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Abstract

Knowledge graphs mostly exhibit a mixture of
branching relations, e.g., hasFriend, and com-
plex structures, e.g., hierarchy and loop. Most
knowledge graph embeddings have problems
expressing them, because they model a specific
relation r from a head h to tails by starting
at the node embedding of h and transitioning
deterministically to exactly one other point in
the embedding space. We overcome this is-
sue in our novel framework ItôE by modeling
relations between nodes by relation-specific,
stochastic transitions. Our framework is based
on stochastic Itô processes, which operate on
low-dimensional manifolds. ItôE is highly ex-
pressive and generic subsuming various state-
of-the-art models operating on different, also
non-Euclidean, manifolds. Experimental re-
sults show the superiority of ItôE over other
deterministic embedding models with regard to
the KG completion task.

1 Introduction

Knowledge graphs (KGs) play a central role in
many AI-related tasks (Nickel et al., 2016) such
as recommendation systems (Lukovnikov et al.,
2017) and question answering (Zhang et al., 2016).
KGs represent real-world knowledge as a set of
facts in the form of triples (entity, relation, entity),
e.g., (Alice, FriendOf, Bob). Entities are nodes of a
graph and relations are the directed edges. KGs are
highly incomplete which adversely affects the out-
come of various KG-centered tasks. To tackle this
problem, various link prediction approaches have
been proposed to leverage the existing links for the
prediction of new ones (a.k.a., knowledge graph
completion). Among existing approaches (Wang
et al., 2017; Ji et al., 2021), KG embedding (KGE)
succeeded and became a popular line of work.

KGE models map entities and relations in KGs
into a low dimensional geometric space and mea-
sure the plausibility of each triple (entity, relation,
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Figure 1: The embedding of a synthesized tree struc-
ture, shown in the top panel, by two approaches: a)
deterministic transition; and b) stochastic transitions.
Deterministic transition (translation or rotation) gener-
ates a specific path while stochastic transition generates
multiple paths forming hierarchies.

entity) by a scoring function f that uses the embed-
ded vectors of this triple (entity, relation, entity)
to gauge its plausibility by a real, positive value
f(entity, relation, entity). Prominent examples
of KGEs include translational/rotational families
(Wang et al., 2014; Lin et al., 2015), bilinear fami-
lies (Nickel et al., 2011; Yang et al., 2014) and neu-
ral network families (Dettmers et al., 2018; Nguyen
et al., 2018). However, these models are all defined
in Euclidean space that suffers from modeling com-
plex structures such as hierarchies (Chami et al.,
2020) in low-dimensional vector space. Therefore,
KG embeddings based on non-Euclidean geomet-
ric spaces such as hyperbolic space (Chami et al.,
2020; Balazevic et al., 2019) have been proposed.
Both lines of work often formulate the relation-
specific transitions between subsequent nodes in
a deterministic way and represent them, e.g., by
translations or rotations, implying that with regard
to a particular relation each node is connected to a
single other node.

In a broader view, this implies that starting from
an embedded node with a given single relation type,
there will be only one walk with the length m,
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which is m subsequent relation-specific transitions
from the starting node, and this walk will lead to
another specific embedded node. However, starting
at any specific node and considering a branching
relation such as hasFriend, there may be several
relation-specific walks of length m. These walks
define a group of nodes in distance m. Figure 1 il-
lustrates the limits of traditional embedding models
based on translation or rotation with deterministic
transitions (a) and contrasts it with the tree-like
structure that unfolds in a non-deterministic model
(b) able to represent a branching relationship.

In this paper, we formalize probabilistic walks
of length m − 1 between two groups of nodes
(Ωt1 ,Ωtm) in order to represent branching rela-
tionships. Each group of nodes Ωti from start
Ωt1 to end Ωtm is represented by a random vari-
able Xti , which indicates a probabilistic distri-
bution on the manifold Xti : Ωti → M, i =
1, . . . ,m. The sequence of random variables S =
{Xt1 , Xt2 , . . . , Xtm} constitutes a stochastic pro-
cess. A sample, also called realization, of the
stochastic process S is a walk with m−1 transitions
containing m entity representations {et1 , . . . , etm}
on the manifold, eti ∈ M.

We model probabilistic transitions between
groups of nodes using the Itô process, which de-
fines transitions between nodes through an integral
containing drift and diffusion. Drift models the
deterministic nature of a transition, while diffusion
captures stochastic variation. Drift and diffusion
operations are learned separately via a relation-
specific neural network.

Owing to the probabilistic perspective, we de-
velop a KGE model, called ItôE, that uses the Itô
process for stochastic transitions as well as vari-
ous, also non-Euclidean, manifolds (i.e., sphere,
Poincaré ball, hyperboloid) to support the model-
ing of heterogeneous graph structures on manifolds.
We also provide an extensive theoretical investiga-
tion and prove that ItôE: a) is fully expressive; b) is
capable of encoding various structures as stochas-
tic processes; c) subsumes various state-of-the-art
KGE models, including ComplEx and QuatE, d)
models various relational patterns, e.g., symmetric
patterns. Experimental results show the superiority
of our model, especially in low-dimensional space.

