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Abstract

Novel terminology and changes in terminol-
ogy are often a challenge for machine trans-
lation systems. The passing of Queen Eliz-
abeth II and the accession of King Charles
III provide a striking example of translation
shift in the real world, particularly in transla-
tion contexts that have ambiguity. Examining
translation between French and English, we
present a focused case-study of translations
about King Charles III as produced both by
publicly-available MT systems and by a neural
machine translation system trained specifically
on Canadian parliamentary text. We find that
even in cases where human translators would
have adequate context to disambiguate terms
from the source language, machine translation
systems do not always produce the expected
output. Where we are able to analyze the train-
ing data, we note that this may represent arti-
facts in the data, raising important questions
about machine translation updates in light of
real world events.

1 Introduction

With the passing of Queen Elizabeth II on Septem-
ber 8, 2022, King Charles III became the first King
of Canada in over 70 years. Given official bilingual-
ism (English and French) in Canada, this raised a
natural question of how machine translation (MT)
systems – particularly those trained on data col-
lected from Canadian government sources, which
forms a disproportionately large amount of pub-
licly available data for this language pair (Bowker
and Blain, 2022) – might perform on terminology
related to the new sovereign. We hypothesized that
systems trained on relatively recent parliamentary
text might produce errors due to both linguistic fea-
tures of French and English as well as the paucity
of references to kings in the training data. We ex-
pand on this, showing that not only is this the case
for MT systems trained solely on Canadian parlia-
mentary data; these errors also appear (albeit less

frequently) in the output of large publicly available
MT systems. In this work we will distinguish be-
tween errors, where context (and world knowledge
of the two sovereigns in question) would be suffi-
cient for a human translator to translate correctly,
and other potential artifacts of the data where there
is insufficient context at the sentence level to trans-
late unambiguously.

This work can be viewed as a narrowly-focused
miniature challenge set (Isabelle et al., 2017), aim-
ing to examine a specific intersection of MT chal-
lenges through a recent known example: world
knowledge (or lack thereof) and changes in the
state of the world, dataset imbalances, a subset of
the different ways in which grammatical gender
and the pronouns and inflections used for the ref-
erent affect translation for this language pair, and
asymmetries in translation ambiguity.1 By keep-
ing this tight focus, we are able to point out some
areas in which MT is not yet “solved,” even for
this highly-resourced language pair. On the other
hand, this tight focus on both the language pair and
the specific case of text about these two monarchs
limits the scope of what this work addresses; we
provide a brief discussion of more general related
work in the following section and additional notes
in the Limitations section.

2 Related Work

How to incorporate (new or updated) terminol-
ogy into MT has long been an area of interest,
from compound noun splitting and subword mod-
els (Koehn and Knight, 2003; Sennrich et al., 2016)
to rapidly incorporating terminology from exter-
nal sources like lexicons or dictionaries (Arthur
et al., 2016; Kothur et al., 2018). Recently, there
has been a focus on handling novel terminology
resulting from the COVID-19 pandemic, including
a shared task (Alam et al., 2021), the release of

1We release the annotated data as supplementary material.
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targeted datasets (Anastasopoulos et al., 2020), and
evaluations of MT performance on related termi-
nology (Bowker and Blain, 2022).

There has been work on bias, imbalance,
and gender-inclusivity in coreference resolution
(Rudinger et al., 2018; Zhao et al., 2018; Cao and
Daumé III, 2020), on linguistic gender in MT (Van-
massenhove et al., 2018), on incorporating corefer-
ence into MT to improve pronoun and gender inflec-
tion translation (Miculicich Werlen and Popescu-
Belis, 2017; Saunders et al., 2020), and on bench-
marks for and analysis of gender in MT (Currey
et al., 2022; Savoldi et al., 2021).

There has also been analysis of and attempts
to mitigate language pair asymmetries in linguis-
tically conveyed information, such as by incorpo-
rating factors (Koehn, 2005; Avramidis and Koehn,
2008; Mager et al., 2018). Here, while some of
our examples might benefit from such approaches,
many would require additional context beyond the
sentence. The topic of additional context in MT and
its evaluation remains an open area (Tiedemann and
Scherrer, 2017; Junczys-Dowmunt, 2019; Castilho
et al., 2020), and within this realm there has been
work specifically done on anaphora resolution
(Voita et al., 2018).

