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Abstract

This paper studies the problem of open-domain
question answering, with the aim of answering
a diverse range of questions leveraging knowl-
edge resources. Two types of sources, QA-
pair and document corpora, have been actively
leveraged with the following complementary
strength. The former is highly precise when
the paraphrase of given question q was seen
and answered during training, often posed as
a retrieval problem, while the latter general-
izes better for unseen questions. A natural
follow-up is thus leveraging both models, while
a naive pipelining or integration approaches
have failed to bring additional gains over either
model alone. Our distinction is interpreting
the problem as calibration, which estimates the
confidence of predicted answers as an indicator
to decide when to use a document or QA-pair
corpus. The effectiveness of our method was
validated on widely adopted benchmarks such
as Natural Questions and TriviaQA.

1 Introduction

Open-domain question answering is a well-known
task in natural language processing, aiming to an-
swer factoid questions from an open set of domains.
One commonly used approach for this task is the
retrieve-then-read pipeline (also known as Open-
book QA) to retrieve relevant knowledge, then rea-
son answers over the knowledge. Given the wide
range of topics that open-domain questions can
cover, a key to a successful answering model is:
to access and utilize diverse knowledge sources
effectively.

Toward this goal, existing work can be catego-
rized by the knowledge source used:

• Document Corpus-based QA (Doc-QA): This
type of work utilizes a general-domain Doc-
ument Corpus (e.g., Wikipedia) (Karpukhin
∗First two authors equally contributed to this work.
†correspond to seungwonh@snu.ac.kr

et al., 2020; Guu et al., 2020; Liu et al., 2021;
Izacard and Grave, 2021) for reading then an-
swering questions (i.e., {Q,D} → A).

• QA as Retrieval (QR): This type of work uti-
lizes a collection of already answered questions
(or QA-pair) as knowledge, typically leveraging
nonparametric approaches, such as a retriever
for closest QA-pairs, to extract the top-1 QA
pair that is most similar to a target question and
is considered as a final answer (Lewis et al.,
2021b; Xiao et al., 2021; Lewis et al., 2021a).
i.e., Q → {paraphrase Q′, A}.

In an effort to leverage complementary strengths
of existing models, previous work has attempted to
build a pipeline of individual models (Lewis et al.,
2021b). However, their approach has not resulted
in significant gains over using either model alone.
In this paper, we propose a novel approach of lever-
aging the strengths of both document and QA pairs
as contexts for a Unified Reader-based QA (or
UR-QA).1 Figure 1 illustrates the distinction of
our approach providing both knowledge to a uni-
fied reader as context. We retrieve a list of relevant
QA-pairs (called as QA-history), then treat the
few retrieved QA examples, as if it is a relevant
document passage.

Meanwhile, the closest approach to use multi-
ple knowledge sources is concatenating the multi-
sources uniformly into a single decoder (Oguz
et al., 2020), but we argue knowledge selection is
critically missing. To motivate, Figure 1 shows the
QA-history, from which answer ‘Eric Liddell’ is
explicitly identified, while it is more implicit in the
document such that another name such as ‘Hugh
Hudson’ is known to often confuse QA models. It
is critical for the QA model to calibrate predic-
tion quality as an indicator to decide when to use a

1We stress that our focus is a unified framework, and or-
thogonal to optimizing readers or retrievers, which is beyond
the scope of this paper.
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Answer: Eric Liddell
Answerability : True
Consistency: High

Answer: Hugh Hudson
Answerability: True
Consistency: Low

QA
ModelQA-pair context

Q: Who was the film “Chariots of Fire” about ? A:      

Q: Who was the main character in Chariots of Fire?   A: Eric Liddell 

Q: Who starred in the movie Chariots of Fire ?             A: Ian Charleson

Q: Who did SturanRodger play in Chariots of Fire?   A: Sandy McGrath 

Chariots of Fire is a 1981 British historical sports drama film 
directed by  Hugh Hudson…, It is based on the true story of 
two British athletes in the 1924 Olympics: Eric Liddell, a
devout Scottish Christian who runs for the glory of God, …

Document context

Q: Who was the film “Chariots of Fire” about ?  A: 

Selective QA 
via calibration

Question

QA History
Retrieval

Document
Retrieval

A Collection of 
Documents

A Collection of 
QA-pairs

Figure 1: An overview of our Unified Reader QA. We retrieve contexts from document and QA-pair corpus, infer
answers from each source, then select the final answer by comparing the calibrated confidences.

document corpus or QA-history.
Toward the goal, we propose Selective QA,

where a more reliable answer among candidates
can be identified through the calibration of the
QA model. Existing calibration (Kamath et al.,
2020; Zhang et al., 2021; Si et al., 2022) has fo-
cused on the ability of models to “know when they
don’t know” and abstain from answering if they
are uncertain. A naive approach would be simply
prioritizing more confident predictions for answer
selection.