2 Related Work

Euclidean KGE Models The earliest KGE mod-
els employ Euclidean geometry, i.e., a d dimen-

sional real space Rd, with its corresponding Eu-
clidean distance function as well as inner prod-
uct. TransE represents each relation as a trans-
lation from a head to a tail embedding. Several
variants of TransE have been developed to model
one-to-many relations, as well as symmetric and
reflexive patterns (Wang et al., 2014; Lin et al.,
2015). DistMult (Yang et al., 2014) proposes a
tensor factorization with a diagonal relation matrix.
The model captures symmetric relations, but not
anti-symmetry. ComplEx(Trouillon et al., 2016)
and QuatE (Zhang et al., 2019) models have been
proposed as extensions of DistMult from the real
space to the (hyper)complex space. RotatE (Sun
et al., 2019) models each relation as rotation in
the complex space using the Euler formula, which
captures symmetric, anti-symmetric, inverse, and
composition patterns. Apart from the mentioned
shallow embedding models, there is a thread of
neural network KGE models such as Neural Tensor
Network (Socher et al., 2013), ConvE (Dettmers
et al., 2018), and ConvKB (Nguyen et al., 2018).
In summary, these models cannot capture various
graph structures, especially in low dimensional
space due to the underlying Euclidean space. A
series of graph embedding models have been pro-
posed based on random walks in the graph space.

Node2vec (Grover and Leskovec, 2016; Ristoski
and Paulheim, 2016; Portisch and Paulheim, 2022;
Huang et al., 2021; Perozzi et al., 2014) are among
the models which perform a biased random walk in
graph space and compute the low dimensional rep-
resentation of nodes in such a way to maximize the
likelihood of preserving network neighborhoods
of nodes. The random walk-based models are not
among state-of-the-art KGE models in the link pre-
diction task. In addition, in most cases, the random
walk is performed in the graph space to obtain the
sequences of nodes for embedding, but the notion
of walk in the embedding space is neglected as
there is no transition function in the embedding
space to model this.

Non-Euclidean KGE Models Euclidean-based
KGE models are not capable of preserving com-
plex graph structures in a low-dimensional space.
However, embedding KGs on non-Euclidean man-
ifolds has shown promising performance in the
preservation of a few structures, especially in low-
dimensional spaces. (Nickel and Kiela, 2017;
Chami et al., 2020; Balazevic et al., 2019; We-
ber and Nickel, 2018) showed the advantage of
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Poincaré Ball and other geometries for embedding
graphs with various structures including hierarchi-
cal structures. 5∗E (Nayyeri et al., 2021a) utilized
the projective geometry with the five main transi-
tions, namely translation, rotation, inversion, re-
flection, and homothety, to capture heterogeneous
structures such as loop-path subgraphs. (Nayy-
eri et al., 2021b) embedded KGs on the vector
field. UltraE (Xiong et al., 2022) considers a mix-
ture manifold–pseudo-Riemannian space that gen-
eralizes hyperbolic and spherical spaces. Other
manifold-based KGEs can be found in (Suzuki
et al., 2019). Overall, the mentioned models suf-
fer from the same problem mentioned for the Eu-
clidean counterpart, i.e., deterministic transitions
between embedded nodes.

3 Preliminaries

Stochastic Process Let T be an arbitrary index
set. A stochastic process is a collection of ran-
dom variables S = {Xt : t ∈ T} defined on a
probability space P with the index set T of size
|T |. All random variables Xt : Ωt −→ Rd, et 7−→
Xt(et), t ∈ T belong to the same probability space.
A random experiment (realization) is a selection
of an outcome Xt(et) ∈ M at random consider-
ing the probability measure P. A sample path of
a stochastic process S = {Xt : t ∈ T} is a func-
tion from t to Xt(et) using an ordered index set T ,
giving us a random walk. Figure 2b illustrates a
random walk in the vector space with 50000 steps.

Brownian Motion A stochastic process B =
{B(t), t ≥ 0} defined on a probability space
P = (Ω,F ,P) (F is a sigma algebra (events))
is a Brownian motion if a) B(0) = 0; b) B
has independent and stationary increment, i.e.,
B(t1), B(t2)−B(t1), . . . , B(tn)−B(tn−1) are in-
dependent random variables for 0 < t1 < . . . < tn;
c) B has Gaussian increments, i.e., B(tn + α) −
B(t) ∼ N(0, α), ∀t ≥ 0, α > 0; and d) B has
continuous sample paths, i.e., B is continuous in t.
Figure 2a shows the evolution of two tree structures
via the Brownian motion of several particles.