3 Linguistic and Grammatical Notes

In French, nouns are grammatically classed as mas-
culine or feminine, and adjectives, articles, and
determiners take inflected forms that agree with the
nouns in terms of number and grammatical gender.
The noun Majesté (majesty) is feminine (f). The
form of address Sa Majesté on its own is ambigu-
ous to translate into English, as the feminine form
of the third person singular possessive determiner
Sa agrees with the feminine noun Majesté, with-
out regard to the specific referent. Depending on
the referent’s pronouns, Sa could be correctly trans-
lated as various singular third person pronouns such
as Her, His, or Their (singular; for plural Their, the
French source would be Leurs Majestés). Without
additional context, like the sovereign’s title and
name, we expect current MT systems to almost
always produce Her Majesty as a translation, due
to the preponderance of that translation in the data.
The question arises: will MT systems use informa-
tion about words like King/Roi or the frequency
with which the name Charles is associated with
masculine pronouns to produce translations like
His Majesty King Charles III? We anticipate more

translation errors in the French–English translation
direction, but examine both translation directions.

Table 1 illustrates five cases into which the ex-
amples in our data fall. In case A, a pair of words
is unambiguously translated in either translation
direction within this domain, such as Reine and
Queen. Sometimes French has two forms of a noun
like souverain (m)/souveraine (f) but English only
has one unmarked form, sovereign, making the
translation unambiguous in the French to English
direction only (case B). In case C, the translation
from English is unambiguous both because Sa is
used for either He or She in our data and because its
translation is governed by the grammatical gender
of the noun Majesté, and does not depend on the
referent. As described earlier, the reverse (case D)
requires additional context when translating from
French into English (due to the agreement between
the possessive determiner and the grammatical gen-
der of the noun in French, and the selection of
the English pronoun based on the referent). The
reverse direction of case B is case E, where addi-
tional context is required to translate the English
word sovereign into French.2

4 MT Systems

4.1 Online Systems

We used MT output from two publicly avail-
able translation tools, Google Translate (https:
//translate.google.com/)3 and Bing Transla-
tor (https://www.bing.com/translator). For
the latter, we specify “French (Canada)”. We do
not know if they have been updated since Septem-
ber 8, 2022. All translations were re-run on January
13, 2023, to use recent versions.

4.2 Internal

We also use French-English (FR-EN) and English-
French (EN-FR) MT systems trained on data
from the Canadian Hansard (House of Commons),

2This highlights a subtle distinction between the last four
cases. Those using the example of sovereign have a noun
whose linguistic gender marking is selected based on the ref-
erent, whereas in the case of B and E, the English pronoun
is selected based on the referent but the French determiner is
selected based on the grammatical gender of the noun; e.g.,
if you wanted to describe “her path”, the choice to use the
translation voie (f) or chemin (m) would determine whether to
translate her as sa or son, respectively.

3Google Translate offers (binary) gender-specific transla-
tions in some language pairs for some sentences (Johnson,
2020); while we did not test this for all sentences in our set,
most did not appear to offer these options, even when it would
be appropriate to do so (likely due to length/complexity).
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A. Reine/Queen bidirectionally unambiguous translation (EN↔FR)
B. souverain(e) unambiguously translated as sovereign (FR→EN)
C. His Majesty unambiguously translates as Sa Majesté (EN→FR)
D. Sa Majesté requires context for Sa, e.g., Sa Majesté la Reine (Her Majesty the Queen)
E. sovereign requires context to translate as souverain (m) or souveraine (f)

Table 1: Examples of unambiguous translations and translations that require context for disambiguation.

which we refer to as Internal. We trained Trans-
former models (Vaswani et al., 2017) using Sock-
eye (Hieber et al., 2018) version 2.3.14 on over
5.6 million lines of text drawn from sessions 39-1
(2006) to 43-2 (2021),4 all predating the accession
of the new sovereign. These systems were built
for other projects, and were only used for decod-
ing (no additional training was performed). See
Appendix A for more details.

