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Abstract

Recently, numerous efforts have continued to
push up performance boundaries of document-
level relation extraction (DocRE) and have
claimed significant progress in DocRE. In this
paper, we do not aim at proposing a novel
model for DocRE. Instead, we take a closer
look at the field to see if these performance
gains are actually true. By taking a comprehen-
sive literature review and a thorough examina-
tion of popular DocRE datasets, we find that
these performance gains are achieved upon a
strong or even untenable assumption in com-
mon: all named entities are perfectly localized,
normalized, and typed in advance. Next, we
construct four types of entity mention attacks
to examine the robustness of typical DocRE
models by behavioral probing. We also have
a close check on model usability in a more re-
alistic setting. Our findings reveal that most
of current DocRE models are vulnerable to
entity mention attacks and difficult to be de-
ployed in real-world end-user NLP applications.
Our study calls more attentions for future re-
search to stop simplifying problem setups, and
to model DocRE in the wild rather than in an
unrealistic Utopian world.

1 Introduction

Document-level relation extraction (DocRE), aim-
ing at identifying semantic relations between a
head entity and a tail entity in a document (Yao
et al., 2019), plays an essential role in a variety of
downstream applications, such as question answer-
ing (Xu et al., 2016) and knowledge base construc-
tion (Trisedya et al., 2019).

Recently, there are two flourishing branches for
DocRE. First, graph-based approaches consider en-
tities (Velickovic et al., 2018; Nan et al., 2020),
mentions (Christopoulou et al., 2019; Li et al.,
2020) and sentences (Xu et al., 2021c) as nodes
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PER: Juan Guzmán

Juan Guzmán (born Hans Gutmann Guster, also known as 

"Juanito", 28 October 1911 – 1982) was a German born Mexican 

photojournalist. He was known as a war photographer of the 

Spanish Civil War and later on his work with Mexican painters 

Frida Kahlo and Diego Rivera. Hans Gutmann was born in 

Cologne. In 1936 he joined the Spanish Civil War as a volunteer 

of the International Brigades. Gutmann later became a Spanish 

citizen and changed his name to Juan Guzmán. There are more 

than 1,300 photographs from the Spanish Civil War in the archive 

of Agencia EFE (Madrid). His most famous image is the picture of 

17-year-old Marina Ginestà standing in top of Hotel Colón in 

Barcelona. It is one of the most iconic photographs of the 

Spanish Civil War. After the war Guzmán fled to Mexico, where 

he arrived in 1940. He worked for major Mexican magazines and 

newspapers and became a friend of Frida Kahlo with whom 

Guzmán shared similar political views. In the 1950s he took a 

large number of photographs of Kahlo and her husband Diego 

Rivera. Guzmán also photographed the artwork of Mexican 

painters like Gerardo Murillo, Jesús Reyes Ferreira and José 

Clemente Orozco. Juan Guzmán died in Mexico City in 1982.
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Data Assumption: 
(i) entities localized  (ii) entities normalized  (iii) entities typed

Figure 1: Data assumption in most of DocRE models.

to construct a document-level graph and perform
reasoning through some advanced neural graph
techniques. Second, sequence-based approaches
leverage BiLSTM (Huang et al., 2021; Li et al.,
2021b) or Transformers (Tan et al., 2022; Zhong
and Chen, 2021; Zhou and Chen, 2022) as encoders
to learn document-level representations. However,
all these models have one thing in common that
they are based on a strong or even untenable as-
sumption as shown in Figure 1: all entity mentions
are (i) correctly localized; (ii) perfectly normalized;
(iii) correctly typed.1 Then, the task of modeling
DocRE is usually simplified as a pairwise classifi-
cation problem.

1More illustrating examples can be found in Appx. §A
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Although these pairwise classification ap-
proaches have claimed significant progress in
DocRE performance, we are still interested in tak-
ing a closer look at the field to see if this is actu-
ally true. In particular, many research papers have
reported very decent leaderboard scores for the
DocRE task. Does this mean the task of DocRE has
been almost completely solved? Can the current
approaches be widely used in real-world DocRE
scenarios?

To answer these questions, we first take a closer
look at data annotations in commonly-used DocRE
datasets to check the strong data assumption (§3).
We focus specifically on the annotations of named
entity recognition (NER) and normalization (i.e.,
entity linking) in detecting relations. By answer-
ing three research questions (RQ1-3), we find that
current problem setups for DocRE are greatly sim-
plified and unrealistic.

If the data assumption is too strict, it is not clear
whether current DocRE models are robust in a vari-
ety of loose assumptions. Therefore, we construct
four types of attacks regarding entity mention an-
notations to investigate the model robustness (§4,
RQ4) using behavioral probing (Lasri et al., 2022;
Chen et al., 2022).

To further have a look at the limitations of data
assumptions, it is important to investigate the us-
ability of existing DocRE models in real-world
scenarios. Hence, we examine the capability of
widely-used NER systems and entity linking sys-
tems on preparing model input formats from raw
text for DocRE model deployment (§5, RQ5). Fi-
nally, we discuss our empirical findings and call
special attentions for future research in developing
DocRE models (§6).

In short, our contributions and findings are:
• We present a comprehensive literature review

on recent advances for DocRE and identify a
strong or even untenable assumption in mod-
eling DocRE.

• We take a thorough examination of data anno-
tation on three popular DocRE datasets. De-
tecting relations in text commonly involves
multiple mentions and aliases of paired en-
tities (i.e., head and tail entities) which are
currently assumed to be perfectly typed, local-
ized and normalized before modeling DocRE.