Brownian motion is suitable to model proba-
bilistic branching in random walks as path diffu-
sion when traversing the embedded KG in a vector
space. In our setting, we will write interchangeably
B(et) and B(et) for B(t).

Itô Process The stochastic process S = {Xt, t ≥
0} that solves the following integral is called an Itô

(a) Brownian Tree (b) Random Walk

Figure 2: a) Brownian Tree: The evolution of a tree us-
ing Brownian motions over particles, b) a random walk
in the vector space associated to a stochastic process.

process,

Xt = X0 +

∫ t

0

a(Xs, s) ds +

∫ t

0

b(Xs, s) dBs, (1)

where t ≥ 0 and X0 is a scalar starting point.
{a(Xt, t) : t ≥ 0}, {b(Xt, t) : t ≥ 0} are stochas-
tic processes which are called drift and diffusion,
respectively. B is Brownian motion, dB is nor-
mally distributed with zero mean and variance dt.

The above formulation of Itô process is approx-
imated by the Euler-Maruyama approximation as
follows

X(tn+1) = X(tn) + a(X(tn), tn)∆t+

b(X(tn), tn)∆B(tn), tn = n∆t.
(2)

Non-Euclidean Geometry In this part, we in-
troduce three popular non-Euclidean manifolds
namely spherical S = {x ∈ Rd+1|⟨x,x⟩ = 1},
Hyperboloid H = {x ∈ Rd+1|⟨x,x⟩ = 1

K }, and
Poincaré ball B = {x ∈ Rd | ∥x∥ < − 1

K }.
K > 0 is curvature. The tangent space T K

x at
a point x on manifold is a d-dimensional vector
space. This space covers all possible directions of
paths on a manifold starting from x. Each point on
the tangent space is mapped to the manifold via an
exponential map. Given v as a tangent vector at
point x on the manifold, the exponential map for
sphere, Hyperboloid and Poincaré ball are

expx(v) = cos(∥v∥)x+ sin(∥v∥) v

∥v∥ ,

cosh(
√

|K|∥v∥)x+ v
sinh(

√
|K|∥v∥)√

|K|∥v∥
,

(3)

andx⊕K (tanh(
√

|K|λxK∥v∥
2

)
v√

|K|∥v∥
),

respectively. The exponential map projects the tan-
gent vector at a point x on a manifold to another
point laying on the geodesic curve, i.e, a curve with
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the shortest distance on the manifold. K is cur-
vature and ⊕K is the Möbius addition (Balazevic
et al., 2019). Note that the tangent vector is defined
as v = dx

dt , which is orthogonal to the manifold at
the point x. Later in the paper, we show that by
using the Itô process, as stochastic differential equa-
tions, we can derive a stochastic process evolving
on the manifold.

4 ItôE: Neural Itô Process Embedding

We introduce ItôE, a novel KGE model that uti-
lizes the stochastic processes on manifolds for KG
embedding. ItôE is capable of preserving various
graph structures and capturing branching relations
by modeling the evolution of graph structures in
the embedding space as a stochastic process.

KGE models have four essential components:
entity and relation representation, score function,
and loss function. In the following, these four com-
ponents of ItôE are explained.

Entity Representation Let’s suppose that E rep-
resents the collection of all entities present in
the knowledge graph (KG). Each symbolic entity
e ∈ E in a KG is embedded on a d-dimensional
manifold M, i.e., e ∈ M. Therefore, entity em-
beddings are points on the manifold. In the pro-
posed model, we use Poincaré Ball, Hyperboloid,
Euclidean, and Sphere manifolds.

Relation Representation Each fact in a KG is
represented by a triple (et, r, et+1). Because the
entities in a triple are subsequent but with arbi-
trary indexes, we use the notation (etn , r, etn+1) to
represent the triple, where n is between 1 and |E|
(number of entities in the KG). Most KGE meth-
ods model the transition from etn to etn+1 via a
relation-specific transition (e.g., translation, or ro-
tation). Therefore, each relation is modeled as a
point-wise deterministic transition.

However, in a broader view, the relational de-
pendencies between nodes are stochastic processes,
i.e., a transition to a tail given a head node and
a relation happens with a probability so that the
sequence of such probabilistic transitions consti-
tutes a stochastic process. Each random variable in
the stochastic process includes all the entities E , a
few of which has a non-zero likelihood since the
transition from a given entity is only possible to
its neighbors. The group of neighbors at each step
together with their likelihood in a probability space
is considered a random variable. As a result, there
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Figure 3: Relation representation: stochastic process
forming path-loop on the connected airports.

is a relational mapping between two random vari-
ables Xtn , Xtn+1 , associated with the two groups
of nodes Ωtn ,Ωtn+1 at each step. In the following,
we model a relation r (defining transitions between
nodes) as a stochastic process Sr.

To explain this, let us view the notion of walks
formed by a relation r from a stochastic processes
angle. A sequence of symbolic entities, connected
by a relation r forms a walk with a particular length.
A walk of length n − 1 includes n entities and is
shown by Pr = {et1 , et2 , . . . , etn}.