5 Experiments

We collect a small amount of existing parallel text
from several sources: the text of the Prime Minis-
ter’s statement regarding King Charles III’s acces-
sion to the throne, text from the Canadian Hansard
(proceedings of the House of Commons), and the
Royal Anthem (God Save the Queen/King).5

From these, we manually extract terms that vary
in at least one language based on whether they
would refer to Queen Elizabeth II or King Charles
III. This includes pronouns/determiners, adjectives
and nouns that are grammatically marked for gen-
der, and their names and titles. After translation,
an author of this paper annotated each term in con-
text to mark if it had been translated as expected.
This was done via first automatically checking for
string matches, followed by a manual check of
all examples and notes on the cases where the ex-
pected translation was not found. Table 2 shows a
summary of the Hansard and Prime Minister’s An-
nouncement settings in which at least one system
produced a translation error.

5.1 Prime Minister’s Announcement

The text of the prime minister’s announcement on
the accession to the throne is 7 lines long and con-
tains 24 terms that we examine. Of these, 10 are
bidirectionally unambiguous (e.g., “Queen Eliza-
beth II”). In the English to French direction another

4Hansard text is available at https://www.ourcommons.
ca/documentviewer/en/house/latest/hansard.

5The title quote comes from the Royal Anthem, which
can be found online at https://www.canada.ca/en/
canadian-heritage/services/royal-symbols-titles/
royal-anthem.html along with its French translation.

Bing Google Internal
EN→FR PM Ann. 24/24 23/24 24/24
FR→EN Hansard-King 3/3 3/3 1/3
FR→EN PM Ann. 22*/24 23/24 17/24

Table 2: Fraction of accurate term translations. Anthem
and sets where all systems performed perfectly omit-
ted. *In the case of FR→EN PM Announcement, Bing
produces one translation that is rephrased such that a
pronoun is not needed; we count this as correct.

11 are unambiguous, while the other 3 have enough
context that a human translator could translate them
unambiguously. In the French to English direction,
another 3 are unambiguous, and the remaining 11
have sufficient context for a human translator.

In the English to French direction, across all the
systems and terms, there is only one case where
the correct translation is not produced: an instance
of Google producing souverain where it ought to
produce souveraine in a sentence that references
both monarchs (see Table 3).6

As expected, it is in the French to English di-
rection that we see the most errors. All systems
perform accurately on the 13 unambiguous trans-
lations. On the 11 remaining terms that have ade-
quate context for translation, the Bing system cor-
rectly translates 8 (also producing two instances of
“Her Majesty” rather than “His,” and one valid trans-
lation that is rephrased such that a pronoun is not
needed), the Google system accurately translates
10 (with the same Her/His Majesty substitution),
and the Internal system only accurately translates
4 (with 6 Her/His Majesty substitutions and 1 sub-
stitution of them for him).

5.2 Hansard

We selected sentences from the Hansard, all of
which referenced the Queen. There were 9 from
the training data and 2 from held out data. Across
these sentences, there are a total of 13 terms that
we examine. Two of the terms are bidirectionally
unambiguous to translate. In the English to French

6The Internal system produces souveraine twice in a row
in the same sentence, but a full discussion of all types of
translation errors is beyond the scope of this short paper.
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English French MT
While we continue to mourn the loss of
Canada’s longest-reigning sovereign,
Her Majesty Queen Elizabeth II,
we also look to the future with
the proclamation of the accession of
His Majesty King Charles III as
Sovereign of Canada.

Alors que nous continuons de pleurer
la perte de la souveraine qui a régné
le plus longtemps sur le Canada, Sa
Majesté la reine Elizabeth II, nous
nous tournons vers l’avenir au moment
de la proclamation de l’accession au
trône de Sa Majesté le roi Charles
III, souverain du Canada.

Alors que nous continuons à pleurer
la perte du plus ancien souverain
du Canada, Sa Majesté la reine
Elizabeth II [...] (Google)

[...] the proclamation of Her
Majesty King Charles III, the
sovereign of Canada. (Internal)

Table 3: Examples of translation errors. Terms in bold, errors in red and italics.

direction, the remaining 11 are all also unambigu-
ous to translate. In the French to English direction,
10 would require additional context to guarantee
translation accuracy, while 1 has sufficient context
for a human translator to translate it accurately. For
the two bidirectionally unambiguous translations
and for the one contextually informed translation
in the French to English direction, we also produce
alternative versions of the same segments modified
to reference King Charles III.