As a known measure of confidence, LM like-
lihood of generated tokens has been found to of-
ten miscalibrate (Jiang et al., 2021; Kumar and
Sarawagi, 2019), tending to prefer short outputs
(Murray and Chiang, 2018), or being biased to-
wards more frequent words (Ott et al., 2018). We
also observed similar issues in our setting, which
we refer to as calibration overfitting – LM likeli-
hoods are biased towards increasing confidence on
both correct and wrong answers.

Our distinction is to overcome this limitation, by
proposing two new objectives, for lowering confi-
dence when the given context cannot answer the
question (i.e., answerability), or when sampling
uncertainty from decoder is high (i.e., sampling
consistency). Finally, building upon improved cal-
ibration, we carefully select among answer candi-
dates inferred from document and QA-pairs.

To summarize, we make the following contribu-
tions: a) We propose an open-domain QA model
complementing document corpus with QA-pair
corpus, and decide the selective usage between
a document or QA-pair corpus through calibra-
tion. b) We evaluate our approach on Natural
Questions (Kwiatkowski et al., 2019) and TriviaQA

(Joshi et al., 2017), and our method can improve
QA performance of existing models. c) We analyze
how our method improves calibration and how it
helps to select better answers.

2 Related Works

Doc-QA has been a dominant paradigm in open-
domain QA (Karpukhin et al., 2020; Guu et al.,
2020; Liu et al., 2021; Izacard and Grave, 2021),
where the relevant passages are first fetched by the
retriever model and then processed by the reader
model to produce the answer. Reader models are
typically categorized as an extractive or generative
model, where the former locates the answer span
in the given context and the latter generates the
answer in token-by-token manner. In our work, we
focus on a generative model, which can transfer
knowledge from generative LMs such as T5 (Raf-
fel et al., 2020) and GPT-3 (Brown et al., 2020).
Meanwhile, while most works for open-domain QA
use Wikipedia as context, some works (Oguz et al.,
2020; Ma et al., 2022) leverage various knowledge
including Tables and Knowledge Graphs.

QR retrieving relevant QA pairs over a large
collection of QA pairs is a more efficient alterna-
tive to Doc-QA. Lewis et al. (2021b) build PAQ
(for Probably Asked Questions) – 65M QA pairs:
automatically-generated resources by using ques-
tion generation techniques, and learn RePAQ re-
triever to efficiently extract the top-1 QA pair that
is most similar to a target question, and uses its
answer for answering the question. Xiao et al.
(2021) use answer aggregation heuristic to combine
retrieved candidates of QA-pairs with candidates
from other sources. Chen et al. (2022) also leverage
retrieved QA-pairs, by fusing representations of
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the QA-pairs into language models. Despite some
gains, their generalizability for unseen questions
is limited, compared to Doc-QA, which motivates
our approach of selectively combining with other
knowledge.

Our Distinction is to analyze and utilize the
complementarity of Doc-QA and QR, carefully se-
lecting knowledge sources via calibration, while
the previous work (Oguz et al., 2020) blindly con-
catenates all types of data into a single context.

Calibration has been studied for abstaining from
answering when the model does not know. Sources
of calibration have been LM’s likelihoods (Si et al.,
2022), classifier (Kamath et al., 2020), and linguis-
tic expressions (Lin et al., 2022; Mielke et al., 2022;
Kadavath et al., 2022; Tian et al., 2023). Our dis-
tinction is exploring the use of calibration for selec-
tive QA, and overcoming the calibration overfitting
we observed from existing methods, by proposing
new likelihoods based on answerability and consis-
tency.