• We construct four types of entity mention
attacks to check the robustness for typical
DocRE models. Most of current DocRE mod-

els are vulnerable to mention attacks (F1 drops
from 7.93% to 85.51%).

• We have a close check on the usability of typi-
cal DocRE models. Under the identified data
assumption, current DocRE models are very
difficult to be deployed in real-world end-user
NLP applications because of the need of input
preparation for each pipeline module (i.e., the
reproduction rate of input format is only from
34.3% to 58.1%).

• We discuss our findings, and call attentions for
future research to stop simplifying problem
setups, and to model DocRE in the wild rather
than in an unrealistic Utopian world.

2 A Quick Literature Review

In this section, we have a quick literature review
of DocRE models to shed light on a global review
for recent evolutions. Table 1 summarizes recent
studies in anti-chronological order.

Graph-based Approaches. Graph-based ap-
proaches first construct a document-level homoge-
neous graph where words (Zhang et al., 2020), men-
tions (Christopoulou et al., 2019), entities (Zhou
et al., 2020), sentences (Li et al., 2020; Xu et al.,
2021a) or meta dependency paths (Nan et al., 2020)
are considered as nodes and some semantic de-
pendencies (e.g., mention-mention (Christopoulou
et al., 2019), mention-entity (Zeng et al., 2020),
mention-sentence (Wang et al., 2020), entity-
sentence (Li et al., 2020), sentence-sentence (Wang
et al., 2020; Xu et al., 2021b), sentence-document
(Zeng et al., 2021)) as edges. One key advantage of
these approaches is that some advanced graph tech-
niques can be used to model inter- and intra-entity
interactions and perform multi-hop reasoning.

Sequence-based Approaches. Instead of intro-
ducing complex graph structures, some approaches
typically model a document as a sequence of tokens
and leverage BiLSTM (Huang et al., 2021; Li et al.,
2021b) or Transformers (Tan et al., 2022) as en-
coder to capture the contextual semantics. In partic-
ular, some studies have already contributed effort to
integrating entity structures (Xu et al., 2021c), con-
cept view (Li et al., 2021a), deep probabilistic logic
(Zhang et al., 2021b), U-shaped Network (Zhang
et al., 2021a), relation-specific attentions (Yu et al.,
2022), logic rules (Ru et al., 2021), augmenting
intermediate steps (Xiao et al., 2022), sentences
importance estimation (Xu et al., 2022), evidence
extraction (Xie et al., 2022) and knowledge dis-
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References Venue Claim Performed Annotation Assumption Aggregation
Localization Linking Typing

(Zhang et al., 2022) EMNLP22 Extraction Classification ✓ ✓ ✗ LogSumExp
(Xie et al., 2022) ACL22 Extraction Classification ✓ ✓ ✗ LogSumExp
(Tan et al., 2022) ACL22 Extraction Classification ✓ ✓ ✗ LogSumExp
(Xiao et al., 2022) NAACL22 Extraction Classification ✓ ✓ ✓ LogSumExp
(Xu et al., 2022) NAACL22 Extraction Classification ✓ ✓ ✓ Average
(Yu et al., 2022) NAACL22 Extraction Classification ✓ ✓ ✗ Average

(Zeng et al., 2021) ACL21 Extraction Classification ✓ ✓ ✓ Average
(Li et al., 2021b) ACL21 Extraction Classification ✓ ✓ ✓ Max-pooling
(Xu et al., 2021b) ACL21 Extraction Classification ✓ ✓ ✓ Average

(Huang et al., 2021) ACL21 Extraction Classification ✓ ✓ ✗ Average
(Makino et al., 2021) ACL21 Extraction Classification ✓ ✓ ✓ Max-pooling

(Ru et al., 2021) EMNLP21 Extraction Classification ✓ ✓ ✓ Average
(Zhang et al., 2021b) EMNLP21 Extraction Classification ✓ ✓ ✓ [CLS]
(Zhang et al., 2021a) IJCAI21 Extraction Classification ✓ ✓ ✗ LogSumExp

(Xu et al., 2021c) AAAI21 Extraction Classification ✓ ✓ ✗ Average
(Xu et al., 2021a) AAAI21 Extraction Classification ✓ ✓ ✓ Average
(Li et al., 2021a) AAAI21 Extraction Classification ✓ ✓ ✓ Average

(Zhou et al., 2021) AAAI21 Extraction Classification ✓ ✓ ✗ Average
(Nan et al., 2020) ACL20 Extraction Classification ✓ ✓ ✗ Average
(Zeng et al., 2020) EMNLP20 Extraction Classification ✓ ✓ ✓ Average
(Wang et al., 2020) EMNLP20 Extraction Classification ✓ ✓ ✓ Average
(Tran et al., 2020) EMNLP20 Extraction Classification ✓ ✓ ✓ Average
(Li et al., 2020) COLING20 Extraction Classification ✓ ✓ ✓ Average

(Zhang et al., 2020) COLING20 Extraction Classification ✓ ✓ ✓ Average
(Zhou et al., 2020) COLING20 Extraction Classification ✓ ✓ ✓ Average

(Christopoulou et al., 2019) EMNLP19 Extraction Classification ✓ ✓ ✓ Average
(Jia et al., 2019) NAACL19 Extraction Classification ✓ ✓ ✗ LogSumExp

Table 1: Recent DocRE models in anti-chronological order. “Localization”, “Linking” and “Typing” indicates
that an approach needs accurate annotations of entity localization, entity linking and entity typing, respectively.
“Aggregation” indicates the strategy that how to aggregate multiple mention representations of an entity.

tillation (Tan et al., 2022) into transformer-based
neural models. In addition, some studies (Soares
et al., 2019; Zhou et al., 2021; Zhong and Chen,
2021; Zhou and Chen, 2022; Zhang et al., 2022)
already verified that inserting special symbols (e.g.,
[entity] and [/entity]) before and after named enti-
ties can significantly benefit relation representation
encoding.