Assume that there are multiple walks from a set
of given entities Ωt1 associated to Xt1 , to a set of
entities in Ωtn associated to Xtn . The transition
between the nodes in a walk is done randomly ac-
cording to a distribution.

During traversing the graph from a starting node
taken from Xt1 to a target node, taken from Xtn ,
and at each step ti, there are ni possible options
for selecting the next node. Therefore, travers-
ing a graph with walks of length n − 1 (with
relation r) leads to a stochastic process Sr =
{Xt1 , Xt2 , . . . , Xtn}. Consequently, each relation
in the KG is represented by a stochastic process.

In this paper, among various stochastic pro-
cesses, we employ the Itô process for modeling
each relation r due to the simplicity of implemen-
tation and controlling drift and diffusion. The Itô
process is defined as

Xt = X0 +

∫ t

0

ar(Xs, s) ds +

∫ t

0

br(Xs, s) dBs, t ≥ 0,

(4)

where ar(., .) and br(., .) are relation-specific drift
and diffusion in the Itô integral, respectively. The
drift part captures the deterministic transitions,
while the diffusion part captures the stochastic tran-
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sitions. In this equation, we consider the random
variables corresponding to the group of entities
that can be seen at each step as a continuous rep-
resentation. For implementation, we provide the
Euler-Maruyama approximation (Jahnke, 2016) as
a well-known approximation for discrete space:

X(tn+1) = X(tn) + ar(X(tn), tn)∆t+

br(X(tn), tn)∆B(tn), tn = n∆t,
(5)

where X(ti) is the random variable at step i. For
simplicity, we set ∆t = 1 from now onward. Note
that this approximation is used for the Euclidean
manifold. The drift ar(X(tn), tn) and diffusion
br(X(tn), tn) parts are parameterized by two sepa-
rate multi-layer neural networks. In this way, both
drift and diffusion at each step are learned by the
model. To enable the Itô process acting on a man-
ifold, it is essential to obtain the tangent vector
v. The tangent vector determines the direction of
movement on manifold M. The exponential map
(Equation 3) is used to map the two subsequent ran-
dom variables on the manifold while considering
drift and diffusion as follows

Xtn+1 =expXtn
(ar(X(tn), tn)∆t+

br(X(tn), tn)∆B(tn)), tn = n∆t.
(6)

Therefore, each two subsequent sampled entities
lie on a geodesic curve (shortest path). Because
the above equation is a stochastic process on a
manifold, at each iteration of batch learning, a set
of entities in batch triples are observed randomly
to hold this equation (realization) as follows:

Xtn+1(etn+1) = expXtn (etn )
(ar(Xtn(etn , tn))

∆t+ br(Xtn(etn , tn))∆B(tn)), tn = n∆t,

where the equation is held for each sample walk.
Note that Xti(eti) = eti ∈ M, i = 1, . . . , n is
entity embeddings.

Scoring Function For a given triple
(etn , r, etn+1), the score is as follows

f(etn , r, etn+1) = −∥etn+1 − expetn (ar(etn , tn)

∆t+ br(etn , tn)∆B(tn))∥, tn = n∆t.

For positive (negative) triples, f(etn , r, etn+1) is a
high (low) value. That is, the two sampled entities
etn , etn+1 lie on a geodesic curve on a manifold.

Loss Function For training the model, we use
the following loss function (Chami et al., 2020)

L =
∑

e′∈E
log(1 + exp(ye′(f(etn , r, e

′) + δetn + δe′))),

where ye′ = 1 if e′ = etn+1 , and ye′ = −1 if
e′ ̸= etn+1 , and δetn and δe′ are trainable entity
biases.

In the next section, we present important insights
about our formulation, followed by theoretical jus-
tification for the core formulation of our model.

5 Insights and Theoretical Analysis

Memory Complexity In ItôE, the number of re-
lation parameters grows linearly with the relation’s
dimensionality. Hence, ItôE’s space complexity is
O(Ne × de +Nr × dr), where Ne and Nr are the
numbers of entities and relations, de and dr are the
embedding dimensionality of entities and relations,
respectively. The additional parameters come from
the neural network that approximates the ItôE’ pro-
cess, which is in our case, shared across all entities.

Relational Sub-structures Here we show the ca-
pability of the stochastic process in equation (5)
for modeling various graph sub-structures. To this
end, let us have a sample walk from the stochas-
tic process Sr, which is {Xt1(et1), . . . , Xtn(etn)}
= {et1 , . . . , etn}. A stochastic process Sr inher-
ently covers various graph structures such as hi-
erarchy, loop, and path. This is due to the fact
that various sample walks over a stochastic pro-
cess generate different parts of a subgraph. Fig-
ure 3 shows an example of a stochastic process
for the relation ConnectedTo which forms sev-
eral relational and structural patterns such as loop
and path by sampling from the process in the air-
port example (airports are connected with various
shapes). Another example is a tree-like structure.
For tree-like structures (see Figure 1), Xt1 contains
only a root node, and Xtn contains all the leaves.
Xti , i = 2, . . . , n − 1 generates the intermediate
nodes from the root to the leaves. Therefore, any
walk from the root node to each of the leaves is
a sample taken from the stochastic process. The
relation-specific stochastic process generates vari-
ous sample walks at random covering various parts
of a sub-graph.

