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Abstract

Grammatical error correction (GEC) aims to
correct errors in given sentences and is signifi-
cant to many downstream natural language un-
derstanding tasks. Recent work introduces the
idea of grammatical error detection (GED) to
improve the GEC task performance. In contrast,
these explicit multi-stage works propagate and
amplify the problem of misclassification of the
GED module. To introduce more convincing
error type information, we propose an end-to-
end framework in this paper, which Leverages
Error Type (LET) information in the generation
process. First, the input text is fed into a clas-
sification module to obtain the error type cor-
responding to each token. Then, we introduce
the category information into the decoder’s in-
put and cross-attention module in two ways,
respectively. Experiments on various datasets
show that our proposed method outperforms
existing methods by a clear margin.

1 Introduction

The grammatical error correction (GEC) task aims
to correct grammatical errors in natural language
texts, including spelling, punctuation, grammar,
word selection, and more. As shown in Figure 1,
a GEC model receives text containing errors and
produces its corrected version.

Current GEC algorithms are mainly divided into
two categories: detection-based models and end-to-
end generative models.

Detection-based models treat GEC as a token
classification problem (Omelianchuk et al., 2020).
By classifying each token in the sentence, we can
make a detailed transformation according to the
classification result to obtain the modified sen-
tence. This method has strong interpretability and
a transparent error correction process. However, to
achieve precise error correction, it is necessary first
to identify and classify all possible grammatical

*These authors contributed equally to this work.
†Corresponding authors.

Figure 1: An example of grammatical error correction
and detection.

errors. The training data is then manually anno-
tated based on the error categories, which is labor-
intensive.

To avoid manually designing wrong categories
and labeling data, many works (Yuan and Felice,
2013a; Yuan and Briscoe, 2016) have built end-to-
end generative GEC systems from the perspective
of Machine Translation (MT), which is also the
current mainstream method. In this approach, erro-
neous sentences correspond to the source language,
and error-free sentences correspond to the target
language.

Most recent generative models (Raheja and
Alikaniotis, 2020; Yuan et al., 2021) are based
on the Transformer encoder-decoder architecture
(Vaswani et al., 2017). They also achieve com-
petitive results compared to detection-based mod-
els. The most significant advantage of the end-to-
end generative model is that we do not need to
design complex error categories manually or per-
form labor-intensive labeling work on the data. We
can only use parallel corpora to train the model.

Recent works (Wang et al., 2020; Chen et al.,
2020) have shown that if the error type results ob-
tained in the grammatical error detect (GED) task
are introduced into the generative model in some
form, the error correction ability of the model will
be further improved. This is because the entire
training and inference process can be viewed as
a black-box operation in an end-to-end generative
model. Furthermore, the model can generate more
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accurate results if additional information guides
this process (e.g., The classification result of some
location is "delete").

Yuan et al. (2021) extends the Transformer
encoder-decoder model based on introducing er-
ror type information. They classify input tokens
into different error types, transform them into repre-
sentations, and feed them into the decoder’s cross-
attention module. However, this method suffers
from two fundamental limitations:

1) Error propagation. Each token is mapped
into a one-hot classification vector in the first
process. If there is a misclassification in the
results, it will be passed on and negatively
influence the following parts.

2) Mismatched cross attention. In the original
transformer decoder block, the input Q and K
of the cross-attention module are from the se-
mantic space of tokens. However, these inputs
are from the semantic space of the error type
information and the original tokens, respec-
tively. This mismatch can lead to a reduction
in the representation of the model.

Therefore, to solve the above problems, we pro-
pose a simple yet novel generative model to im-
prove the performance of GEC, termed LET (Lever-
aging Error Type information).

First, we utilize the intermediate representation
of the error type classification module as the error
type vector. It would not discard the probabilities
of other classes, even if their values are small. This
operation ensures more convincing guidance of the
type vectors to the generated modules.

Second, to discard the mismatch in the cross-
attention module, we transfer the input from the
previous sub-layer in the decoder to the classifi-
cation vector. Thus, both parts of the input are
in the same semantic space. Therefore, the cross-
attention for them is more reasonable.

In summary, our contributions can be summa-
rized in the following points:

1) We propose a novel sequence-to-sequence
model which realizes the alignment of error
type for GEC. This model improves the effect
of this task with much more fine-grained error
detection.

2) We demonstrate how GED benefits the correc-
tion task by introducing the error type infor-

mation into the input module and the cross-
attention module of the decoder in two ways.