3 Proposed Method

In this section, we formally describe Doc-QA as
backbones (Section 3.1) and our unification base-
line (Section 3.2), followed by our proposed cali-
bration for selective QA (Section 3.3).

3.1 Backbone: Doc-QA
Open-book QA requires to answer question q given
context c, i.e., optimizing PLM (a|q, c). Doc-
QA (Lee et al., 2019; Karpukhin et al., 2020) typi-
cally uses Wikipedia documents as knowledge c.

In this paper, for implementing a Doc-QA back-
bone, we use a state-of-the-art generative reader:
Fusion-in-Decoder (Izacard and Grave, 2021),
based on a pretrained language model – T5 (Raffel
et al., 2020). This approach separately encodes
top-n passages in an encoder, and fuses them in a
decoder. The final answer A is obtained as follows:

Fuse(q,d1:n) = [Enc(q,d1); , ..., ;Enc(q,dn)]

A = Dec (Fuse(q,d1:n))

(1)

where Enc and Dec indicate Encoder and Decoder
modules in transformer (Vaswani et al., 2017),
and [ ; ] indicates the concatenation of encoder’s
outputs. Let x denote the input sequence, and
y = (y1, ..., yT ) the output sequence. The lan-
guage model based QA model is trained with max-
imum likelihood estimation (MLE) to optimize the

Figure 2: The results of QA (Left) and Retrieval (Right)
on NQ.

following objective for a given (x, y):

L(x,y) = −
T∑

t=1

log PLM (yt|y<t,x) (2)

where x is a pair of question/document (q,d1:n),
and y is the ground-truth answer a∗ in our setting.
Meanwhile, at inference time, we use Greedy De-
coding,2 which is commonly used for QA tasks. A
decoded sequence is â = (â1, â2, ..., âT ), where
each token is selected as follows:

ât = argmax
y∈V

PLM (y|â<t,q,d1:n) (3)

3.2 Unified Reader: UR-QA
While traditional methods rely on high-efficiency
retrievers to match questions with QA history, our
work is inspired by in-context learning (Brown
et al., 2020) for closed-book QA: We propose us-
ing the QA-history retrieved as a hypothetical doc-
ument with few-shot examples and reading it to
answer the question

As shown in Figure 1, we retrieve top-n QA
pairs from QA corpus as in-context examples, and
finetune a QA model with the in-context examples.
Specifically, as QA corpus and QR, we used PAQ
and a dense retrieval of RePAQ (See Experimental
Section for more details), as proposed in Lewis
et al. (2021b). Given a target question, we extract
top-m QA-pairs from PAQ and the top-m retrieved
QA-pairs, as they are short, can be concatenated
into one document passage as below:
Question: {target q}, Answer: \n
Question: {example q1}, Answer: {example a1} \n
Question: {example q2}, Answer: {example a2} \n
Question: ... Answer: ...

2As a decoding method, we can choose beam search or
temperature-based sampling, but greedy decoding empirically
outperformed others in our QA tasks.
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To motivate this approach, Figure 2 shows QA
accuracy of our UR-QA and Recall of retrieved
knowledge (recall@n) on the following variants of
knowledge: (1) Document-only (n passages); (2)
Doc + QA history (n + 1 passages). Gains from
adding one passage (concatenating m = 50 QA
history) suggest the complementary nature of QA
history to documents, in terms of both QA and
retrieval performances, regardless of the size of
retrieved passages n.

Inspired, we propose to combine d1:n and k as
context, and a baseline (Oguz et al., 2020) concate-
nates all knowledge – texts, tables, and knowledge
graphs in the decoder. Through this “concat” base-
line, we can consider k of QA-pairs as (n+1)th
passage in Doc-QA, so that the final answer Abase

is obtained as follows:

Abase(q,d1:n,k) =

Dec([Enc(q,d1); ...;Enc(q,dn);Enc(q,k)])
(4)

where [ ; ] indicates the concatenation of encoder’s
outputs. However, due to unreliable inputs from the
concatenation, the performance may degrade with
increasing noisy context, as reported in Oguz et al.
(2020). We hypothesize this as a cause of com-
bining multi-knowledge underperforming a single
model and propose selective QA.