Subsumption of Other KGE Models ItôE pro-
vides a general framework that covers various base-
lines and state-of-the-art KGE models. We prove,
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in this part, that our model subsumes TransE, Ro-
tatE, QuatE, 5*E, ComplEx, and DistMult. That
is, given any set of triples with arbitrary true/false
labeling, any score value represented by each of
the mentioned models for the triples in the set is
also represented by the score function of ItôE. In
this regard, the following theorem holds:

Theorem 1. ItôE subsumes TransE, RotatE, Dist-
Mult, ComplEx, QuatE, and 5*E.

As a consequence of Theorem 1, ItôE is fully
expressive and capable of capturing various graph
structures and relational patterns that each of the
mentioned models is capable of. Therefore, the
following corollaries hold:

Corollary 1. ItôE is fully expressive, i.e., for every
ground truth over an arbitrary KG, there are as-
signments to the entities and relations embedding
to capture the ground truth.

Corollary 2. ItôE models symmetric, anti-
symmetric, composition, inversion, transitive, and
reflection patterns.

Corollary 3. ItôE models one-to-many relation.

Corollary 4. a) Let Ln
r1 be a loop structure with

a single relation r1 and n nodes. ItôE models the
loop structure Ln

r1 .
b) Let Pn

r2 be a path structure with relation r2
and n nodes. In addition, each nodes of Ln

r1 is con-
nected to one node in Pn

r1 . The combined structure
is denoted by LPn

r1r2r3 . ItôE models LPn
r1r2r3 .

c) ItôE models loop-path structure with single
relation r1, i.e., LPn

r1r1r1 .

6 Experiments and Results

Experimental Setup In this section, we evaluate
the performance of ItôE against various state-of-
the-art KGE models in the link prediction task. Our
evaluation in this section includes link prediction
in low-dimensional space, analysis on capturing
complex structures, analysis of capturing hierarchi-
cal structures, and time and memory complexity.
Further evaluations including results per manifold,
variance of results of our model, influence of em-
bedding dimension, and discussion on the effect of
loss function on deterministic models can be found
in appendix.

Evaluation Metrics We use four standard met-
rics for link prediction namely Mean Reciprocal
Rank (MRR), Hits@k (k=1,3,10). To compute each
of the metrics, we use the procedure in (Bordes

et al., 2013; Lacroix et al., 2018). For each test
triple (etn , r, etn+1), we first replace the head en-
tity etn by each of the entities in the dictionary,
i.e., e′ ∈ E − {etn}. This results in ne corrupted
triples {(e′, r, etn+1)}, where ne is the number of
entities in the KG. We filtered this set by removing
all triples that are already appeared the dataset as
well as self loop. We then compute the scores of the
original test triple (etn , r, etn+1) and the corrupted
triples {(e′, r, etn+1)}, sort them based on scores
and rank them.

The resulted rank of the original triple is the
left rank rl. The same procedure is performed to
compute the right rank by the corruption of the tail
entities. rr denotes the right rank. The average
of the left and the right ranks is denoted by ra.
The mean rank of all testing triples is MR. The
percentage of the test triples ranked lower than
k = 1, 3, 10 denotes Hits@k. MRR is the average
reciprocal of rank for all testing triples.

Environment and Hyperparameters We imple-
mented1 our model using Python and PyTorch li-
brary. We added reciprocal relations to the training
samples as a standard technique used in (Kazemi
and Poole, 2018; Lacroix et al., 2018). We added
N3 regularization for training the models (Lacroix
et al., 2018). Because one of the main goal of
this paper is modeling graphs in low dimensional
space, we follow the common practice of existing
works in low dimensional embedding (Chami et al.,
2020) and trained the models in a low dimension
(d = 32). The other dimensions have been done
as further analysis in the appendix. We split data
into several batches and used the Adagrad/Adam
as an optimizer. An early stopping technique based
on validation MRR has been used to terminate the
running and perform testing. Batch size b, learning
rate lr, N3 regularization coefficient α are among
the hyperparameters used in this paper. In addi-
tion, we set the number of hidden layers for drift
and diffusion neural networks to two. l denotes
the number of neurons in the hidden layer of each
neural networks. The used distribution for Brown-
ian motion ∆B is a normal distribution with zero
mean and σ variance. For simplicity, we set σ = 1.
Due to randomness, for our model, we perform
experiments 10 times and report the average results
in Table 1. Because the variances were low, we did
not report them in the main table. The manifold
M is selected from Poincaré ball B, Hyperboloid