3) Experimental results on multiple datasets
show that our proposed method achieves state-
of-the-art results.

2 Related Work

Much progress in the GEC task can be attributed
to transforming the problem into a machine trans-
lation task (Brockett et al., 2006) from an un-
grammatical source sentence to a grammatical tar-
get sentence. Early GEC-MT methods leveraged
phrase-based statistical machine translation (PB-
SMT) (Yuan and Felice, 2013b). With the rapid
development of related work on machine trans-
lation, statistical machine translation (SMT) and
neural machine translation (NMT) have been suc-
cessfully applied to various task-specific adapta-
tions of GEC (Felice et al., 2014;Yuan and Briscoe,
2016;Junczys-Dowmunt et al., 2018) With the in-
troduction of transformer architectures, this ap-
proach rapidly evolved to powerful Transformer-
based seq2seq models (Vaswani et al., 2017).
Transformer-based models autoregressively cap-
ture the complete dependency among output tokens
(Yuan et al., 2019). Grundkiewicz et al. (2019)
leveraged a Transformer model pre-trained on syn-
thetic GEC data. Several improvement strategies
of BERT were also adopted in the GEC model
(Kaneko et al., 2020). With the development of
large-scale pre-trained models recently, Rothe et al.
(2021) built their system on top of T5(Xue et al.,
2021) and reached new state-of-the-art results.

Grammatical Error Detection is usually formu-
lated as a sequence tagging task, where each er-
roneous token is assigned with an error type, e.g.,
selection errors and redundant words. Early GED
methods mainly used rules to identify specific
sentence error types, such as preposition errors
(Tetreault and Chodorow, 2008). With the develop-
ment of neural networks, Rei and Yannakoudakis
(2016) presented the first work using a neural ap-
proach and framed GED as a binary sequence label-
ing problem, classifying each token in a sentence
as correct or incorrect. Sequence labeling methods
are widely used for GED, such as feature-based
statistical models (Chang et al., 2012) and neural
models (Fu et al., 2018). Due to the effectiveness of
BERT (Devlin et al., 2019) in many other NLP ap-
plications, recent studies adopt BERT as the basic
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Figure 2: Architecture of LET (Leveraging Error Type information). (a) shows the overview architecture of LET,
and (b) describes the detailed components in the cross-attention module.

architecture of GED models(Li and Shi, 2021).

Recent work has attempted to explore a different
approach to using GED in GEC, which aims to use
the detection results of GED to guide GEC genera-
tion. Yuan et al. (2019) introduced token-level and
sentence-level GED as auxiliary tasks when train-
ing for GEC. Zhao et al. (2019) employed multi-
task learning to utilize the detection results of GED
to guide GEC generation. Similarly, Chen et al.
(2020) fine-tuned RoBERTa (Zhuang et al., 2021)
for GED and improved the efficiency for GEC by
dividing the task into two sub-tasks: Erroneous
Span Detection and Erroneous Span Correction.
(Yuan et al., 2021) treated GED as a sequence label-
ing task and GEC as a sequence-to-sequence task
and additionally investigated ways to use multi-
class GED predictions to inform GEC.

3 Method

In this section, we first describe the problem defi-
nition and the basic model, our baseline. Then we
describe the LET (Leveraging Error Type informa-
tion) model, which explicitly applies the classifi-
cation information (error types) of tokens to guide
the generative model to generate better-corrected
sentences. The whole architecture of LET is shown
in Figure 2.

3.1 Problem Definition
Given a sentence that may contain erroneous tokens
U = {ui}N , the target of GEC is to correct the
input sentence and output the corrected sentence
C = {ci}M . N and M are the input and output
sequence length, respectively.

3.2 Backbone
We use BART (Lewis et al., 2020) as the backbone
model of our end-to-end GEC system. BART is a
denoising autoencoder that maps the noisy text to
the correct form. It is implemented as a sequence-
to-sequence model with a bidirectional encoder
over corrupted text and a left-to-right autoregres-
sive decoder (Vaswani et al., 2017). The word em-
bedding layer is represented as Emb. The encoder
and decoder are represented as EC and DC, re-
spectively. The process of encoding and decoding
can be formulated as:

EU = EC(U) (1)

C = DC(EU ) (2)

where EU is the output of the encoder EC.