Observations from Literature Review. From Ta-
ble 1, we have following key observations: (1) The
listed studies claim that they address the problem
of “document-level relation extraction”2, but the
relation classification is actually performed. (2)
All graph-based approaches build homogeneous
or heterogeneous graphs based on the unrealistic
precondition that accurate annotations of entity
localization, entity linking and entity typing are
available. (3) Some pooling strategies (e.g., Max,
Average and LogSumExp) are widely used in mod-
eling DocRE when aggregating representations of
multiple mentions of an entity. However, it is un-
clear how the wrongly-detected mentions affect the

2The term “Extraction” commonly refers to extract relation
types, head and tail entities from raw text.

performance of DocRE models.

3 Check on Dataset Annotations

To provide in-depth observations of the data as-
sumption in most of DocRE models, we first take a
thorough examination of data annotations on three
commonly-used DocRE datasets. We will conduct
quantitative and qualitative studies to analyze en-
tity mentions and entity aliases which a relation
instance involved.3

3.1 Probing Datasets

The summary of datasets is shown in Table 2. NA-
instance means that there is no relation between
head and tail entities. Non-NA instance means that
there is at least one relation between head and tail
entities. Note that the mention statistics in this
Section are based on Non-NA instances.

DocRED (Yao et al., 2019) is a human-annotated
dataset from Wikipedia and Wikidata. DocRED
has 5,053 documents, 97 relation classes, 132,275

3Entity Mentions: The words in text that refer to an en-
tity. Entity Aliases: Unique mentions of an entity. Relation
Instance: A piece of text involving head and tail entities to be
classified.
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Figure 2: Entity mention statistics on three datasets.

Datasets #Doc. #Rel. #Non-NA

DocRED
Train 3,053 97 385,272
Dev 1,000 97 11,518
Test 1,000 97 -

CDR
Train 500 2 1,055
Dev 500 2 1,025
Test 500 2 1,087

GDA
Train 23,353 2 36,079
Dev 5,839 2 8,762
Test 1,000 2 1,502

Table 2: Statistics of DocRE datasets. (#Doc.: number
of documents, #Rel.: number of relation labels, #Non-
NA: number of non-NA-relation instances.)

entities, and 56,354 relational facts in total. The
average length of documents in DocRED is around
8 sentences. Following previous studies (Yao et al.,
2019; Wang et al., 2019), we use the standard split
of the dataset: 3,053 documents for training, 1,000
for development and 1,000 for test.

CDR (Li et al., 2016) consists of three separate
sets of articles with diseases, chemicals and their
relations annotated. There are two relation labels:
None and Chemical-Disease. There are total 1,500
articles and 500 each for the training, development
and test sets.

GDA (Wu et al., 2019) is a Gene-Disease Asso-
ciation dataset from MEDLINE abstracts: 29,192
articles for training and 1,000 for testing. Follow-
ing previous studies (Christopoulou et al., 2019; Li
et al., 2021b), we further split the original training
set into two sets: 23,353 for training and 5,839 for
development. There are two relation labels: None
and Gene-Disease.

3.2 Data Observations and Findings

We organize our findings by answering following
research questions (RQs):

(RQ1): How many entity mentions are involved

in a relation instance in commonly-used DocRE
datasets?

We define that a relation instance to be classi-
fied is a piece of text containing head and tail enti-
ties. Thus, it is natural that the head or tail entity
may have multiple mentions in the document. Fig-
ure 2(a), 2(b) and 2(c) show entity mention statis-
tics in DocRED, CDR and GDA, respectively. The
horizontal axis shows number of mentions of a
relation instance. The vertical axis shows the per-
centages of relation instances in datasets. In the
DocRED dataset, 59.2% of relation instances have
more than two mentions. For CDR, 96% of relation
instances have more than two mentions and 21% of
relation instances have more than 10 mentions. For
GDA, 98% of relation instances have more than
two mentions and 50% of relation instances have
more than 10 mentions. Our this finding reveals
the huge difference between the sentence-level and
document-level RE. That is, document-level RE
involves much more entity mentions than sentence-
level RE because of the longer text in document-
level RE. One strong (almost untenable) assump-
tion of existing DocRE models is that all entity
mentions of a relation instance are successfully
identified.

(RQ2): How many aliases does an entity have
in commonly-used DocRE datasets?
RQ1 already showed that a relation instance may

have multiple entity mentions. A follow-up ques-
tion is about the number of unique mentions. Given
that an entity can appear multiple times in a doc-
ument, we define that the aliases of an entity are
unique mentions. We are interesting in how many
aliases an entity has.

Figure 3 plots the distribution of number of enti-
ties to number of aliases on three commonly-used
datasets. For DocRED, we can observe that most
of entities have only one alias and 4,745 entities
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Figure 3: Statistics of entity aliases on three datasets.

have more than one alias. The maximum num-
ber of aliases is 10. For CDR, 650 entities (ac-
count for 48.95%) have more than one alias and
the maximum number of aliases is 29. For GDA,
5,927 entities (account for 62.73%) have more than
one alias and the maximum number of aliases is
778. CDR and GDA have more diverse aliases than
DocRED, because DocRED is constructed from
Wikipedia while CDR and GDA are constructed
from biomedical text. Linking diverse aliases of
an entity to its identifier is a challenging task in a
long document. Our findings identify the strong
(almost untenable) assumption of existing DocRE
models that all the aliases (i.e., unique mentions) of
an entity are successfully normalized (i.e., linked
to its unique identifier).