1https://github.com/ColdMist/ItoE
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(a) Itô process Sphere Tree (b) Itô Process Tree (c) Translation Tree (d) Rotation Tree

Figure 4: Generation of tree in the embedding space by using the transiting functions of a) Itô process on Sphere.
One trajectory from root to a leaf is plotted with a dashed line. b) Itô process. Several trajectories form tree
structures in the embedding space, c) translation. A single trajectory, d) rotation. a single trajectory. In each level l,
the tree contains nl nodes.

model H, Euclidean real manifold R and spherical
manifold S. The optimal hyperparameters per each
dataset are reported in a separate table in appendix.

Dataset We used the two standard benchmark
datasets namely FB15k-237 (Toutanova and Chen,
2015) and WN18RR (Dettmers et al., 2018) for
evaluating ItôE on static KGs. Both datasets con-
tain structural and relational patterns including
symmetric/anti-symmetric and composition pat-
terns. In addition, WN18RR contains hierarchical
structures associated with hypernym and part-of.
Furthermore, both datasets include various types of
relationships, including one-to-one relationships,
one-to-many relationships (where a subject can
have multiple objects but each object has only one

(a) Loop-path

(b) Heatmap of ranking

Figure 5: Ranking results of loop connected to a path.Ti
refers to the ith triple in the graph. The ith cell contains
the rank of the ith triple Ti.

Figure 6: The heatmap of ranking results given by our
model and the other competitors on the graph in Figure 7.
For real models the embedding dimension is set to 4,
and for complex models, the embedding dimension is
2. Ti refers to the ith triple in the graph. The ith cell
contains the rank of the ith triple Ti.

subject), many-to-one relationships, and many-to-
many relationships (where a subject can have mul-
tiple objects and an object can have multiple sub-
jects).

KGE Models Two classes of baselines and state-
of-the-art KGE models have been selected as com-
petitors: a) baselines KGEs: TransE, DistMult,
and ComplEx, b) state-of-the-art KGEs: RotatE,
QuatE, 5∗E, MurP/MurE, and RotH/RefH/AttH.
We trained these models using entity bias, and
cross-entropy loss, regularization, and also we
added reverse triples as in (Chami et al., 2020).
Such techniques improves the performance of the
models including TransE comparing to their origi-
nal results.

MurP, RotH/RefH/AttH employ Poincaré ball as
a non-Euclidean manifold to preserve hierarchical
structures. RotH additionally takes the advantage
of rotation in hyperbolic space to model various re-
lational patterns such as symmetry, anti-symmetry,
inversion, and composition. To train ComplEx,
QuatE, RotH/RefH/AttH, MurP, DistMult, and our
model, we enriched the data with reverse triples, as
the standard technique employed in (Kazemi and
Poole, 2018), and used N3 regularization (Lacroix
et al., 2018).
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Model FB15k-237 WN18RR
MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

E
uc

TransE .295 .210 .322 .466 .366 .274 .433 .515
RotatE .051 .029 .051 .091 .309 .293 .317 .336
ComplEx .287 .203 .316 .456 .421 .391 .434 .476
QuatE .293 .212 .320 .460 .421 .396 .430 .467

no
n-

E
uc

MuRP .321 .239 .352 .495 .473 .421 .484 .546
5∗E .323 .240 .355 .501 .449 .418 .462 .510
REFH .316 .229 .345 .490 .449 .418 .462 .510
ROTH .315 .226 .348 .491 .477 .426 .490 .548
ATTH .321 .240 .355 .501 .465 .426 .481 .540
ItôE (R) .330 .242 .361 .508 .455 .404 .480 .548
ItôE (S− P) .334 .245 .361 .511 .474 .426 .499 .574

Table 1: Link prediction results on FB15k-237 and WN18RR (low dimension 32) for Euclidean (Euc) and non-
Euclidean (non-Euc) models.

Results Table 1 shows the results of ItôE
(Poincare (P), Euclidean (R), Sphere (S)) and other
models in low-dimensional embedding d = 32 on
FB15K-237 and WN18RR. Note that d = 32 is
a common practice of KGE literature for evalua-
tion of the models in low dimensional embedding
(Chami et al., 2020). According to our experiments,
ItôE with the Poincaré ball outperforms all models
on WN18RR dataset which contains mainly hierar-
chical relations such as hypernym and part-of. This
dataset also contains relations forming loop struc-
tures such as similar-to. MuRP, REFH, ROTH, and
ATTH utilize Poincaré ball with deterministic tran-
sitions (e.g., rotation, reflection, translation, and
Affine mapping). ItôE with the stochastic transition
on Poincaré ball outperforms all of these models on
WN18RR across all metrics. This is especially visi-
ble by looking at Hits@3 and Hits@10. The results
show the superiority of stochastic transitions over
deterministic transitions to model various struc-
tures such as Hierarchical and loop structures in
a low-dimensional space. Using FB15k-237, ItôE
with Spherical manifold outperforms other com-
petitors including the Hyperbolic models. Figure 8
presents performance per dimension. As shown
in the figure, our model outperforms other KGE
models in low dimensions. In high dimension, our
model get competitive performance to other models
on WN18RR dataset.