3.3 Grammatical Error Detection
We aim to obtain the error type classification of
each token in the sentence by the sequence labeling
task. In practice, we construct this classifier with
three parts. First, a two-layer transformer encoder
block EC

′
is designed to encode the input sentence
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U and obtain the long error type representation
Rlong

U , of which the embedding dimension is the
same as the word embedding, such as 768 or 512.
This procedure can be formulated as:

Rlong
U = EC

′
(U) (3)

Then, a two-layer fully-connected network FF
aims to transform the long error type representation
to short error type representation Rshort

U :

Rshort
U = FF (Rlong

U ) (4)

where the dimension of the short one is the number
of error types, such as 4, 25 or 55.

Finally, the error type can be calculated by a
Softmax layer SM :

Y = SM(Rshort
U ) (5)

where Y = {yi}N is the label sequence of N to-
kens.

3.4 GID: Guided Input of the Decoder
Naturally, after the generation module autoregres-
sively decodes the tokens at some time step, if there
is the error type information of the next time step of
the original sentence, the generation module may
make the correct decision more easily. For exam-
ple, considering the error type of the next token
in the original sentence is "Delete" (This token is
redundant and needs to be deleted), the generation
module will delete the next token by greater prob-
ability after receiving the information indicating
"Delete."

Metaphorically speaking, we can compare the
decoder to a little boy and the decoding process
to the boy solving a complex math problem. If a
reference material is available to guide the problem-
solving process, the little boy will undoubtedly
find it easier to arrive at the correct answer. This
reference material is what we refer to as "additional
guiding information" in this context.

Formally, at time step t, we have obtained the
output of the last time step, which is represented as
pt−1. Therefore, we take two elements as the input
of this GID module: 1) Embt−1: the word em-
bedding of pt−1; 2) Rlong

t : the corresponding long
error type representation of the token ut. There-
fore, we obtain Ti, the output of GID and also the
input of the decoder DC, by a direct point-wise
add operation:

Ti = Embt−1 +Rlong
t (6)

3.5 GCA: Guided Cross Attention module

In addition to the above approach, we also want
to introduce error type information in the cross-
attention module.

Cross Attention 1 In the original transformer,
the cross attention module in the decoder layer
performs attention weighting calculations on the
token embedding output by the encoder and the
output of the previous self-attention module. The
calculation formula is expressed as:

ECA1 = softmax(
QKT

√
dK

)V (7)

where ECA1 is the output of the Cross Attention
1 module. Here, Q represents the representation
vector output by the input tokens of the current
decoder after passing through the previous self-
attention module. K represents the representation
vector output by all the input tokens after passing
through the stacked encoder. V is a copy of K.
In practice, Q/K/V are firstly mapped to differ-
ent representation spaces by matrices Wq/Wk/Wv,
respectively.

In Equation 7, by performing the scaled dot-
product operation on Q and K, the weight parame-
ter for weighted summation of V is obtained. Pre-
vious work (Lee et al., 2018; Li et al., 2020) has
shown that such an operation is to align the tokens
input by the encoder and decoder at the semantic
level, so that the decoder is able to generate accu-
rate and reasonable results.

Cross Attention 2 We describe alignment at the
semantic level in the last subsection. However,
more than this alignment is needed. What about
alignment at the error type level? That is, we use
the existing detection module to classify the orig-
inal Q and K to error types and then use the ob-
tained results to replace Q and K in Equation 7,
which realizes the alignment at the error type level.

Specifically, as shown in Figure 2, we utilize
classification head FF to classify Q and K, and
obtain their short error type representation vectors
Q′ and K ′ respectively:

Q
′
= FF (Q) (8)

K
′
= FF (K) (9)

where the dimension of Q′ and K ′ depends on the
classification category of the detection task. These
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Model with GED
BEA-test CoNLL-2014

Precision Recall F0.5 Precision Recall F0.5

Constrained Data
Lewis et al. (2020) ✘ 48.4 41.7 47.2 50.6 26.3 43.1
Raheja and Alikaniotis (2020) ✘ 53.8 36.5 49.1 64.7 22.6 47.1
Kaneko et al. (2020) ✔ 58.1 44.8 54.8 63.6 33.0 53.6
Yuan et al. (2021) ✔ 60.8 50.8 58.5 60.4 39.0 54.4
LET (ours) ✔ 61.8 52.1 59.5 61.2 40.9 55.6

