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Abstract

Answering complex logical queries is a chal-
lenging task for knowledge graph (KG) reason-
ing. Recently, query embedding (QE) has been
proposed to encode queries and entities into the
same vector space, and obtain answers based on
numerical computation. However, such models
obtain the node representations of a query only
based on its predecessor nodes, which ignore
the information contained in successor nodes.
In this paper, we proposed a Bi-directional Di-
rected Acyclic Graph neural network (BiDAG)
that splits the reasoning process into predic-
tion and calibration. The joint probability of
all nodes is considered by applying a graph
neural network (GNN) to the query graph in
the calibration process. By the prediction in
the first layer and the calibration in deep lay-
ers of GNN, BiDAG can outperform previous
QE based methods on FB15k, FB15k-237, and
NELL995.

1 Introduction

Knowledge Graphs (KGs) organize world knowl-
edge as interlinked triples which describe entities
and their relationships (Ji et al., 2020). Compared
with link prediction (Rossi et al., 2021), answer-
ing logical queries (i.e., complex query answering,
CQA (Wang et al., 2021), as shown in Figure 1
(A)) is a more challenging task because it needs to
perform first-order logic (FOL) operators such as
conjunction (∧), disjunction (∨), and negation (¬).

Recently, Query Embedding (QE) models
(Hamilton et al., 2018; Ren et al., 2020) have been
proposed to jointly encode logical queries and en-
tities into the same vector space, and then retrieve
answers (entities) based on the similarity scores.

Although QE models can obtain answers in lin-
ear time and implicitly reason over incomplete KGs
by iteratively predicting the representation of inter-
mediate and target nodes, such models obtain the
representation of the current node only based on its
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Figure 1: An Example and its corresponding computa-
tion graph of CQA.

predecessor nodes, which causes (1) The joint prob-
ability of all nodes in the query graph is ignored.
Take the example in Figure 1, the probability dis-
tribution of node V 1 will be more concentrated in
Japan and China after considering node A1. (2)
The information contained in successor nodes is
ignored. As shown in Figure 1, the type of node V 1
can only be country after considering the successor
relation nationality.)

To address the above drawbacks, in this paper,
we propose a novel QE based method called Bi-
directional Directed Acyclic Graph neural network
(BiDAG), which splits the reasoning process into
the following two processes: (1) Prediction is used
to obtain the initial representation of nodes by ag-
gregating the information of predecessor nodes,
which is similar to previous QE models. (2) Cali-
bration. In this process, the original unidirectional
query graph is extended to a bidirectional graph,
then we apply GNN to the bidirectional graph. In
this way, BiDAG can take the joint probability into
account, as each node is continuously calibrated by
information of its predecessor and successor nodes.

Our contributions can be summarized as follows:
(1) We propose a framework that predicts first and
then calibrates in CQA, which enables the model to
take the joint probability of all nodes into account.
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(2) We conducted experiments on three standard
benchmarks, and show that calibration can improve
model performance significantly. The source codes
and data can be found on https://github.com/
YaooXu/BiDAG.

2 Related Work

Modeling entity and query representations and log-
ical operators are critical points of QE models.
GQE (Hamilton et al., 2018) answers the conjunc-
tive queries by representing queries and entities
as points in Euclidean space. To represent queries
with a large set of answer entities, Query2Box (Ren
et al., 2020) utilized hyper-rectangles to encode
queries. By converting union queries into Disjunc-
tive Normal Form (DNF) (Davey and Priestley,
2002), Query2Box can handle arbitrary existential
positive first-order (EPFO) queries (i.e., queries
that include any set of ∧,∨,∃). To further sup-
port the negation operator (¬), BetaE (Ren and
Leskovec, 2020) was proposed to support a full
set of operations in FOL by encoding entities and
queries into Beta distributions. MLPMix (Amayue-
las et al., 2022) utilized MLP-mixer (Tolstikhin
et al., 2021) to model logical operators. By encod-
ing each query into multiple points in the vector
space, Query2Particles (Bai et al., 2022) can re-
trieve a set of diverse answers from the embedding
space. In this paper, we not only predict the inter-
mediate and target node representations but also
constantly calibrate them by modeling the joint
probability of all nodes in the query graph.

3 Preliminary

In this section, we formally describe the task of
complex query answering over KGs. We denote
a KG as G = (V,R), where v ∈ V represents an
entity, and each r ∈ R represents a binary function
as r : V × V → {0, 1} which indicates whether
a directed relationship r exists between a pair of
entities.