(RQ3): Do the aliases of an entity vary widely
in commonly-used DocRE datasets?
RQ2 already showed that an entity may have mul-

tiple aliases. For example, an entity in GDA has
778 unique aliases. In this Section, we investigate
whether the aliases of an entity vary widely. Table 3
shows details of entity aliases ranked by numbers
of aliases in the three datasets. For DocRED, the
variation of aliases is slight because the genre of
text is from formal articles. Although DocRED
is manually annotated by human beings, there are
still some annotation errors on entity linking. As
shown in Table 3, the entity (Q180611, Azpeitia)
is linked to many wrong aliases such as “United
States” and “Chile”. This observation confirms that
document-level entity linking is a very challenging
task. For biomedical datasets, chemical entities
have a slight variation of aliases while gene and
disease entities have a huge variation of aliases. In
addition, there are many abbreviations for biomedi-
cal entities. Thus, effective NER and entity linking

are key preconditions in modeling DocRE. We will
further investigate the model usability with NER
and entity linking in Section § 5.

4 Check on Model Robustness

Most of existing DocRE models are proposed based
on the strong assumptions of mention annotations
as shown in Section § 3. In this Section, we are
interested in the following research question:

(RQ4): Are neural DocRE models robust to
entity mention attacks?

To answer RQ4, we adopt behavioral prob-
ing (Lasri et al., 2022; Chen et al., 2022) to observe
a model’s behaviors by studying the model’s pre-
dictions on attacking datasets. That is, attacks are
only added at test time and are not available during
model training.

4.1 Attacking Target Models

We investigate three typical DocRE models: (1)
BiLSTM-Sum (Yao et al., 2019) which uses BiL-
STM to encode the document and computes the rep-
resentation of an entity by summing the representa-
tions of all mentions. (2) GAIN-Glove (Zeng et al.,
2020) which constructs a heterogeneous mention-
level graph and an entity-level graph to capture
document-aware features and uses GloVe (Penning-
ton et al., 2014) as word embeddings. (3) BERT-
Marker (Zhou et al., 2021; Zhou and Chen, 2022)
which takes BERT as the encoder and inserts spe-
cial entity symbols before and after entities. More
details of attacking target models can be found in
Appx. § B.1.

4.2 Attack Construction

In this work, we focus on entity mention attacks
which add data perturbations by taking into ac-
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Rank IDs #Aliases Details of Entity Aliases

DocRED Dataset

1 Q180611
(LOC) 10 Azpeitia, Guipuzcoa, Cuba, Mexico, Azkoitia, Basque Country, United States, Ar-

gentina, Chile, Spain

2 Q544565
(LOC) 10 Qu, Yuxi River, Jiuxi River, Zhuji River, Ni River, Eshan River, Liucun River, Huaxi

River, Qu River, Zhou River
3 Q3738980

(LOC)
8 Toding, Tsanda, Tsada, Tholing, Zanda, Toling, Zada, Tuolin

4 Q12274473
(MISC) 8 wazı̄rwāla, Waziri, Maseedwola, Wazirwola, Dawarwola, Wazir, of the Wazirs, Waziri

Pashto
CDR Dataset

1 D016572
(Chemical) 7 cyclosporine, cyclosporin, CsA, Cyclosporine, CyA, cyclosporin A, cyclosporine A

2 D014635
(Chemical) 7 divalproex sodium, VPA, sodium valproate, Valproic acid, Valproate, valproic acid,

valproate

1
D007674
(Disease) 29

renal damage, CAN, nephrotoxic, renal dysfunctio, renal injury, Nephrotoxicity, kidney
diseases, liver or kidney disease, cardiac and renal lesions, glomerular injury, kidney
damage, ...omit...

2
D056486
(Disease) 21

Hepatitis, drug-induced hepatitis, acute hepatitis-like illness, liver damage, hepato-
toxicity, cholestatic hepatitis, hepatic damage, hepatocellular injury, Toxic hepatitis,
Granulomatous hepatitis, ...omit...

GDA Dataset

1
348
(Gene) 114

apolipoprotein e4, APOE*4, ApoE2, apolipoprotein gene E4 allele, ApoE-4,
apoE 4, apolipoprotein-E gene, Apolipoprotein E-epsilon4, factor–apolipoprotein
E, Apolipoprotein (apo)E, ...omit...

2
7124
(Gene) 83

tumor necrosis factor alpha, tumor necrosis factor beta, Interleukin-1 and tumor necro-
sis factor-alpha, tumor necrosis factor alpha, TNF-)a, Tumor Necrosis Factor, TNF-
308G/A, miR-21, IL6 and TNF, ...omit...

1

D030342
(Disease) 778

inherited defect of fatty acid oxidation, genetic haemochromatosis, inherited skin
disorders, A-related disorders, autosomal-recessive pleiotropic disorder, autosomal
dominant juvenile ALS, ...omit...

2

D009369
(Disease) 668

mammary tumors, tumor suppressor genes, MSI-H cancers, rectal cancers, predom-
inant in lung tumour, early-stage prostate cancer, Tumour-necrosis, Cervical cancer,
Malignant tumors, distal tumors, ...omit...