3.3 Selective UR-QA via Calibration

Our distinction from concat baseline is that we
compare the confidence of each answer from docu-
ments and QA history, then select the final answer
Aours as follows:

Aours =

{
âk if Conf(âk|q,k) ≥ Conf(âd|q,d)
âd if Conf(âk|q,k) < Conf(âd|q,d)

(5)
where âk and âd are the decoded answers over QA
pairs k and documents d, respectively. While the
existing methods for confidence estimation adopt
the likelihoods of language models, to overcome
its overfitting (Section 3.3.1), we propose two new
measures, answerability (Section 3.3.2) and consis-
tency (Section 3.3.3), to eventually ensemble these
confidence estimates into a score.

3.3.1 Sequence Likelihood of LM
The key point of our method is to find the effective
measurement of the answer confidence, which is
essentially the calibration problem. The confidence
score P(â|·) should be able to discern the accurate

answer, by comparing the reliability of each knowl-
edge. We propose the way to find such P(â|·) in
the next paragraph, based on our analysis of the
important factors on documents and QA-pairs.

Prior work (Hendrycks and Gimpel, 2016) has
proposed MaxProb – a method that uses the max-
imum probability of a classifier as the confidence
estimator for selective prediction. For extractive
QA, existing works (Zhang et al., 2021; Si et al.,
2022) adopt MaxProb as a baseline, by using the
sum of the maximum logits of the start and end of
the answer span. Meanwhile, we focus on calibrat-
ing generative language models, where its output is
a token sequence. To apply MaxProb for generative
LMs, we select the maximum probability at each
step by the argmax function in Eq. (3), which can
be viewed as greedy decoding. The scores of de-
coded tokens are aggregate by product, as follows:

PLM (â|q, c) =
|â|∏

t=1

PLM (ât|â<t,q, c) (6)

where PLM (∗) is the token probabilities obtained
from LM head. Since LM tends to underestimate
the likelihood of longer texts, length normaliza-
tion is essential as in (Adiwardana et al., 2020).
To normalize as sequence lengths,3 we take the
geometric mean of the multiplicative terms, i.e.,
{PLM (â|q, c)}1/|â|.

However, this LM likelihood obtained by Max-
Prob has an inevitable problem. MLE loss in Eq.
(2) enforces to train LM solely towards maximiz-
ing the likelihoods of observed sequences. Be-
cause the observed sequences (or labeled answers)
can have diverse surface forms, MLE training in-
evitably leads to miscalibration. In QA tasks, the
sequence likelihood of QA models is reported to be
often miscalibrated, or overconfident (Jiang et al.,
2021; Kumar and Sarawagi, 2019).

In Figure 3, we also observe a consistent ten-
dency in our open-domain QA task, where each
line indicates the average confidence score of three
estimates on correct predictions (solid line) and
incorrect predictions (dashed line). As the train-
ing steps increase, the scores of LM likelihood (red
lines) increases monotonically, and even the gap be-
tween correct and incorrect predictions decreases.
We denote this problem as calibration overfitting,
and hypothesize two causes (C1 and C2).

3We empirically found that length normalization slightly
improves the performance of Selective QA.
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Figure 3: Average scores of three confidence estimates
over training epochs. While the solid line is confidence
on correct answers, the dashed line is confidence on
incorrect answers. Red: LM likelihood, Aqua: Answer-
ability, Purple: Consistency.

• C1: LM’s objective maximizes the probabilities
on answers regardless if the retrieved context is
answerable or not, such that it is overconfident
on unanswerable contexts.

• C2: LM likelihood of a decoded output alone
does not represent their uncertainty, while can-
didates unselected by greedy decoding can be a
meaningful indicator of uncertainty.

To deal with the above issues, we propose a new
calibration approach of learning two measures: An-
swerability and Consistency, which are robust to
calibration overfitting, as shown in Figure 3.

3.3.2 Answerability
For C1, we learn an answerability score,
“P(Answerable)”, the probability that the passage
can answer the given question, which has been stud-
ied in Machine Reading Comprehension tasks (Ra-
jpurkar et al., 2018). Our contribution is to train
to predict answerability for the question/context
pair (q, c) for the purpose of detecting the low con-
fidence when the given context c cannot answer
question q, i.e., unanswerable. Training signals
can be straightforwardly collected by whether q is
answerable in c, or not.