In translating English to French, all terms are
translated correctly for both monarchs by all MT
systems. In translating French to English, all trans-
lations of text about Queen Elizabeth II are correct
(modulo capitalization or apostrophe differences)
for all systems. All 10 of the sentences that would
require additional context to guarantee translation
accuracy were examples with Sa Majesté, and all
were translated as “Her Majesty” by all three MT
systems. Note that we would especially expect this
to be true of the training data for the Internal MT
system, since this training data had already been
observed and possibly memorized by the system,
but it is also the case for the one sentence with this
phrase from the held out data. The one sentence
where the context would have been sufficient for a
human translator included the phrase Sa Majesté
le roi Charles III; both publicly available systems
handled this correctly, while the Internal system
translated it as “Her Majesty King Charles III.” The
internal system also once left Roi untranslated.

Nevertheless, these results are somewhat weak-
ened by the fact that much of the data is from the
training data for the Internal system, and may also
be incorporated in the public MT systems; possibly
implicating memorization.

5.3 Anthem

The Royal Anthem has a number of references
to the Queen or King (depending on the version)
as well as pronouns and (in the case of French)
inflected adjectives. As song lyrics, the MT output

is often adequate (the Internal system struggles the
most) but not poetic. We present only the following
high-level comments: when translated line by line,
all systems default to masculine inflections of the
adjectives, but when lines are merged to provide
additional coreferent context, the adjectives are
inflected to match the referent.

6 Discussion and Conclusions

Perhaps unlike the introduction of COVID-19 ter-
minology (where an entire new topic or domain
is rapidly introduced to the translation landscape),
the accession of a new monarch may cause a shift
in terminology in an existing domain, in this case
one with 70 years of history.7 As we expected, am-
biguous terms tend to be translated in a way that
likely corresponds to the imbalance in the training
data (i.e., in the feminine, as referencing Queen
Elizabeth II); this also highlights the need for con-
text (whether document-level or external) that is
often required for accurate translation when there
is an asymmetry in what information is (un)marked
across a language pair. Though they likely contain
many Canadian translations (see Bowker and Blain
(2022)), we cannot examine the public system train-
ing data, only the Internal system data. While
there are thousands of mentions of the Queen in
the Hansard training data, there are only hundreds
of references to kings, and only 36 instances of the
term “His Majesty” as compared to 882 instances
of “Her Majesty”. In our Internal system, an addi-
tional consequence of this is subword segmentation
of words like roi: the word was fully segmented
into its three characters, rather than appearing as
a single token in the vocabulary, likely contribut-
ing to observed errors. We also found that even
in sentences that would have adequate context for
a human translator (with knowledge of the forms

7The recent terminology shift in English from Turkey to
Türkiye may provide another example for study; as of May
2, 2023, Google and Bing exhibited different results when
translating the country’s name from French into English.
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of address for the two monarchs), the MT systems
sometimes made errors. Without examining the
inner workings of the systems, the fact that this
occurred primarily in sentences with references to
both monarchs leaves open the question of whether
this is a problem of erroneous implicit coreference
resolution, imbalance in the training data around
these particular terms, or a combination of the two.
Nevertheless, while accuracy in term translation
is high overall, these striking errors where context
ought to be sufficient serve as a warning that even
in high-resource language pairs, history and data
maintain a strong influence.

Limitations

This work has a narrow focus: small-scale analysis,
translation between one language pair (French and
English), examining terminology around two real-
world public figures (whose forms of address are
both highly prescribed and publicly documented),8

in a specific newsworthy event (the accession to
the throne of a new king after over 70 years of
data and translation about a queen). First, the scale
of the analysis is quite small, so it does not ex-
amine in detail questions of frequency of errors,
distributions of errors, or statistical significance.
While this work raises issues that may be relevant
for consideration across other language pairs, the
relevance of the specific linguistic conventions dis-
cussed here will vary across language pairs, and
certainly do not cover the full range of asymme-
tries in linguistically encoded information (see, e.g.,
Mager et al. (2018)). Due to the prescribed forms
of address of the two monarchs in question, this
work only examined translations related to a small
subset of terms (e.g., “His”/“Her”, Reine/Roi) and
does not examine performance on terms used re-
lated to other individuals or to other third person
singular pronouns or forms of address that could
be used by a monarch. The specific circumstances
(a 70 year reign of a sovereign of a country with an
official bilingualism policy and this particular set
of linguistic features) means that we may not ex-
pect these results to generalize to other potentially
comparable scenarios. Lastly, we cannot examine
the training data used for the public models, so we
can only draw conclusions related to training data
about the internal system.