Table 3: Details of entity aliases ranked by number of aliases.

count different types of wrongly-detected mentions.
The ultimate goal is to test the model robustness
under different mention attacks. Therefore, we
construct four types of attacks: (1) DrpAtt: we
simply drop 50% of mentions of an entity if the
entity has more than one mention. This attack is
designed to simulate the case of missed detections
in NER systems. (2) BryAtt: we slightly move
the ground boundaries of 50% of mentions of an
entity if the entity has more than one mention (e.g.,
“JSpanish Civil WarKMISC in” is changed to “Span-
ish JCivil WarKMISC in”). (3) CorAtt: we inten-
tionally make the coreference (i.e., entity linking)
of an entity wrong (i.e., 50% of mentions of an
entity are wrongly coreferential if the entity has
more than one mention). (4) MixAtt: this attack
is the mix of aforementioned three attacks. More
attack details can be found in Appx. § B.2.

4.3 Attacking Results and Analysis

Table 4 reports the performance on various entity
mention attacks for three attacking target models.

We have the following observations:

First, all target models are significantly affected
by the four attacks, with relative F1 drops from
7.93% to 85.51%. Overall, GAIN-Glove and
BERT-Marker are more vulnerable than BiLSTM-
Sum. This is because BERT-Marker requires accu-
rate mention positions for inserting entity markers
and GAIN-Glove needs the information of mention
positions and normalization for constructing hetero-
geneous graphs. More specifically, BERT-Marker
averagely suffers drops of 44.42%, 71.58%, and
71.72% across all attacks on DocRED, CDR and
GDA, respectively. BiLSTM-Sum averagely suf-
fers drops of 23.22%, 35.40%, and 40.67% across
all attacks on DocRED, CDR and GDA, respec-
tively.

Second, the MixAtt attack leads to more signif-
icant drops in performance for all attacking target
models. CorAtt is more significant to impact ro-
bustness than BryAtt and DrpAtt. For instance,
CorAtt leads to relative drops of 40.81%, 56.76%
and 64.48% across three target models on DocRED,
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Model Attack DocRED CDR GDA
F1% ∆% F1% ∆% F1% ∆%

BiLSTM-Sum

No Attack 49.32 - 53.67 - 75.87 -
DrpAtt 42.55 -13.73 48.34 -9.93 66.55 -12.28
BryAtt 39.04 -20.84 39.23 -26.91 57.30 -24.48
CorAtt 37.21 -24.55 28.86 -46.23 31.32 -58.72
MixAtt 32.67 -33.76 22.26 -58.52 24.88 -67.21

GAIN-Glove

No Attack 54.91 - 55.13 - 78.65 -
DrpAtt 48.17 -12.27 50.76 -7.93 59.61 -24.21
BryAtt 41.82 -23.84 36.33 -34.10 45.92 -41.61
CorAtt 32.34 -41.11 27.40 -50.30 33.24 -57.74
MixAtt 28.56 -47.99 18.34 -66.73 23.52 -70.10

BERT-Marker

No Attack 59.82 - 64.47 - 82.71 -
DrpAtt 47.34 -20.86 25.57 -60.34 36.43 -55.95
BryAtt 41.45 -30.71 21.46 -66.71 24.55 -70.32
CorAtt 25.86 -56.77 16.93 -73.74 19.04 -76.98
MixAtt 18.34 -69.34 9.34 -85.51 13.55 -83.62

Table 4: Results of mention attacks on three datasets. ∆% indicates the relative performance changes between
mention attacks and the original input (“No Attack”).

CDR and GDA, respectively. DrpAtt leads to rel-
ative drops of 15.62%, 26.07% and 30.81% across
three target models on DocRED, CDR and GDA,
respectively. Our empirical results clearly show
that the information of entity coreference, bound-
ary and position plays an important role in DocRE.

Overall, based on the robustness evaluation in Ta-
ble 4, we can answer RQ4: Most of neural DocRE
models are far away from robustness to entity men-
tion attacks. Therefore, it has some realistic signifi-
cance to challenge current problem setups regard-
ing data annotation assumptions in DocRE and to
improve the robustness of DocRE models on entity
mention attacks.

5 Check on Model Usability

In this Section, we investigate this realistic situa-
tion: DocRE models are already trained and train-
ing data is unavailable. We want to extract same
relations on unseen raw text using these models.
The goal is to deploy the already-trained DocRE
models in other NLP applications. Here, we are
interested in the following research question:

(RQ5): Are existing DocRE models easily
adopted in real-world DocRE scenarios?

To answer RQ5, a necessary step is that whether
we can process the raw text with the format as
DocRE models trained on. This preprocessing pro-
cedure involves two crucial systems: Named Entity
Recognition (NER) and Entity Linking.

5.1 Check on NER

Setups. Assume that DocRE models are already
trained and the training sets are unavailable. We
take the raw text of development set of DocRED,
and test sets of CDR and GDA as the unseen data.
We use strict match metrics (i.e., entity bound-
ary and type are both correctly detected) to mea-
sure agreement between the annotations we prepro-
cessed and existing ground truth annotations.

NER Systems. For DocRED, we adopt three off-
the-shelf NER systems: Flair (Akbik et al., 2019)
and spaCy4 and Stanza (Qi et al., 2020). For CDR
and GDA, we adopt three biomedical NER systems:
HunFlair (Weber et al., 2021), Stanza biomedical
models (Zhang et al., 2021c) and Scispacy (Neu-
mann et al., 2019). More details of NER systems
can be found in Appx. § B.3.