P(Answerable) =

{
1, if q is answerable in c

0, otherwise
(7)

3.3.3 Consistency
For C2, we learn a consistency score,
“P(Consistent)”, the probability of whether
samples consistently match a correct answer.
The same decoded answer â may have a high

uncertainty, if a discarded candidate from the
decoder is also highly plausible. In contrast, the
same answer has low uncertainty, if discarded
candidates from the decoder are not plausible.

To estimate such sampling uncertainty, we apply
sampling-based decoding (temperature=1) generat-
ing a set of samples of size N , and measure sam-
pling consistency. More formally, our supervision
signal for uncertainty can be collected as:

P(Consistent) =
∑N

i=1 1(âi = a∗)
N

(8)

where 1() is 1 if the condition holds (0 otherwise).
âi and a∗ are i-th sampled output and the ground-
truth, respectively. N is the number of samples,
and we set N = 30 in our experiment.

3.3.4 Prompted Calibration

We then proceed to discuss the process of aggregat-
ing calibration components into a score, using LM
for weak supervision. LM has been used as a means
of estimating scores by verbally expressing to esti-
mate a score as an output sequence, as adopted in
diverse cases, e.g., sensibleness and safety (Thop-
pilan et al., 2022) and uncertainty as question types
(Lin et al., 2022). The advantages of using a LM-
based verbal estimator are twofold: (1) it eliminates
the need to construct separate networks for scoring
and (2) it captures the interdependency between
answer prediction and its uncertainty within the
same LM head.

To learn Sans and Scon via verbal estimator, we
convert the scores into discrete words. Specifically,
Sans is expressed as either True or False. The
continuous values Scon in training data are sorted
and partitioned into equally sized quantiles (i.e.,
High, Medium, and Low). Then, we train UR to
generate the output template, prompted with the
verbalized scores, as follows:

Q: Who was the film “Chariots of Fire” about ?

Answer: Eric Liddell

Answerability: True

Consistency: High

P(a = Eric Liddell | x)

P(Answerable = True | x)

P(Consistent = High | x)

Output template

After training with the prompt, we can estimate
Sans and Scon on test examples, through the likeli-
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hood of token “True” or “High”, as follows:

P(Answerable) = PLM (True|y<True,q, c)

P(Consistent) = 1 · PLM (High|y<High,q, c)

+0.5 · PLM (Medium|y<Medium,q, c)
(9)

where x is the context with the above prompt. At
inference time, we can use a calibration ensemble
by averaging the three scores:

Conf(â|q, c) = 1

3

(
PLM (â|q, c)

+ P(Answerable) + P(Consistent)
) (10)

This final confidence is used in Eq. (5) for compar-
ing two candidates, then it decides the final answer.

4 Experiment

In our experiments, we first demonstrate that our
proposed confidence scores effectively improve the
calibration for question answering. We then ex-
amine how these scores contribute to an overall
improvement in question answering performance.
Finally, we provide qualitative analysis to gain a
deeper understanding and insight on our method.

Datasets We use the open-domain QA version
of Natural Questions (Kwiatkowski et al., 2019)
and TriviaQA (Joshi et al., 2017), following the
previous setting (Karpukhin et al., 2020; Izacard
and Grave, 2021).4 The details of the benchmarks
are as follows:

• Natural Questions (NQ) contains real user
questions from Google search engine. We use
training/dev/testing splits for open-domain ques-
tion answering, consisting of 79K train, 8.7k dev,
3.6K test examples.

• TriviaQA (TQA) is constructed from web-
scraped trivia questions. We use TriviaQA open-
domain training/dev/testing splits, consisting of
79K train, 8.8k dev, and 11K test examples.

Implementation We implement our models
upon T5 with the size of 770M (or ‘Large’) and 3B
3B (or ‘XL’), and fine-tune them on NQ and TQA.
To retrieve the contexts (d and k), we use the same
off-the-shelf retrieval as used by baselines: FiD-
KD (Izacard and Grave, 2020) for DR, and RePAQ
(Lewis et al., 2021b) for QR. While FiD-KD set

4https://github.com/facebookresearch/FiD

Metric Documents QA-Pairs
NQ TQA NQ TQA

Top-1 50.9 56.9 41.7 41.3
Top-5 75.1 80.2 53.5 51.2
Top-10 80.8 84.8 58.5 55.7
Top-30 86.8 88.6 64.5 61.4
Top-50 88.7 89.7 67.2 64.0

Table 1: Retrieval accuracy on test sets in NQ and TQA.

the number of passages to 100, we used top-50 pas-
sages for DR-QA due to GPU limitations, which is
the reason why our DR-QA performed lower than
FiD-KD. For QA-history, we concatenate top-50
QA-pairs into a single passage. We use 8 Tesla
A100 40GB GPUs for all experiments.