8See, e.g., https://www.canada.
ca/en/canadian-heritage/services/
protocol-guidelines-special-event/
styles-address.html

Ethics Statement

This work included data collection, specifically the
selection of test sentences from public-facing Cana-
dian government websites as well as the annotation
of machine translation errors. This was performed
by one of the authors, who reads both languages
and received confirmation on French-related ques-
tions from fluent colleagues.

While this work does focus on two identifiable
individuals, these two individuals are public fig-
ures and the data sources that we select are official
sources of public information about them (in fact,
produced by governments of which they were/are
the Heads of State). There is discussion in the NLP
and MT literature of the harms of misgendering
and of treating gender as a binary or immutable
feature (Cao and Daumé III, 2020; Saunders et al.,
2020). In this work, we focus on some aspects
of grammatical gender that can be unrelated to an
individual referent (e.g., Sa Majesté), as well as
some aspects of linguistic gender that do have a
tie to the referent (e.g., pronouns, inflection of ad-
jectives). By choosing this particular case study
of the accession of King Charles III after the pass-
ing of Queen Elizabeth II, this paper does focus
on only two linguistic genders in French and En-
glish, because the current and past official formal
forms of address of these two particular individu-
als are well-documented in this language pair by
sources from their governments. We use the most
recent available information for this, as linked in
the footnote in the previous section. For a broader
discussion of gender-inclusive language related to
translation and this particular language pair, there
are various sources on the topic,9 and some of these
conventions are changing.

From a computational cost perspective, this
paper reused existing neural MT systems (pub-
licly available systems and internal systems) rather
thank training systems from scratch, and translated
a very small amount of text.
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A Internal System Details

We trained Transformer models (Vaswani et al.,
2017) using Sockeye (Hieber et al., 2018) version
2.3.14 and cuda-10.1. We used Sockeye’s default
value of 6 encoder/ 6 decoder layers, 8 attention
heads, a model size of 512 units with a FFN size of
2048, the Adam (Kingma and Ba, 2015) optimizer,
label smoothing of 0.1 and a cross-entropy-
without-softmax-output loss. The whole validation
set (2000 sentences) is used during validation. We
optimized for BLEU (Papineni et al., 2002) using
Sockeye’s default of sacreBLEU-1.4.14 (Post,
2018). Every 1000 updates, we evaluate BLEU
on the validation and perform early stopping if
there is no improvement after 32 checkpoints.
Only sentence pairs with at most 200 tokens
on both source and target side are used during
training. Gradient clipping was set to absolute,
the initial learning rate set to 0.0002, batch size
set to 8192 tokens and we used weight tying and
vocabulary sharing. Training was performed on
4 Tesla V100s, while inference used 1. During
inference, the beam size is set to 5. The training
data consisted of over 5.6 million lines of text
drawn from sessions 39-1 (2006) to 43-2 (2021),
with validation and additional held out data drawn
exclusively from 43-2. Hansard text is publicly
available at https://www.ourcommons.ca/
documentviewer/en/house/latest/hansard.
These systems were built for other projects, and
were simply used to decode the selected texts (no
additional training was performed for this paper).

B Test Data Sets

The Prime Minister’s statement (with
link to the French version) is found at:
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https://pm.gc.ca/en/news/statements/2022
/09/10/statement-prime-minister
-proclamation-accession-his-majesty
-king-charles

The segments from House of Commons
were subselected from sentences available at
https://www.ourcommons.ca/documentviewer
/en/house/latest/hansard

The Royal Anthem data is collected from
https://www.canada.ca/en/canadian
-heritage/services/royal-symbols-titles/
royal-anthem.html
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