Results on NER. Table 5 reports experimental re-
sults of NER systems on the three datasets. For
DocRED, Flair achieves the best performance by
the F1 score of 63.47%. Although the genre of Do-
cRED is the formal text (i.e., Wikipedia), the state-
of-the-art NER systems are still unable to achieve
decent performance on DocRED. HunFlair gets
the best performance on the biomedical datasets
because it trained on harmonized versions of 31
biomedical datasets.

4https://spacy.io/
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Dataset NER
System

Strict Match (%)
P R F1

DocRED
Flair 62.88 64.07 63.47

spaCy 62.86 59.58 61.17
Stanza 56.96 58.44 57.69

CDR
HunFlair 94.59 94.14 94.36
Stanza 86.80 87.94 87.37

ScispaCy 84.93 80.32 82.56

GDA
HunFlair 79.11 84.74 81.83
Stanza 69.87 79.70 74.47

ScispaCy 68.61 64.61 66.55

Table 5: Results of NER systems.

5.2 Check on Entity Linking

Setups. We examine the capability of entity linking
systems on reproducing ground truth annotations
for development/test sets of DocRED, CDR and
GDA. We choose the strict match as the metric that
a linking prediction is regarded as correct only if
all mentions of an entity are correctly linked to the
entity.

Entity Linking Systems. Unlike NER systems,
there are very few off-the-shelf linking systems
available. We choose TagMe (Ferragina and
Scaiella, 2010) as the linker for DocRED, and Scis-
pacy (Neumann et al., 2019) for CDR and GDA.
More details of entity linking systems can be found
in Appx. § B.4.

Results on Entity Linking. Table 6 reports ex-
perimental results of entity linking systems on the
three datasets. For TagMe, the precision increases
gradually with the increase of the value of ρ (con-
fidence score), while the recall decreases as ρ in-
creases. The best F1 on DocRED is only 38.7%
with a confidence score of 0.3. Scispacy achieves
F1 scores of 58.1% and 34.3% using umls for CDR
and GDA, respectively. One key observation drawn
from Table 6 is that document-level entity linking
is a challenging task and existing linking systems
commonly perform poorly on this task.

Based on empirical results of Sections 5.1 and
5.2, we can answer RQ5: Most of existing DocRE
models are difficult to be adopted in real-world
DocRE scenarios due to the need of input prepara-
tion for each pipeline module and the accumulation
of errors in NER and entity linking systems.

Dataset Linking
System

Strict Match (%)
P R F1

DocRED

TagMe, ρ=0.1 24.2 42.5 30.8
TagMe, ρ=0.2 35.0 38.6 36.7
TagMe, ρ=0.3 45.7 33.5 38.7
TagMe, ρ=0.4 52.4 27.8 36.4
TagMe, ρ=0.5 49.7 12.4 19.8

CDR
ScispaCy, mesh 42.4 60.6 49.9
ScispaCy, umls 53.7 63.3 58.1

GDA
ScispaCy, mesh 31.5 28.4 29.8
ScispaCy, umls 30.9 38.6 34.3

Table 6: Results of entity linking systems. ρ is the con-
fidence score (annotations that are below the threshold
will be discarded). “mesh” and “umls” mean that enti-
ties are linked to the Medical Subject Headings and the
Unified Medical Language System, respectively.

6 Discussion

Let’s Stop Simplifying Problem Setups. As sum-
marized in Table 1, recent advances from the past
four years have claimed significant progress in
DocRE performance. However, our study shows
that the actual improvements are attributable to
a strong or even untenable assumption where all
entities are perfectly typed, localized and normal-
ized. Therefore, high F1 scores on leaderboards do
not mean that the task of DocRE has been solved.
Based on our findings (§4 and §5), the simpli-
fied problem setups cannot cover realistic scenar-
ios. Even worse, the problem simplification sig-
nificantly hurts the usability of deploying DocRE
models in real-world end-user NLP applications.
We call attentions on the community to address
the real DocRE problem under the open-world as-
sumption, rather than to push up the boundaries of
simplified benchmarks for leading leaderboards.

Let’s Model DocRE in the Wild. As shown in
Section § 5, it is very difficult to produce accurate
data formats as existing DocRE models trained on.
Thus, given a new document, we are still unable
to easily deploy existing trained DocRE models to
extract same types of relations, let alone unseen
relations. Recently, some studies (Cabot and Nav-
igli, 2021; Eberts and Ulges, 2021; Giorgi et al.,
2022) have started exploring the direction of jointly
extracting entities and relations at document level.
However, the end-to-end performance at document
level is much worse than the performance at sen-
tence level. Our empirical findings call more atten-

5722



tions on developing high-performance end-to-end
DocRE models and more attentions on modeling
DocRE in the wild, rather than in an unrealistic
Utopian world.

7 Conclusion

In this paper, we try to answer whether the per-
formance gains recent DocRE models claimed are
actually true. We took a comprehensive literature
review of DocRE models and a thorough examina-
tion of popular DocRE datasets. We investigated
the model robustness under four types of mention
attacks and the model usability under a more re-
alistic setting. Our findings call future efforts on
modeling DocRE in the wild.

Limitations

We have discussed the implications of our research
in Section 6. In this Section, we further discuss the
threats to validity of our study.

• Threats to Internal Validity: The main inter-
nal threat to the validity of our research comes
from (RQ3) where we present a qualitative
study on the variation of aliases. We are un-
able to cover all cases in the qualitative study.
For example, the entity of D030342 (Disease)
in Table 3 has 778 unique aliases. It is impos-
sible to show all aliases to readers. To help
mitigate this threat, we try to show as many
examples as possible in a limited space.