Unconstrained Data
Ji et al. (2017) ✘ - - - - - 45.2
Ge et al. (2018) ✘ - - - 61.2 37.9 54.5
Kiyono et al. (2019) ✘ 65.5 59.4 64.2 67.9 44.1 61.3
Lichtarge et al. (2020) ✘ 67.6 62.5 66.5 69.4 43.9 62.1
Wan et al. (2020) ✘ 66.9 60.6 65.5 69.5 47.3 63.5
Stahlberg and Kumar (2021) ✘ 72.1 64.4 70.4 72.8 49.5 66.6
Yuan and Bryant (2021) ✘ - - - 74.3 39.0 62.9
Zhao et al. (2019) ✔ - - - 67.7 40.6 59.8
Yuan et al. (2019) ✔ 70.5 55.1 66.8 - - -
Kaneko et al. (2020) ✔ 67.1 60.1 65.6 69.2 45.6 62.6
Chen et al. (2020) ✔ 70.4 55.9 66.9 72.6 27.2 61.0
Wang et al. (2020) ✔ - - - 65.0 33.5 54.6
Yuan et al. (2021) ✔ 73.3 61.5 70.6 71.3 44.3 63.5
LET (ours) ✔ 74.6 62.9 71.9 71.7 45.6 64.3
Omelianchuk et al. (2020) ✘ 79.2 53.9 72.4 77.5 40.1 65.3

Table 1: Evaluation results using ERRANT on BEA-test and M2 (Dahlmeier and Ng, 2012) on CoNLL-2014.
Methods with Grammatical Error Detection (GED) module are marked with a check mark. On the contrary,
pure sequence-to-sequence models and sequence labelling systems (only Omelianchuk et al. (2020)) are labeled
with a cross mark. Only public BEA-2019 data is used in the training process of all constrained systems, while
unconstrained systems are variously trained on private and/or artificial data.

representation vectors can be viewed as represen-
tations of error types. Therefore, applying cross
attention to them realizes the alignment of the to-
kens input by the encoder and the decoder at the
error-type level. The modified self-attention equa-
tion can be formulated as follows:

ECA2 = softmax(
Q

′
K

′T
√
dK′

)V (10)

where dK′ is the dimension of K
′
, ECA2 is the

output of this Cross Attention 2 module.

Combination of CA1 & CA2 Then, we combine
the output of two cross-attention modules at point-
wise. Nevertheless, before this, we need to define
the weight of each one. Therefore, we calculate the
dynamic Weighting factor λ:

λ = σ(W [ECA1;ECA2] + b) (11)

where σ is the logistic Sigmoid function and W
and b are learnable parameters.

Then we obtain the combined output EGCA as
follows:

EGCA = λECA1 + (1− λ)ECA2 (12)

After this sub-module, EGCA is used as the in-
put to the next sub-layer. Ultimately, the forward
computation and back-propagation of the entire
model are trained like the regular encoder-decoder
model.

3.6 Loss function

The total loss contains two parts:

1) Lerr: The cross-entropy of the predicted er-
ror types and the ground truth of token-level
labels.
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2) Lsen: The cross-entropy of the output cor-
rected sentences and corresponding target sen-
tences.

Total loss is defined as:

L = αLerr + (1− α)Lsen (13)

where α ∈ [0, 1] is a hyper-parameter.

4 Experiments

To test the performance of the LET system, we
conduct evaluation experiments on two mainstream
GEC benchmarks: BEA-test (Bryant et al., 2019)
and CoNLL-2014 (Ng et al., 2014) and compare
with previous state-of-the-art approaches.

4.1 Datasets
Following previous work, we use five datasets:

• Lang-8 Corpus (Mizumoto et al., 2011)

• Cambridge Learner Corpus (CLC) (Nicholls,
2003)

• First Certificate in English (FCE) corpus (Yan-
nakoudakis et al., 2011)

• National University of Singapore Corpus of
Learner English (NUCLE) (Dahlmeier et al.,
2013)

• Cambridge English Write & Improve + LOC-
NESS (W&I) corpus (Bryant et al., 2019)

Following the training process of previous work
(Kiyono et al., 2019; Lichtarge et al., 2020; Yuan
et al., 2021), we pre-train two LET systems on
public Lang-8 Corpus (under the constrained set-
ting) and the CLC dataset (under the unconstrained
setting), then fine-tune them on the same three
datasets, including W&I, FCE, and NUCLE. Fi-
nally, we train all modules in LET simultaneously,
jointly optimizing Lerr and Lsen based on Equa-
tion 13.

4.2 Error Type Annotations
We obtain error type annotations in these corpora
by the ERRANT (Bryant, 2019) annotation toolkit,
which can pre-process sentences and standardize
tokens into error type annotations. The kind of er-
ror types can be binary classes, 4-classes consisting
of basic operations, 25-classes consisting of word
types and 55-classes combining the above tags. Ta-
ble 2 shows the error type annotations in different
numbers of classes.