Capturing hierarchical structure In this part,
we generate tree structure in the embedding space
by using the transition functions of the Itô process,
translation, and rotation. Starting from a point on

Figure 7: Complex graph structure with 30 triples.

the embedding space (i.e., root shown in red in Fig-
ure 4), a model generates n child for each node and
traverses the vector space to generate the whole
tree structure. As shown in Figure 4b, the Itô pro-
cess generates the tree-like structure by generating
stochastic trajectories in the vector space. However,
translation ( Figure 4c) and rotation (Figure 4d)
generate a single trajectory which consequently
cannot traverse the vector space to generate a tree
structure. Figure 4a illustrates the evolution of tree
structure in a sphere. The root is located on the
center and the leaves are distributed on the border
of the sphere. All the intermediate nodes on the
lth level of the tree are distributed on a sphere with
radius of rl, inside the main sphere where rl1 < rl2,
l1 < l2. A trajectory (dashed line) is shown from
root to leaf.
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Table 2: Number of model parameters and training time
(s) on WN18RR with dimension 32.

Model N-Parameters Time

TransE 1392766 40s
MurE 1393470 55s
RefH 1394196 120s
AttH 1395604 240s
RotH 1394196 120s
ItôE 1395100 74s

Capturing Complex structures Here we ex-
amine ItôE and several other Euclidean and non-
Euclidean models to preserve various complex
structures. We train the models on the substructures
and then present the ranking results given by the
models in a heatmap. For the graph in Figure 7, the
heatmap is presented in Figure 6. As shown in the
figure, ItôE gets a very low rank (mostly 1 which
is ideal) to the graph edges. This shows that the
model learns the structure. For other models includ-
ing manifold-based models, e.g., AttH and RotH,
the ranking for the edges are high, i.e., these models
do not learn the structure. Figure 5 shows the rank-
ing results of modeling heterogeneous structure on
the example of a loop connected to a path.

Memory and Time Complexity Table 2 shows
the training time (per epoch) and the number of
model parameters for ItôE, TransE, MurE, RefH,
RotH and AttH. According to the table, ItôE has a
close number of parameters to other state-of-the-art
models. Among the models, TransE is the most
efficient model in terms of the number of param-
eters. In addition, our model is competitive with
other models in terms of training time.

7 Conclusion

This paper presented ItôE, a knowledge graph em-
bedding model that considers the stochastic tran-
sitions between nodes of a knowledge graph on a
manifold. For doing so, ItôE modeled the relations
in a KG as stochastic processes so that the transi-
tions between two nodes could only happen with
an associated likelihood. Such stochastic transi-
tions allowed ItôE to present multiple stochastic
trajectories between any two embedded nodes and
to capture more sophisticated structures in KGs,
including loops connected to paths and is mathe-
matically proved to be a generalization of several
state-of-the-art models. Experiments on the syn-

thesized datasets showed that the proposed model
can capture heterogeneous complex structures and
patterns.

Limitations

In this section, we discuss the limitation of the pro-
posed model. Currently, the hidden layer of the two
neural networks for drift and diffusion are shared
between all entities and relations. This might cause
over-fitting on relations that show simple structures
if the neural networks are set to be very deep. On
the other hand, if the neural networks are set to
be shallow it might negatively influence modeling
complex relations as the direction of trajectories
will be limited. One possible solution is to cluster
relations based on complexities and use separate
neural networks for each cluster depending on the
complexity of the corresponding relation. This
requires, however, prior knowledge about the struc-
ture of different relations which we leave as future
work.
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A Appendix

We organize the appendix as follows: We first
present the proof of Theorem 1, and corollaries
1-4. We then discuss the effect of loss functions on
deterministic models, followed by the results per
manifold and hyperparameters specification.

Proof of Theorem 1

Proof. Here we prove that ItôE subsumes 5∗E
(Nayyeri et al., 2021a). We start with the formula-
tion of 5∗E. For simplicity, we remove the index
of relation from the relation matrix in 5∗E and con-
sider one-dimensional complex projective line. The
following equation is modeling triple in the vector
space by 5∗E

eptn+1
≈ ηeptn ,

η =

(
a b
c d

)
,

eptn =

(
etn
1

)
,

a, b, c, d, z ∈ C.

(7)

Let η =

(
ar + aIi br + bIi
cr + cIi dr + dIi

)
=

(
ar br
cr dr

)
+

(
aI bI
cI dI

)
i = ηr + ηIi, and eptn =

(
ertn
1

)
+

(
eItn
0

)
= eprtn + epItn . We have

eptn+1
= ηeptn = (ηre

pr
tn−ηIe

pI
tn )+(ηre

pI
tn−ηIe

pr
tn)i.