• Threats to External Validity: The main
threat to external validity arises from the po-
tential bias in the selection of experimental
datasets, attacking target models and off-the-
shelf NER and Entity Linking tools. To miti-
gate this threat, we experiment with multiple
datasets, models and tools. For experimen-
tal datasets, we choose the three most popu-
lar DocRE datasets (i.e., DocRED, CDR, and
GDA). We believe that these three datasets
are broadly representative in this research
community. For attacking target models, we
choose three typical models ranging from
non-contextualized sequence-based to graph-
based, and to contextualized Transformers
models. For off-the-shelf NER/Linking tools,
we comprehensively investigate five state-of-
the-art NER taggers and two entity linkers.

Ethical Considerations

As our goal of this study is to challenge current
problem setups of DocRE, we heavily rely upon ex-
isting well-known datasets, models and NLP tools.
We only claim that our findings may hold on simi-
lar datasets or domains. We acknowledge the risk
of generalizability of our findings on other privacy-
sensitive datasets or specific domains. In general,
we suggest that practitioners repeat all experiments
following our procedures when using other cor-
pora.
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Entity Annotatin in DocRED (doc.1272)

Entity:
Q578799

La Malinche  
LOC, [0,2]

Matlalcueye 
LOC, [7,8]

Malintzin 
LOC, [5,6]]

Matlalcueitl 
LOC, [4,5]

[ Lady of the ] Blue Skirt 
LOC, [10,17]

Sierra de Tlaxcala 
LOC, [5,8]

Tlaxcalan Range 
LOC, [10,12]

Disease:
D001714

mania  
Dis., [23,28]

bipolar II 
Dis., [679, 689]

bipolar depression 
Dis., [260, 278]

bipolar I
Dis., [658, 674]

DSM-IV bipolar I 
Dis., [658, 674]

hypomanic 
Dis., [552, 561]

hypomania 
Dis., [1131, 1140]

Disease Annotations in CDR (doc. 11379838) Gene Annotations in GDA (doc. 18622689)

Gene:
6935

deltaEF1  
Gene, [24, 32]

zfhx1a 
Gene, [477, 483]

AREB6 
Gene, [160, 165]

zfhep 
Gene, [178, 183]

BZP 
Gene, [184, 187]

Nil-2-a 
Gene, [152, 159]

TCF8
Gene, [471, 475]

bipolar 
Dis., [32, 39]

manic 
Dis., [1770, 1775]

bipolar disorder 
Dis., [344, 360] ZEB1 

Gene, [326, 330]

Malinche  
LOC, [3,4]

Figure 4: Additional examples of data assumption in three popular DocRE datasets. Entities are annotated with
types (LOC/Disease/Gene), positions ([start, end]) and unique identifiers (Q578799/D001714/6935).
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Appendix

A Additional Examples of Data
Annotations

Our study identifies a strong or even untenable as-
sumption in DocRE. To give more intuitive sense,
Figure 4 shows additional examples of data assump-
tion in three popular DocRE datasets. Specifically,
the eight entity mentions (i.e., Tlaxcalan Range,
Matlalcueitl, [ Lady of the ] Blue Skirt, Malintzin,
Sierra de Tlaxcala, Malinche, La Malinche, Mat-
lalcueye) are annotated with types and positions,
then linked to a unique identifier in the DocRED
corpus. The ten entity mentions (mania, bipolar
II, bipolar I, bipolar depression, hypomanic, hypo-
mania, DSM-IV bipolar I, bipolar, manic, bipolar
disorder) are typed, localized and normalized in the
CDR corpus. The eight entity mentions (deltaEF1,
zfhx1a, zfhep, AREB6, Nil-2-a, BZP, TCF8, ZEB1)
are typed, localized and normalized in the GDA cor-
pus. Most of existing DocRE models are developed
based on the assumption that all entity mentions
are perfectly typed, localized and normalized.

B More Experimental Details

B.1 Attacking Target Models

BiLSTM-Sum. BiLSTM-Sum (Yao et al., 2019)
uses a bidirectional LSTM to encode documents
and computes the representation of an entity by
summing the representations of all mentions. The
embeddings from glove.840B.300d5 are used
to initialize model vocabularies for DocRED, CDR
and GDA. All word embeddings and model parame-
ters are learnable during training. Hyperparameters
are tuned on the development set for each dataset
respectively.

GAIN-Glove. GAIN-Glove (Zeng et al., 2020)
constructs a heterogeneous mention-level graph
to model complex interaction among different
mentions across the document. Then a path
reasoning mechanism is proposed to infer re-
lations between entities based on another con-
structed entity-level graph. We implement GAIN-
Glove with 2 layers of GCN and the dropout
rate of 0.6 based on the codes6. The embed-
dings from glove.840B.300d7 are used for
DocRED, CDR and GDA.

BERT-Marker. BERT-Marker (Zhou et al., 2021;
Zhong and Chen, 2021; Zhou and Chen, 2022)
first inserts special entity symbols (i.e., [ent]
and [/ent]) before and after entities, then
encodes the whole document using the pretrained
BERT. The representation of token [CLS] is
used for classification. In particular, we use
the checkpoint bert-base-uncased8

5https://nlp.stanford.edu/projects/
glove/

6https://github.com/DreamInvoker/GAIN
7https://nlp.stanford.edu/projects/

glove/
8https://huggingface.co/
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for DocRED, and the checkpoint
allenai/scibert_scivocab_uncased9

for CDR and GDA.
All attacking target models are implemented

with PyTorch10 and Accelerate11, and
trained on one DGX machine, totally equipped with
80 Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz
processor cores, 400 GB of RAM, and 8 NVIDIA
Tesla V100-32GB GPUs.

