003.10555
http://arxiv.org/abs/2003.10555


attentive latent space based adversarial text genera-
tion. In Canadian Conference on Artificial Intelli-
gence, pages 119–131. Springer.

Ji Gao, Jack Lanchantin, Mary Lou Soffa, and Yanjun
Qi. 2018. Black-box generation of adversarial text
sequences to evade deep learning classifiers. In 2018
IEEE Security and Privacy Workshops (SPW), pages
50–56. IEEE.

Siddhant Garg and Goutham Ramakrishnan. 2020. Bae:
Bert-based adversarial examples for text classifica-
tion. arXiv preprint arXiv:2004.01970.

Chuan Guo, Alexandre Sablayrolles, Hervé Jégou, and
Douwe Kiela. 2021. Gradient-based adversarial
attacks against text transformers. arXiv preprint
arXiv:2104.13733.

Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter
Szolovits. 2020. Is bert really robust? a strong base-
line for natural language attack on text classification
and entailment. In Proceedings of the AAAI con-
ference on artificial intelligence, volume 34, pages
8018–8025.

Leslie Pack Kaelbling, Michael L Littman, and An-
drew W Moore. 1996. Reinforcement learning: A
survey. Journal of artificial intelligence research,
4:237–285.

Volodymyr Kuleshov, Shantanu Thakoor, Tingfung Lau,
and Stefano Ermon. 2018. Adversarial examples for
natural language classification problems.

Alexey Kurakin, Ian Goodfellow, Samy Bengio, Yin-
peng Dong, Fangzhou Liao, Ming Liang, Tianyu
Pang, Jun Zhu, Xiaolin Hu, Cihang Xie, et al. 2018.
Adversarial attacks and defences competition. In The
NIPS’17 Competition: Building Intelligent Systems,
pages 195–231. Springer.

Dianqi Li, Yizhe Zhang, Hao Peng, Liqun Chen, Chris
Brockett, Ming-Ting Sun, and Bill Dolan. 2020a.
Contextualized perturbation for textual adversarial
attack. arXiv preprint arXiv:2009.07502.

Linyang Li, Ruotian Ma, Qipeng Guo, Xiangyang Xue,
and Xipeng Qiu. 2020b. Bert-attack: Adversar-
ial attack against bert using bert. arXiv preprint
arXiv:2004.09984.

Bin Liang, Hongcheng Li, Miaoqiang Su, Pan Bian,
Xirong Li, and Wenchang Shi. 2017. Deep
text classification can be fooled. arXiv preprint
arXiv:1704.08006.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Gary Marcus. 2020. The next decade in ai: four steps
towards robust artificial intelligence. arXiv preprint
arXiv:2002.06177.

John X Morris, Eli Lifland, Jin Yong Yoo, Jake Grigsby,
Di Jin, and Yanjun Qi. 2020. Textattack: A frame-
work for adversarial attacks, data augmentation,
and adversarial training in nlp. arXiv preprint
arXiv:2005.05909.
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A Datasets

We conduct experiments on the following datasets
of two NLP tasks and detailed statistics are dis-
played in Table 8:

• Text Classification: (1) Yelp (Zhang et al.,
2015): A dataset for binary sentiment classi-
fication on reviews, constructed by consider-
ing stars 1 and 2 negative, and 3 and 4 pos-
itive. (2) IMDB: A document-level movie
review dataset for binary sentiment analysis.
(3) MR (Pang and Lee, 2005): A sentence-
level binary classification dataset collected
from Rotten Tomatoes movie reviews. (4)
AG’s News (Zhang et al., 2015): A collec-
tion of news articles. There are four topics
in this dataset: World, Sports, Business, and
Science/Technology.

• Textual Entailment: (1) SNLI (Bowman
et al., 2015): A dataset of human-written En-
glish sentence pairs and manually annotated
labels of entailment, neutral and contradiction.
(2) MNLI (Williams et al., 2017): Another
crowd-sourced collection of sentence pairs
labeled with textual entailment information.
Compare to SNLI, it includes more complex
sentences, e.g, enres of spoken and written
text.

B Training Algorithm

The training process is shown in Algorithm 1.
Since aft is chosen through a probability distri-
bution, the agent is encouraged to explore more
possible paths. The instant reward rt is obtained
from environment after performing both two ac-
tions actions. Once the termination signal is raised,
the environment will terminate this current episode
and update the agent’s parameters via a policy gra-
dient approach. The expected return of decision
trajectory is defined as follows:

J(θ) = E[G(τ)] (16)

Thus the gradient is calculated by REINFORCE
algorithm (Kaelbling et al., 1996):

∇J(θ) = ∇E[log πθ(τ) ·G(τ)] (17)

Then the expectation over the whole sequence is
approximated by Monte Carlo simulations and can
be expressed as follows:

∇J(θ) = 1

M

M∑

m=1

∇ log πθ(τ
(m))G(τ (m)) (18)

Dataset Train Test Avg Len Classes

Yelp 560k 38k 152 2
IMDB 25k 25k 215 2
AG’s News 120k 7.6k 73 4
MR 9k 1k 20 2

SNLI 570k 3k 8 3
MNLI 433k 10k 11 3

Table 8: Overall statistics of datasets.