To retrieve the contexts (d and k), we use the
same off-the-shelf retrieval as used by baselines:
FiD-KD (Izacard and Grave, 2020) for Doc-QA,
and RePAQ (Lewis et al., 2021b) for QR. For a
collection of knowledge, we also use PAQ database
for QA pairs (Lewis et al., 2021b), and Wikipedia
for documents (Karpukhin et al., 2020). Table 1
shows the accuracy of retrievals from documents
and QA-pairs. If a correct answer is included in
the top-K contexts, the retrieval is assumed to suc-
ceed. While this measure calculated by naive string
matching is commonly used in (Karpukhin et al.,
2020; Izacard and Grave, 2021, 2020), it is not per-
fect as false negative examples can be counted as
true positive.

Baselines To show the effectiveness of our
method, we compare previous models over a sin-
gle source – FiD (Izacard and Grave, 2021), FiD-
KD (Izacard and Grave, 2020), UnitedQA (Cheng
et al., 2021), and R2-D2 (Fajcik et al., 2021) over
documents, and RePAQ (Lewis et al., 2021b) over
QA-pairs. “Our backbone” is reimplemented from
FiD-KD, while the difference is the number of re-
trieved documents. To validate the complementary
of documents and QA-history, we compare UR-QA
on a single source without our selection: “Docu-
ment Only” and “QA-History Only”. As baselines
over multiple sources, we compare our method
with “Base1: Pipeline” consisting of RePAQ and
FiD (Lewis et al., 2021b), and “Base2: Concat” in
Eq. (4), inspired by (Oguz et al., 2020).

Main results Table 2 shows the performance of
our models, with comparable other models in NQ
and TQA. We evaluate the performance of our mod-
els by Exact Match (EM) score, which is a stan-
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Method NQ TQA
Document-based QA

RAG 44.5 56.8
UnitedQA 54.7 70.5
R2-D2 55.9 69.9
FiD (n=100, Large) 51.4 67.6
FiD-KD (n=100, Large) 54.4 72.5
Our backbone (n=50, Large) 53.4 71.4

QA as Retrieval
TF-IDF 22.2 23.5
RePAQ (Retriever only) 41.7 41.3
RePAQ (Reranker) 47.6 52.1

UR-QA (on a single source)
Document Only (n=10, Large) 50.7 69.2
Document Only (n=50, Large) 53.5 71.3
Document Only (n=50, XL) 56.0 73.5
QA-History Only (Large) 46.6 54.3
QA-History Only (XL) 47.7 56.8

UR-QA (Document + QA-History)
Base1: Pipeline (Large) 52.3 67.3
Base2: Concat (Large) 53.9 72.0
Base2: Concat (XL) 56.7 74.2
Ours: SelectiveQA (n=10+1, Large) 53.6 70.6
Ours: SelectiveQA (n=50+1, Large) 55.4 72.6
Ours: SelectiveQA (n=50+1, XL) 58.2 74.5

Table 2: Comparison to open-domain QA models on
NQ and TQA. Note that while FiD and FiD-KD use 100
documents, we use 10 or 50 documents for ours.

dard metric for open domain question answering
(Izacard and Grave, 2021). Our models outper-
form the baseline models for both datasets and in
both model sizes (Large and XL readers). In NQ,
we observe that our selective UR-QA achieved the
performance gain of 1.9 EM over UR-QA (“Docu-
ment Only”), and 8.8 over UR-QA (“QA-History
Only”), on T5-Large. Our method (Large-NQ) also
outperforms Base1: Pipeline (Lewis et al., 2021b)
by 2.9 and Base2: Concat by 1.5, respectively. Our
best model with larger size (XL) shows 58.2 EM
in NQ, which is the highest among the compared
models. Meanwhile, our model trained on TQA
(Large-TQA) increases EM score by 0.9 over UR-
QA (“Document Only”) baseline, and 17.9 over
UR-QA (“QA-History Only”). Our best perform-
ing model in TriviaQA (XL-TQA) achieves the
highest score as well, recording 74.5 EM.