First-order logic queries The complex queries
in KGs are described in logic form with first-order
logic (FOL) operators such as existential quantifi-
cation (∃), conjunction (∧), disjunction (∨), and
negation (¬). A complex query q consists of a set
of anchor entities Va ⊆ V , some existential quanti-
fied variables V1, ...Vk, and a single target variable
V?. The disjunctive normal form (DNF) of a FOL
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Figure 2: Illustration of Prediction and Calibration.
Gray/blue nodes indicate nodes whose representations
haven’t/have been computed. Yellow nodes indicate
nodes whose representations are computed or updated.
Green lines indicate the flow of the message.

query q is defined as follows:

q[V?] = V? : ∃V1, ..., Vk : (e11 ∧ ... ∧ e1n1) ∨ ...

∨(em1 ∧ ... ∧ emnm)
(1)

where each eij represents a literal contain-
ing anchor node or variables, i.e., eij =
r(va, V

′) or r(V, V ′), where va ∈ Va, V ∈
{V1, ...Vk}, V ′ ∈ {V?, V1, ...Vk}. The goal of
CQA is finding the answer set S = {v|v ∈
V, q[v] = 1}.

Computation Graph Each logical query can
convert to a corresponding computation graph in
the form of directed acyclic graph (DAG, as shown
in Figure 1 (B)), where each node corresponds to
an entity, and each edge corresponds to a logical
operation. The logical operations are defined as
follows.
(1) Relation projection: Given a set of entities
S ⊆ V and a relation r ∈ R, the relation projec-
tion will return entities ∪v∈SPr(v) related to v ∈ S
via r, where Pr(v) = {v′ ∈ V : r(v, v′) = 1}.
(2) Intersection/union: Given sets of entities
{S1, ..., Sn}, compute their intersection ∩n

i=1Si or
union ∪n

i=1Si.
It should be noticed that, in QE models, all these

operations are executed in the embedding space.
So, we can obtain the target node representation
by iteratively computing the node representation
following the neural logic operators in the DAG.

4 Bi-directional Directed Acyclic Graph
Neural Network

The key idea of BiDAG is utilizing information
of predecessor nodes to obtain the current node
representation and then calibrating the representa-
tion with global information, as shown in Figure
2. Specifically, BiDAG includes two modules: 1)
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Representation prediction module; 2) Represen-
tation calibration module. In the view of GNN,
BiDAG can be regarded as the stack of one predic-
tion module (the first layer) and multiple calibration
modules (the deep layers).

4.1 Representation prediction
In this module, we define neural logic operations.
We can obtain the representation of each node by
applying logical operations based on the predeces-
sor node representations.

Projection Given a node embedding h and an
edge embedding r, the projection operator P out-
puts a new node embedding h′ = P (h, r). Com-
pared with the geometric projection operator and
multi-layer perceptron (MLP) used in the previous
works (Hamilton et al., 2018; Ren and Leskovec,
2020), we use the gates mechanism to dynamically
adjust the transformation of each node embedding
under the specific relation, which is implemented
by Gated Recurrent Units (GRU) (Cho et al., 2014):
h′ = GRU(r,h), where r, h, and h′ are treated
as the input, past state, and updated state/output of
a GRU.

Intersection We model the intersection of a set
of query embeddings {q1, ..., qn} as the weighted
sum of them, which can be regarded as perform-
ing sets intersection in the embedding space. We
implement it by adopting attention mechanisms:

qinter =
∑

i

αi · qi, αi =
exp(MLP (qi))∑
j exp(MLP (qj))

(2)

where qinter is the intersection of these query em-
beddings, αi is the weight of query embedding qi,
MLP is a multi-layer perceptron that takes qi as
input and outputs a single attention scalar.

Union Following Ren, Hu, and Leskovec (2020),
we handle queries with union operators by trans-
forming them into equivalent Disjunctive Normal
Form (DNF). By doing so, the original query can be
transformed into the union of n conjunctive queries
{q1, ...., qn} that without union operator. Then, we
can apply the existing methods to obtain the embed-
dings of these conjunctive queries as {q1, ...., qn}.
The distance between a query q and the answer
entity e is defined as:

d(q, e) = min({sim(q1, e), ..., sim(qn, e)}) (3)

where {q1, ..., qn} are the embeddings of these
conjunctive queries, e is the embedding of entity e,
sim is a similarity function such as cosine function.