Algorithm 1 Reinforce Training

1: Initialization: agent πθ with parameters θ,
episode number M

2: for i← 1 to M do
3: initialize t← 1
4: while not receive termination signal do
5: get environment state st
6: compute πθ((a

f
t , a

s
t )|st) ∽ πθ(a

f
t |st)

7: sample aft based on probability
8: select ast from prior knowledge
9: compute reward rt

10: update t← t+ 1
11: end while
12: initialize G(τ) ← 0
13: for j ← T to 1 do
14: G(τ)← γG(τ) + rj
15: accumulate Jj(θ)
16: end for
17: update θ ← θ + α∇J(θ)
18: end for

where [τ (1), τ (2), ..., τ (M)] are M samples of tra-
jectories. The discount factor γ enables both long-
term and immediate effects to be taken into account
and trajectories with shorter lengths are encour-
aged.

We randomly select 2500 items from the train-
ing corpus for training the agent of each dataset.
The average convergence time is approximately be-
tween 2-16 hours, related to the length of the input.
When attacking large batches of samples, the im-
pact of training cost is negligible compared to the
cumulative attack time cost. During training, We
adopt random strategies and short-sighted strate-
gies in the initial stage for early exploration and to
obtain better seeds.

C Implementation Constraint

In order to make the comparison fairer, we set the
following constraints for SDM-ATTACK as well as
all baselines: (1) Max modification rate: To better
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Dataset Acc↑ A-rate↑ Mod↓ Sim↑
Yelp 97.4 95.8 8.2 0.71
+Adv Train 97.0 82.5 13.5 0.63

IMDB 91.6 91.4 4.1 0.82
+Adv Train 90.5 79.2 8.5 0.74

AG’s News 94.6 77.9 15.3 0.53
+Adv Train 91.8 50.6 23.3 0.50

MR 96.9 85.6 12.3 0.57
+Adv Train 92.4 72.0 16.7 0.57

SNLI 89.1 85.5 15.9 0.43
+Adv Train 88.2 78.6 17.1 0.42

MNLI 84.5 78.7 13.8 0.49
+Adv Train 76.8 58.6 15.2 0.49

Table 9: Adversarial training results.

maintain semantic consistency, we only keep ad-
versarial samples with less than 40% of the words
to be perturbed. (2) Part-of-speech (POS): To
generate grammatical and fluent sentences, we use
NLTK tools2 to filter candidates that have a differ-
ent POS from the target word. This constraint is
not employed on BERT-Attack. (3) Stop words
preservation: the modification of stop words is
disallowed and this constraint helps avoid gram-
matical errors. (4) Word embedding distance:
For Textfooler, A2T and SDM-ATTACK, we only
keep candidates with word embedding cosine simi-
larity higher than 0.5 from synonyms dictionaries
(Mrkšić et al., 2016). For mask-fill methods, follow-
ing BERT-Attack, we filter out antonyms (Li et al.,
2020b) via the same synonym dictionaries for sen-
timent classification tasks and textual entailment
tasks.

D Tuning with Adversaries

Table 9 displays adversarial training results of all
datasets. Overall, after fine-turned with both origi-
nal training datasets and adversaries, victim model
is more difficult to attack. Compared to original re-
sults, accuracy of all datasets is barely affected,
while attack success rate meets an obvious de-
cline. Meanwhile, attacking model with adversarial
training leads to higher modification rate, further
demonstrating adversarial training may help im-
prove robustness of victim models.

E Supplementary Results

At the beginning of manual evaluation, we provided
some data to allow crowdsourcing workers to unify

2https://www.nltk.org/

Dataset Con↑ Flu↑ Simhum ↑

IMDB
Original 0.95 4.5
TextFooler 0.84 4.0 0.88
Bert-Attack 0.83 4.2 0.90
SDM-ATTACK 0.90 4.3 0.95

MNLI Original 0.88 4.0
TextFooler 0.77 3.5 0.80
Bert-Attack 0.77 3.6 0.81
SDM-ATTACK 0.79 3.7 0.83

Table 10: Manual evaluation results comparing the orig-
inal input and generated adversary by attack method of
human prediction consistency (Con), language fluency
(Flu), and semantic similarity (Simhum).

Dataset Method A-rate↑ Mod↓ Sim↑

Yelp BERT-Attack 89.8 12.4 0.66
SDM-ATTACK-mlm 90.0 10.6 0.65

IMDB BERT-Attack 88.2 5.3 0.78
SDM-ATTACK-mlm 88.5 5.1 0.78

AG’s News BERT-Attack 74.6 15.6 0.52
SDM-ATTACK-mlm 76.2 15.0 0.51

MR BERT-Attack 83.2 12.8 0.52
SDM-ATTACK-mlm 84.3 11.5 0.53

Table 11: Attack results of different substitution strate-
gies, where SDM-ATTACK-mlm is replaced with the
same strategy of word finder as BERT-Attack.

the evaluation standards. We also remove the data
with large differences when calculating the average
value to ensure the reliability and accuracy of the
evaluation results. More manual evaluation results
are shown in Table 10.

Table 11 displays the generalization ability of
SDM-ATTACK with mask-fill strategy. However,
the improvement effect is not particularly obvi-
ous. The mask-fill method makes the current candi-
date synonyms also affected by the sequence states.
Compared to a fixed synonym dictionary, it has a
larger prior knowledge and changing action space,
which makes it harder to train the agent. Only in-
creasing the size of the training corpus is not very
effective. We will try adopting hierarchical RL to
further solve this problem in the future.
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