N.C Error Type Annotations
2 right and wrong
4 insert, delete, replace and keep
25 insert(noun), insert(verb tense),

insert(prep) replace(noun),
replace(verb tense), keep, delete, etc.

55 insert(M:DET), insert(U:PREP),
insert(R:VERB:TENSE),
replace(R:VERB:TENSE),
replace(M:DET) , keep, delete, etc.

Table 2: Error Type Annotations. N.C: Number of
Classes

4.3 Experiment Setup

The LET model, which is implemented with Trans-
formers* (Wolf et al., 2020), consists of 6 encoder
layers, 6 decoder layers, and a shared classification
head.

The dimension of embedding is set to 768, and
the batch size is set to 32. The maximum sequence
length is 1024, and we pad sequences with the
longest length in the batch. We train the model
with Adam optimizer, and the learning rate is set
to 2e-5. The weight factor α in Equation 13 is set
to 0.2. The evaluation metric of text generation
contains precision, recall, and F0.5 score. We train
the model on 4 Nvidia V100 GPUs. It takes about
4 hours to train the model in one epoch.

4.4 Results analysis

We report the experimental results of various meth-
ods in Table 1. The experimental results demon-
strate the effectiveness of LET.

Overall performance As shown in Table 1, the
proposed LET network outperforms most previous
state-of-the-art methods on two mainstream GEC
benchmarks: BEA-test and CoNLL-2014 under
constrained and unconstrained settings.

Constrained setting Compared with the previ-
ous SOTA seq2seq model Yuan et al. (2021), LET
improve F0.5 score with 1% and 1.2% on BEA-test
and CoNLL-2014, respectively. Compared with
other seq2seq models, our work has achieved more
obvious improvements based on the same experi-
mental data.

Unconstrained setting On BEA-test, compared
with Yuan et al. (2021), LET is at least 1.3% better

*https://github.com/huggingface/transformers
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N.C Algorithm P R F0.5

- Baseline 55.1 44.3 52.5
2 + GID 55.8 44.6 53.1

+ GCA 57.4 42.7 53.7
+ GID & GCA 58.1 44.7 54.8

4 + GID 56.1 44.6 53.4
+ GCA 58.2 41.6 54.0
+ GID & GCA 58.8 45.0 54.2

25 + GID 55.8 44.3 53.0
+ GCA 58.2 42.9 54.3
+ GID & GCA 58.7 45.1 55.4

55 + GID 55.2 44.0 52.5
+ GCA 58.7 42.9 54.7
+ GID & GCA 58.9 45.2 55.5

Table 3: Results based on ablated modules and different
number of error types. N.C: Number of Classes

Variations Prec Rec F0.5

Baseline 55.1 44.3 52.5
Static weights 55.8 44.6 53.1
Dynamic weights 58.2 41.6 54.0

Table 4: Results of two weighting ways of combining
CA1 and CA2.

than the state-of-the-art model on three key metrics.
On CoNLL-2014, LET also achieves significant
improvements. Notably, compared to precision
(+1.3%/+0.4%), our method improves the recall
score more (+1.4%/+1.3%). Under the Constrained
setting, there is also a similar data distribution. It
shows that the model is better at recalling the cor-
rect editing operations under the combined effect
of our multiple innovations.

Compared with models without a GED module,
our LET is less than Stahlberg and Kumar (2021).
The possible reason is that they used more data to
train the model.

As shown in the last line of Table 1,
Omelianchuk et al. (2020) outperforms all systems
above. Due to more data, fine-grained labels, and
multiple ensemble strategies, this sequence-tagging
model has taken the first place in GEC for a long
time.

5 Discussion

We discuss many details of the model in more depth
in this section. Unless stated otherwise, all exper-
iments in this section are tested on the BEA-dev
dataset under the constrained data setting.

5.1 Ablation study

We explore the effect of each component in the
whole LET (Leveraging Error Type) system. We
compare the Bart-base as the Baseline (6 encoder-
layers, 6 decoder-layers, 768 hidden-states, 16
attention-heads, and 139M parameters). As shown
in Table 3, GID and GCA achieve higher values
than the Baseline on three key metrics no matter
how many error types exist. Moreover, the com-
bination of them even obtains more improvement,
demonstrating the effectiveness of the proposed
two modules.