4.2 Representation calibration
In this module, the representation of each node
is calibrated continuously by context information
contained in the predecessor and successor nodes,
which can address the drawback of ignoring the
joint probability of all nodes.

Context information aggregating is completed
by multi-head attention mechanism (Vaswani et al.,
2017) in GNN, which is first introduced by GAT
(Velickovic et al., 2018). Compared to the atten-
tion mechanism used in GAT which uses a shared
linear transformation for all nodes. We make the
following improvements: (1) We extend the graph
attention mechanisms to handle directed relational
graphs like KGs; (2) We introduce three weight
matrices Q ∈ Rd×d,K,V ∈ Rd×2d as query,
key, and value matrix to enable the model to cap-
ture the higher-level information among neighbor
nodes. (3) To enable the model to choose what to
remain and update, we use GRU to update node
representation in calibration, which is first used
by (Li et al., 2017). (4) To avoid the calibrated
representation being too different from the original
representation, we adopt residual connection (He
et al., 2015) to make adjustments to the original
representation at each step. The representation for
node j at (t + 1)-th calibration defined formally
as follows (for simplicity, we only consider the
single-head self-attention):

ht+1
j = ht

j +GRU(
∑

i∈N (j)

αi,jV([ht
i ∥ ei,j ]),h

t
j), (4)

αi,j =
exp (LeakyReLU(wi,j))∑

k∈N (j) exp (LeakyReLU(wi,k))
, (5)

wi,j =
(Qht

i)
T (K[ht

j ∥ ei,j ])√
d

. (6)

where ∥ represents the concatenation operation, ht
j

is the representation for node j after t-th calibration,
ei,j is the representation of edge from node i to
j, αi,j is the attention coefficients, N (j) is the
neighbor nodes of node j.

4.3 Model Training
Our objective is to minimize the distance between
the query embedding and its answers while maxi-
mizing the distance between the query embedding
and other random entities via negative sampling
(Bordes et al., 2013), which we define as follows:

L = −log σ(γ − d(q, e))−
k∑

j=1

1

k
log σ(d(q, ej)− γ) (7)
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FB15k-237 FB15k NELL
Model 1p 2p 3p 2i 3i pi ip 2u up avg avg avg
GQE 35.0 7.2 5.3 23.3 34.6 16.5 10.7 8.2 5.7 16.3 28.0 18.6
Q2B 40.6 9.4 6.8 29.5 42.3 21.2 12.6 11.3 7.6 20.1 38.0 22.9
BetaE 39.0 10.9 10.0 28.8 42.5 22.4 12.6 12.4 9.9 20.9 41.6 24.6
Q2P 39.1 11.4 10.1 32.3 47.7 24.0 14.3 8.7 9.1 21.9 46.8 25.5
MLPMix 42.7 11.5 9.9 33.5 46.8 25.4 14.0 14.0 9.2 22.9 43.4 27.4
BiDAG (w/o res) 43.4 12.3 10.1 34.9 47.7 22.8 14.3 14.4 10.2 23.3 46.9 28.4
BiDAG (w/ res) 43.7 12.0 10.2 35.0 48.8 24.8 14.9 14.5 10.2 23.8 48.3 28.9

Table 1: The MRR results for existential positive first-order (EPFO) queries on different datasets. "w/o res" indicates
“without the residual connection” while "w/ res" indicates “with the residual connection”. The full results are shown
in Appendix C.

where ej represents a random negative sample, γ
represents the margin, d(q, e) represents the dis-
tance between query q and entity e.

5 Experiment

5.1 Experimental Setup

Datasets and Evaluation Protocol We conduct
experiments on three public KGs: FB15k (Bordes
et al., 2013), FB15K-237 (Toutanova and Chen,
2015), and NELL995 (Xiong et al., 2017). For
a fair comparison, we adopt the logical queries
generated by Ren and Leskovec (2020) in model
training and testing. In this paper, similar to Ren,
Hu, and Leskovec (2020), we consider nine query
types for evaluation. For these nine query types, we
utilize the same evaluation protocol as Query2Box
(Ren et al., 2020). Details about these datasets and
query types can be found in Appendix A.

Comparison with Baselines First, we compare
BiDAG with GQE, Q2B, BetaE, Q2P, and MLPMix
on the EPFO queries (containing only ∧, ∃, and ∨).
The results are reported in Table 1. More details
can be found in Appendix B.