B.2 Attack Details

In total, we construct four types of attacks, i.e.,,
DrpAtt, BryAtt, CorAtt and MixAtt, to
check the robustness of attacking target models.

DrpAtt. Missing some entities is a very common
phenomenon for most of NER systems. DrpAtt
is constructed to investigate the effect of missed
mentions. If an entity has more than one mention,
we simply drop 50% of mentions of the entity.

BryAtt. Some entities are complex and nested in
natural language. Detecting boundaries precisely
is not a trivial task. BryAtt is constructed to
investigate the effect of wrongly-detected entity
boundaries. If an entity has more than one mention,
we slightly move the ground boundaries of 50% of
mentions of the entity.

CorAtt. The document-level coreference resolu-
tion is a challenging task in DocRE. Most of exist-
ing DocRE models are developed on benchmark
datasets where entity coreference is manually an-
notated. BryAtt is constructed to investigate the
effect of wrongly-coreferential mentions. We in-
tentionally make the coreference results (i.e., entity
linking) of an entity wrong (i.e., 50% of mentions
of an entity are wrongly coreferential if the entity
has more than one mention).

MixAtt. This type of attack is the mix of afore-
mentioned three attacks.

B.3 NER Systems

In Section 5.1, we adopt five off-the-shelf NER
systems in our experiments.

Flair. Flair12 is a very simple framework for
state-of-the-art NLP and developed by Humboldt

bert-base-uncased
9https://huggingface.co/allenai/

scibert_scivocab_uncased
10https://pytorch.org/
11https://github.com/huggingface/

accelerate
12https://github.com/flairNLP/flair

University of Berlin and friends. We use the
ner-english-ontonotes-large13 model
for DocRED.

spaCy. spaCy14 is a library for advanced Natu-
ral Language Processing in Python and Cython.
We use the en_core_web_trf15 model for Do-
cRED.

Stanza. Stanza16 is a collection of accurate and
efficient tools for the linguistic analysis of many hu-
man languages, developed by Stanford NLP Group.
General domain, biomedical & clinical models are
available in Stanza. We use the ontonotes17

for DocRED, bc5cdr18 for CDR, bc5cdr and
bionlp13cg for GDA.

HunFlair. HunFlair19 is a state-of-the-art
NER tagger for biomedical texts. It contains
harmonized versions of 31 biomedical NER
datasets. We use hunflair-chemical
and hunflair-disease for CDR,
hunflair-gene and hunflair-disease
for GDA.20

ScispaCy. ScispaCy21 is a Python pack-
age containing spaCy models for pro-
cessing biomedical, scientific or clinical
text. We use en_ner_bc5cdr_md for
CDR. We use en_ner_bc5cdr_md, and
en_ner_bionlp13cg_md for GDA.22

B.4 Entity Linking Systems

Comparing with flourishing NER systems, there
are very few entity linking systems available. We
adopt two widely-used entity linking systems in
our experiments.

TagMe. TagMe23 is a powerful tool that identifies
on-the-fly meaningful substrings (called “spots”) in

13https://huggingface.co/flair/
ner-english-ontonotes-large

14https://spacy.io/
15https://spacy.io/models/en#en_core_

web_trf
16https://stanfordnlp.github.io/stanza/
17https://stanfordnlp.github.io/stanza/

ner_models.html
18https://stanfordnlp.github.io/stanza/

available_biomed_models.html
19https://github.com/flairNLP/flair/

blob/master/resources/docs/HUNFLAIR.md
20https://github.com/flairNLP/flair/

blob/master/flair/models/sequence_
tagger_model.py#L751

21https://allenai.github.io/scispacy/
22https://github.com/allenai/scispacy
23https://sobigdata.d4science.org/web/

tagme/tagme-help
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an unstructured text and link each of them to a per-
tinent Wikipedia page in an efficient and effective
way. We use the official Python TagMe API wrap-
per24 for DocRED. The confidence scores (annota-
tions that are below the threshold will be discarded)
are experimented among [0.1, 0.2, 0.3, 0.4, 0.5].

Entity Linker in ScispaCy. Entity Linker in Scis-
paCy25 is a spaCy component which performs link-
ing to a knowledge base. The linker simply per-
forms a string overlap - based search (char-3grams)
on named entities, comparing them with the con-
cepts in a knowledge base using an approximate
nearest neighbours search. For CDR and GDA
datasets, we explore the following two knowledge
bases:

• umls: Links to the Unified Medical Language
System, levels 0,1,2 and 9. This has 3 million
concepts.

• mesh: Links to the Medical Subject Head-
ings. This contains a smaller set of higher
quality entities, which are used for indexing
in Pubmed. MeSH contains 30k entities.

C License

DocRED is released under The MIT license. GDA
is released uner The GNU Affero General Public
License. GAIN is released under The MIT License.
Flair is released under The MIT License. spaCy
is released under The MIT License. Stanza is Li-
censed under The Apache License 2.0. HunFlair
is Licensed under The MIT License. ScispaCy is
Licensed under The Apache License 2.0. TagMe is
Licensed under The Apache License 2.0. PyTorch
is with The Copyright (c) 2016 - Facebook, Inc
(Adam Paszke). Huggingface Transformer models
are released under The Apache License 2.0. All the
scientific artifacts are consistent with their intended
uses.

24https://github.com/marcocor/
tagme-python

25https://github.com/allenai/scispacy#
entitylinker
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