5.2 Results on different error categories

In this section, we explore the performance of LET
on different error categories. We use the same
pre-training and fine-tuning data splits for the base-
line model but with no additional GED input for
fine-tuning, which follows the standard encoder-
decoder GEC training procedure. As shown in
Table 3, the results demonstrate the efficacy of the
multi-encoder GEC model: adding GED predic-
tions as auxiliary input yields a consistent statisti-
cally significant improvement in performance over
the baseline. Our best system uses the 55-class
GED predictions, achieving 55.5 F0.5. The rea-
son may be that the 55-class system represents the
best compromise between label informativeness
and model reliability.

Unlike the optimal scheme of LET, GID achieves
the best result (53.4 F0.5) in the setting of 4-class
GED prediction. Notably, GID using the 2-class
GED predictions (binary predictions) outperformed
the same model using the 55-class GED predic-
tions. This is because 2-class GED predictions are
less informative but more reliable. After all, there
are only two classes, while 25-class and 55-class
predictions tend to be more informative but less
reliable because of the increased difficulty in pre-
dicting sparser classes. This also shows that the
GID model lacking the alignment of the error type
is not good at using too subdivided error type guid-
ance information, and it can also be inferred that
the GID model does not make full use of the error
type information effectively.

Notably, similar to LET, GCA achieves the best
result (54.7 F0.5) in the setting of 55-class GED
prediction. Meanwhile, the experiment shows that
with the increase in the number of error type cate-
gories, the GCA model’s effect gradually improves.
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Algorithm Variation Precision Recall F0.5

Baseline - 55.1 44.3 52.5
+ Guided Cross Attention - 58.7 42.9 54.7

ablation study A 54.9 44.4 52.4
ablation study B 55.2 44.3 54.6

Table 5: Discussion on the number of parameters. Baseline: There is no new cross attention module. ablation study
A: We construct a new classifier, which is a two-layer fully connected layer with the hidden size of (768->768->55).
The parameters are initialized randomly. ablation study B: We also construct a new classifier with the hidden size of
(768->768->768). Follow the rest settings of ablation study A.

5.3 Effects of dynamic weight setting
As described in Section 3.5, the guided cross-
attention module contains two sub-modules: Cross
Attention 1 (CA1) and Cross Attention 2 (CA2).
First, we explore the information fusion method
by conducting a controlled experiment. Under the
static weights setting:

EGCA = βECA1 + (1− β)ECA2 (14)

After grid search, the best β is set to 0.37.
It can be seen from Table 4 that the guided cross-

attention module with dynamic weights is signifi-
cantly better than it with static weights. Therefore,
we conjecture that the model needs to adaptively
change the information fusion weights of the two
attention modules according to the input sentence
to satisfy tasks of different difficulty.

5.4 Discussion on the number of parameters
Compared with the baseline method, our method
introduces additional parameters, mainly from the
newly added cross-attention module GCA. So, does
the improvement in model performance benefit
from the increase in the number of parameters?
In order to explore this question, we conducted a
related comparative experiment.

We set up two ablation studies in Table 5. As
shown in this table, comparing the results of GCA-
ablation studies 1 & 2 shows that the increase in
the number of parameters does improve the model
effect under the current conditions, but the improve-
ment here is negligible compared to the improve-
ment brought by the GCA module. Experimental
results show that our proposed method is necessary
to align at the error type level.

6 Conclusion

Grammar error correction is significant for many
downstream natural language understanding tasks.
In this paper, we propose an end-to-end framework

termed LET, which effectively leverages the error
type information generated by the GED task to
guide the GEC task.

Our work solves two critical problems in the pre-
vious work. Firstly, we have alleviated the problem
of error propagation caused by hard-coded error
types by introducing soft-encoded error types. Sec-
ondly, we have introduced the concept of error type
alignment, which is more reasonable and adequate.
We transfer the original semantic vectors into clas-
sification vectors to ensure that the two parts of the
input of the proposed cross-attention module are
both in the same semantic space. Experiments and
ablation studies show that alignment leads to better
results.

Overall, LET provides a better sample for re-
search in the GEC field and addresses some poten-
tial issues with previous technical solutions.

Limitations

By analyzing the error cases, we find that almost all
the existing work (including our LET) cannot han-
dle the disorder problem of words well, primarily
when the error occurs far from the correct location.
For example, there is a correct sentence: ’On my
way to school today, I bought a very tasty apple.’.
If the erroneous form is as follows: ’on my way to
school apple today, I bought a very tasty.’, it is hard
for the model to understand that the right thing to
do is to put apple back at the end of the sentence.
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