From the table, we can find that: (1) BiDAG
demonstrates an average relative improvement in
Mean Reciprocal Rank (MRR) of 3.2%, 3.9%, and
5.4% over previous QE based models on the FB15k,
FB15k-237, and NELL995 datasets, respectively.
(2) Residual connection can improve model perfor-
mance consistently on all datasets, which means
residual connection is essential in the calibration
process.

Even with the naive strategy that represents
queries as point vectors like GQE, our BiDAG
achieves a significant performance gain compared
with all baselines. Furthermore, BiDAG also out-
performs well on conjunctive queries (2i/3i). In our
opinion, the main reason is that the target node has
more processor nodes which will provide more in-

Figure 3: The curve of relative change of representations
in each layer with different training steps.

formation for calibrating. All these results demon-
strate that calibration is helpful in complex query
answering.

Ablation Study for BiDAG To better demon-
strate the effectiveness of bi-directional calibration
(BC), we conduct further ablations studies by adopt-
ing different settings on FB15k. The experimental
results are demonstrated in Table 2. From the table,
we can find that compared to BiDAG-0BC (model
without calibration), calibration can improve per-
formance significantly. Besides, the significant im-
provement on multi-hop queries (2p/3p) demon-
strates that calibration can also effectively alleviate
the error cascading.

Further study the effect of calibration To fur-
ther investigate how calibration affects the node
representations in each layer, we record the rela-
tive change of the calibrated representations to the
initial representations (layer-0 representations ob-
tained by the prediction module), which is defined
as follows:

ct =
∥ht

tgt − h0
tgt∥2

∥h0
tgt∥2

(8)
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Method 1p 2p 3p 2i 3i pi ip 2u up avg
BiDAG-0BC 75.2 27.6 23.2 61.1 71.4 46.6 29.2 46.4 24.1 45.0
BiDAG-1BC 76.5 28.0 23.8 63.4 73.4 45.8 32.3 48.0 25.4 46.3
BiDAG-2BC 77.8 29.3 24.9 64.3 73.8 46.2 33.3 49.6 26.7 47.3
BiDAG-3BC 78.6 31.0 25.3 65.2 74.4 46.6 35.3 50.8 27.8 48.3

Table 2: Ablation studies of the BiDAG on FB15k. BC represents bi-directional calibration. (e.g. BiDAG-2BC
indicates utilizing two bi-directional calibration layers).

where h0
tgt is the initial representation for the target

node, ht
tgt is the representation for the target node

after t-th calibration. The larger the ct value, the
greater the difference between the t-th calibrated
representation and the initial representation.

As shown in Figure 3, it can be founded that:
(1) Throughout the training process, the relative
change of final representations (c3, the green line)
increases initially and then decreases. This obser-
vation suggests that at the early stages of training,
the initial representation is insufficiently accurate,
so calibration mechanism changes representations
a lot to get correct answers. However, as train-
ing progresses, the initial representations become
increasingly precise, resulting in a relatively di-
minished influence of calibration later on. (2) In
the middle and late stages of training, The values
of c1 (the blue line) and c2 (the orange line) rise
slowly, while c3 remains stable. This observation
implies that the first two calibration steps remain
crucial even as the initial representations become
increasingly accurate.

6 Conclusion

In this paper, we propose BiDAG, a query em-
bedding method for answering complex queries
over incomplete KGs. BiDAG splits the reason-
ing process into prediction and calibration. In
the calibration process, the joint probability of all
nodes is considered by applying GNN to the query
graph that is extended to bidirectional message
passing. The extensive experiments on multiple
open datasets demonstrate that BiDAG outperforms
previous QE based models and the effect of cali-
bration in CQA.

Limitations

There are three main limitations of our approach:
(1) Our model cannot handle negation operation.
Enabling BiDAG to support negation operation is
a direction for future work. (2) The modeling for
query representation and logical operators is too

simple. Improving BiDAG by more ingenious mod-
eling for query representation and logical operators
is also a direction for future work. (3) The train-
ing process cannot be parallelized well, which is a
common drawback of QE models, as QE models
have to predict node representations one by one.
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This paper proposes a method for complex query
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The nine query types are shown in Figure 4. Specif-
ically, there are five query types (1p/2p/3p/2i/3i)
in the training set and also evaluated in a super-
vised manner, and the remaining four query types
(2u/up/pi/ip) are evaluated in a zero-shot manner.
Given the query type, a sample is generated by
random walking on the KG. Datasets statistics are
shown in Table 3.