Does our method improve calibration for open-
domain QA? We use two metrics for the eval-
uation of the calibration performance: Expected
Calibration Error (ECE) and Area Under Curve
(AUC) of the risk-coverage graph. ECE is one of
the most commonly used metric in previous works

Method NQ TQA
ECE↓ AUC↓ ECE↓ AUC↓

FiD-KD (LM likeli) 0.310 0.251 0.186 0.103
+Temp Scaling 0.246 0.247 0.063 0.098

UR (DOC-ONLY)
(1) LM likelihood 0.305 0.290 0.182 0.091
(2) Answerability 0.154 0.307 0.185 0.116
(3) Consistency 0.134 0.244 0.154 0.099
(1+2+3) Ours 0.163 0.240 0.168 0.088

UR (QA-ONLY)
(1) LM likelihood 0.396 0.390 0.326 0.209
(2) Answerability 0.126 0.293 0.174 0.188
(3) Consistency 0.153 0.298 0.074 0.174
(1+2+3) Ours 0.147 0.289 0.170 0.171

Table 3: Calibration Evaluation: ECE & AUC of our
methods, compared to FiD-KD. ↓ means the lower the
metric, the better the calibration is.

(Guo et al., 2017; Minderer et al., 2021; Si et al.,
2022; Jiang et al., 2021), which indicates how much
the expected accuracy deviates from the expected
confidence score. We use the density-based ECE
from Minderer et al. (2021), defined as below:

ECE =
M∑

m=1

1

M
|Acc(Bm)− Conf(Bm)|, (11)

where M is the total number of bins (we use
M = 10), Bm denotes m-th bucket, Acc(Bm) is
the mean accuracy of Bm, and Conf(Bm) is the
mean confidence. In density-based ECE, an equal
number of predictions are assigned to each bin.

On the other hand, the risk-coverage plot (Wang
et al., 2017) shows the trade-off between the cover-
age and risk, where the former is measured as the
fraction of test cases that model makes prediction
on, and the latter is the error rate (or 1−accuracy)
at that coverage. Specifically, the risk is reportedly
high when the coverage increases (El-Yaniv et al.,
2010), since the less confident examples come into
consideration. Lower AUC of risk-coverage plot
indicates the lower average risk, which means more
chance of retaining correct answers in selectiveQA.

Table 3 shows that our method (1+2+3) has the
lowest AUC in all observed cases. Ours robustly
outperforms individual measures in AUC, while
there is no ‘all-time winner’ among individual mea-
sures. The robustness of our method is observed in
ECE as well – ours is the second-lowest in all cases,
while the ranking of others shifts with the change
of the dataset or knowledge source. Meanwhile, we
attempted temperature scaling (Guo et al., 2017) by
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Figure 4: Accuracy-coverage plot (NQ Large). Ours
retains the highest accuracy for all coverage. Top: UR-
QA (Doc Only), Bottom: UR-QA (QA-History Only).

optimizing a scaling factor in [0,10], but observed
no significant improvement on AUC.

Figure 4 provide a finer-grained illustration of
this situation, where our hybrid (1+2+3) has the
best accuracy (Exact Match) for all coverage in
both documents and QA pairs, while the accuracy
of other measures fluctuates beneath it.

Does better calibration improve the complemen-
tarity of two knowledge sources? Our goal is
to enhance the complementarity of documents and
QA-history through better calibration, leading to
improved QA performance. We investigate if im-
proved calibration truly contributes to the utiliza-
tion of complementarity. As seen in Table 4, our
hybrid (1+2+3) method, which exhibits the best
calibration performance in Figure 4, proves to be
the most effective criterion for selection, while lan-
guage model likelihood often fails to improve QA
performance beyond the baseline. To examine the
upper bound of our approach, we also report the
ideal QA performance (‘Oracle’) which is attain-
able with the perfect selection. The results indicate
that there is a significant potential for complemen-
tarity to further enhance QA performance, and that
the selection method plays a crucial role in realiz-
ing this potential gain.