(8)
We merge the matrices and rewrite the formula-

tion as follows:

eptn+1
=

(
ηr ηI

)( eprtn
−epItn

)
+
(
ηr ηI

)(epItn
eprtn

)
i.

(9)

Let ηrI =
(
ηr ηI

)
, erItn =

(
eprtn
−epItn

)
, eIrtn =

(
epItn
eprtn

)
.

Therefore, we have eptn+1
= ηrIe

Ir
tn + ηrIe

Ir
tn i.

The above formulation can be rewritten in the
vectored form as follows

eptn+1
= ηrI

(
erItn
eIrtn

)
= ηrIe

IrI
tn .

The formulation of ItôE is
etn+1 ≈ etn + ar(etn , tn)∆t +

br(etn , tn)∆B(tn).

If ∆t = 1, br(etn , tn) = 0, there is a neural net-
work ar(etn , tn) that approximates the multivariate
function (ηrI − I)eIrItn with the error as close as
zero due to universal approximation ability of the
NNs. Therefore, ItôE can approximate the score
of 5∗E with an arbitrary small error. Consequently,
ItôE subsumes 5∗E. Because 5∗E subsumes TransE,
RotatE, ComplEx, ItôE subsumes these models as
well.

We now prove that ItôE subsumes QuatE. Con-
sidering the formulation of ItoE,
etn+1 = etn + ar(etn , tn)∆t +

br(etn , tn)∆B(tn),
and setting ∆t = 1, br(etn , tn) =

0, ar(etn , tn) = (R − I)ev, where ev is the
vector representation of a Quaternion number, the
assumption of QuatE is fulfilled by ItôE

evtn+1
≈ Revtn . (10)

Therefore, ItôE subsumes QuatE (Zhang et al.,
2019).

Proof of Corollaries

Proof. Here we present the proof of Corollaries 1-
4. Because ItôE subsumes 5∗E, ComplEx, QuatE,
RotatE, and TransE, it can encode all relational and
structural patterns (symmetric, anti-symmetric, re-
flexive, transitive, inverse, and combination of loop
and path) modeled by these models. Moreover, the
ItôE model is fully expressive because it subsumes
ComplEx which is fully expressive.

Effect of Loss Function on Deterministic Mod-
els As mentioned in the paper, the models based
on deterministic transitions such as TransE with
etn + r = etn+1 provide a single trajectory be-
tween any two nodes. However, by using a loss
function forcing an upper-bound for the score of
positive samples we have etn + r = etn+1 + ϵ.
This allows the models based on deterministic tran-
sitions to mitigate the problem of a single trajectory.
However, the problem is not fully solved because
the nodes after each transition are embedded very
closely. In this way, there is a single trajectory that
is retrievable by transition function in which the
other embedded nodes are not reachable by using
the transition function in the embedding space. In
contrast, using the stochastic transitions, the model
can learn at each embedded node etn via diffusion
NN, br(etn , tn), the degree of branching, i.e., de-
gree of diffusion. Therefore, different trajectories
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Model Dataset Neg Samp. batch_size l_rate reg_co Epochs
ItôE WN18RR 500 500 0.001 0 300
ItôE FB15k-237 500 50 0.05 0 300

Table 3: Best hyperparameters found for ItôE

Table 4: Variance of MRR for ItôE

WN18RR FB15k-237
.000004 .000009

are learned between any two nodes which can be
either very close or far.

Variance in ItôE Performance Table 4 shows
the variance of ItôE with dimension 32 on
WN18RR. As shown in the table, the variance of 10
times running on the model is very low. Therefore,
the model obtains stable performance on different
runs.

Figure 8: Performance of embedding models based on
embedding dimension on WN18RR. MuRE(Balazevic
et al., 2019) uses Euclidean manifold. MuRP (Balazevic
et al., 2019), RotH (Chami et al., 2020) and ItôE (our
model) uses Poincare ball. The x-axis is embedding
dimension and the y axis is performance based on MRR.

Figure 9: Performance (MRR, Hits@(1,3,10)) of ItôE
using Poincare ball, Hyperboloid, Spherical and Eu-
clidean manifolds.

Results On WN18RR Per Manifolds In this
part, we analyze the performance of ItôE using
various manifolds (Poincare ball, Hyperboloid, Eu-
clidean, and Sphere) on WN18RR. Figure 9 illus-
trates the performance comparison according to
different metrics namely MRR, Hits@1, Hits@3,
Hits@10. The experiments have been done in a
very low dimension of 32. According to the figure,
ItôE with Poincare ball and Hyperboloid outper-
formed ItôE with Sphere and Euclidean manifold.
This is consistent with the nature of the used KG
where most relations are hierarchical in WN18RR.
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