B Implement Details

To compare with baselines fairly, we set the same
size of embedding vectors as 400. And we directly
use the mean reciprocal rank (MRR) scores of these
baselines reported by Ren and Leskovec (2020);
Amayuelas, Zhang, Rao, and Zhang (2022); Bai,
Wang, Zhang, and Song (2022).

In the comparison experiment with baseline,
we used BiDAG-3BC for FB15k and FB15k-237,
BiDAG-2BC for NELL. We tune the hyperparame-
ters of BiDAG on the validation set for each dataset
by grid search. We consider the batch size from
{512, 1024, 2048}, learning rate from {2e-4, 3e-4,
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Training Validation Test
Dataset 1p/2p/3p/2i/3i 1p others 1p others
FB15k 273,710 59,097 8,000 67,016 8,000
FB15k-237 149,689 20,101 5,000 22,812 5,000
NELL 107,982 16,927 4,000 17,034 4,000

Table 3: Number of training, validation, and test queries generated for different query types.

1p 2p 3p 2i 3i

Supervised Training & Evaluation Query Types

Anchor node Intermediate node

Target node

pi 2u

Zero-Shot Query Types  

ip up

Disjunction

Figure 4: Query structures in this work, the operations
contain projection (p), intersection (i), and union (u).

4e-4}. Our experiments are conducted on GTX
3090 with PyTorch 1.11, and the random seed is
fixed for each experiment.

C Full experimental results

The full results of Comparison with Baselines are
shown in Table 4.
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Dataset Model 1p 2p 3p 2i 3i pi ip 2u up avg

FB15k

GQE 54.6 15.3 10.8 39.7 51.4 27.6 19.1 22.1 11.6 28.0
Q2B 68.0 21.0 14.2 55.1 66.5 39.4 26.1 35.1 16.7 38.0
BetaE 65.1 25.7 24.7 55.8 66.5 43.9 28.1 40.1 25.4 41.6
Q2P 82.6 30.8 25.5 65.1 74.7 49.5 34.9 32.1 26.2 46.8
MLPMix 69.7 27.7 23.9 58.7 69.9 46.7 30.8 38.2 24.8 43.4
BiDAG (w/o res) 77.8 30.0 25.0 64.2 73.7 41.5 33.2 49.6 27.0 46.9
BiDAG (w/ res) 78.6 31.0 25.3 65.2 74.4 46.7 35.3 50.8 27.8 48.3

FB15k-237

GQE 35.0 7.2 5.3 23.3 34.6 16.5 10.7 8.2 5.7 16.3
Q2B 40.6 9.4 6.8 29.5 42.3 21.2 12.6 11.3 7.6 20.1
BetaE 39.0 10.9 10.0 28.8 42.5 22.4 12.6 12.4 9.9 20.9
Q2P 39.1 11.4 10.1 32.3 47.7 24.0 14.3 8.7 9.1 21.9
MLPMix 42.7 11.5 9.9 33.5 46.8 25.4 14.0 14.0 9.2 22.9
BiDAG (w/o res) 43.3 12.3 10.1 34.9 47.7 22.8 14.3 14.4 10.2 23.3
BiDAG (w/ res) 43.7 12.0 10.2 35.0 48.8 24.9 14.9 14.5 10.2 23.8

NELL

GQE 32.8 11.9 9.6 27.5 35.2 18.4 14.4 8.5 8.8 18.6
Q2B 42.2 14.0 11.2 33.3 44.5 22.4 16.8 11.3 10.3 22.9
BetaE 53.0 13.0 11.4 37.6 47.5 24.1 14.3 12.2 8.6 24.6
Q2P 56.5 15.2 12.5 35.8 48.7 22.6 16.1 11.1 10.4 25.5
MLPMix 55.4 16.2 13.9 39.5 51.0 25.7 18.3 14.7 11.2 27.4
BiDAG (w/o res) 58.7 17.2 14.3 42.1 52.9 25.0 18.2 15.8 11.5 28.4
BiDAG (w/ res) 59.0 17.5 14.5 42.3 53.0 26.7 18.9 16.1 11.8 28.9

Table 4: The MRR results for existential positive first-order (EPFO) queries on different datasets. "w/o res" indicates
“without the residual connection” while "w/ res" indicates “with the residual connection”. Bold and underline
indicate top-two results, respectively.
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