Is ours robust under domain shifts? To ensure
that our model is robust under domain shifts, we
conducted cross-evaluation by out-of-domain eval-
uations: evaluating our QA model (trained on the
NQ dataset) on the TQA test set and our QA model

Size Method NQ TQA

Large

Ours: (1) LM likelihood 52.2 70.4
(1) + Temp Scaling 52.1 70.5

Ours: (2) Answerability 55.1 71.7
Ours: (3) Consistency 54.9 72.4
Ours: (1+2+3) 56.0 72.8
Oracle - Upper Bound 62.7 75.5

Xlarge

Ours: (1) LM likelihood 54.5 73.5
(1) + Temp Scaling 54.5 73.6

Ours: (2) Answerability 57.6 74.2
Ours: (3) Consistency 57.0 74.3
Ours: (1+2+3) 58.1 74.7
Oracle - Upper Bound 64.6 77.5

Table 4: Ablation Study

(trained on the TQA dataset) on the NQ test set.
As shown in Table 5, we found that utilizing both
knowledge sources is more beneficial than using a
single source, even under domain shifts. Our pro-
posed selective UR achieved gains of 3.8 EM on
the NQ dataset and 2.1 EM on the TQA dataset,
compared to baselines that used a single source.

Method
Train on TQA
Eval on NQ

Train on NQ
Eval on TQA

UR (Doc-only) 34.1 59.9
UR (QA-only) 35.2 49.0
Selective UR 39.0 62.0

Table 5: Results under domain shift

Model’s Selection Ratio We remark our model’s
behavior that is related to the generalization. Pre-
vious work (Lewis et al., 2021a) splits test set into
paraphrased questions in training set (“Question-
Overlap”), and unseen questions (“No-overlap”).
On the divided sub sets, we observe which knowl-
edge (either documents or QA pairs) our method
selected. Figure 5 shows the selection ratio of on
total test set and Question-overlap/No-overlap sets.
As shown in Figure 5 (a), our method tends to select
document knowledge (68.4% on all test set). On
the question-overlap set, the ratio of selecting QA-
pair knowledge increased on the Question-overlap
set (31.6% → 40.4%). This means the tendency
of selecting QA pair knowledge increased when
knowledge matching with questions in training set.
In contrast, on the no-overlap set, the tendency of
selecting documents increased (68.4% → 76.4%),
which means reading documents is more preferred
for generalization on unseen questions.

For a closer look, we select only critical cases
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(a) The results on all test set

(b) The results on critical cases 1&2

Figure 5: Selection ratio of each knowledge source,
from the result of NQ large model.

where only one of the candidate answers is correct
– Case1: the answer from documents is correct,
but one from QA-history is wrong, and Case2: one
from documents is wrong, but one from QA-history
is correct. As shown in Figure 5(b), in Case1, doc-
ument is the majority of the selection, which in-
creases the complementarity of the two knowledge.
Meanwhile, in Case2, the ratio of selecting docu-
ments (51.1% on all Case2) is the error rate, which
is potential room for improvement in our selection.
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6 Conclusion

This paper studies the selective QA system leverag-
ing both document and QA-pair corpus. For careful
selection, we propose a novel and effective calibra-
tion method based on Answerability and Sampling
Consistency and leverage them for comparing and
selecting two knowledge sources. On two bench-
marks: NQ and TQA, we empirically show our

proposed methods outperform existing approaches
for open-domain question answering tasks.

7 Limitations

We have identified several limitations in our work
and propose future directions to improve them:

(i) The sources for UR-QA in this paper are lim-
ited to the document corpus and QA-history, but
our unified reader is not restricted to take specific
sources. Further research can explore the general-
izability of UR-QA to more diverse sources, such
as linearized knowledge sources as proposed in
(Oguz et al., 2022). Future work can also explore
the optimal method for considering LM likelihood,
answerability, and consistency together.

(ii) Though it is not the focus of this work to
optimize readers, our proposed UR-QA can orthog-
onally benefit from improvement in retrieval. Fur-
ther study on the retrieval for UR-QA can be con-
ducted, including the direction to co-optimize the
reader and retriever as proposed in (Izacard and
Grave, 2020).
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