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Abstract

There has been great progress in unifying vari-
ous table-to-text tasks using a single encoder-
decoder model trained via multi-task learn-
ing (Xie et al., 2022). However, existing meth-
ods typically encode task information with a
simple dataset name as a prefix to the encoder.
This not only limits the effectiveness of multi-
task learning, but also hinders the model’s abil-
ity to generalize to new domains or tasks that
were not seen during training, which is crucial
for real-world applications. In this paper, we
propose compositional task configurations, a
set of prompts prepended to the encoder to im-
prove cross-task generalization of unified mod-
els. We design the task configurations to ex-
plicitly specify the task type, dataset name, as
well as its input and output types. We show that
this not only allows the model to better learn
shared knowledge across different tasks at train-
ing, but also allows us to control the model by
composing new configurations that apply novel
input-output combinations in a zero-shot man-
ner. We demonstrate via experiments over ten
table-to-text tasks that our method outperforms
the UnifiedSKG baseline by noticeable margins
in both in-domain and zero-shot settings, with
average improvements of +0.5 and +12.6 from
using a T5-large backbone, respectively.

1 Introduction

Table-to-text tasks, such as table-based question
answering (Pasupat and Liang, 2015; Herzig et al.,
2020), summarization (Parikh et al., 2020), or fact
verification (Chen et al., 2019), are of high interest
to the NLP community and have been applied in
many real-world applications. Traditionally, these
tasks have been studied individually, with methods
commonly optimized for one or a few tasks (Liu
et al., 2021; Shi et al., 2021). However, with the
recent popularity of pre-trained transformer mod-
els (Raffel et al., 2020; Lewis et al., 2020; Xue et al.,
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Short-form Table QA (Train)

Table Summarization (Train)

Long-form Table QA (Test)

Unified	Model

What were the awards 
received by the Masterpiece 
in 2010 and 2016?

[WikiSQL] How many times 
did the Masterpiece won 
the Album of the Year?

Table title: List of awards received by Masterpiece

Year Work Award Result

2016 Ngap Sayot Best Vocals Won

…

Two times

Ngap Sayot won 
the Best Vocals 
award in 2016.

Best Vocals

Unseen task at test time, requiring a question 
and table as input, a long-form answer as output

[ToTTo] 2016 | Ngap 
Sayot| Best Vocals | Won

✓

✗

✓

Figure 1: An example of unifying different tasks with
a single encoder-decoder model with dataset name as a
prefix. The model is trained on short-form table QA and
table summarization tasks, and tested on a new long-
form table QA task. As there is a mismatch between the
training and test tasks, the model is unable to generalize.

2021), there has been a paradigm towards unifying
multiple NLP tasks with a single encoder-decoder
model (Khashabi et al., 2020; Sanh et al., 2022).
More recently, UnifiedSKG (Xie et al., 2022) ex-
tended this paradigm to table-to-text tasks by flat-
tening the structured input (e.g., tables) into text
format, and unifying all tasks with a T5 model (Raf-
fel et al., 2020). By training the model over 21
datasets with structured input, it has established
new state-of-the-art results for most of these tasks.

Despite the success, existing work often rely on
a simple trick to encode task information: the name
of the dataset is often used as a prefix to the en-
coder at both training and test time. We argue that
this overly simplified design has at least two major
limitations. First, since no detailed information
about the task is provided, any sharable knowledge
between tasks is learned in a latent manner. Second,
with this design, models are trained and evaluated
on their abilities to solve specific datasets, rather
than tasks. As a result, we may see substantial per-
formance degradation when we apply the model to
an unseen task at test time.
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Figure 1 illustrates the aforementioned limita-
tions: a unified model (such as UnifiedSKG) is
trained on short-form table QA (Zhong et al.,
2017) and table-based summarization (Parikh et al.,
2020), and we want to test the trained model on
long-form table QA (Nan et al., 2022a), where the
model should take a question and a table as input
and output an abstractive sentence as the answer.
As there is no way to instruct the model about the
information of the new task, the model can only
make an educated guess by generating the most
plausible text “Best Vocals” according to the train-
ing datasets, which fails to serve as a good long-
form answer. We therefore argue that it is critical
to test a table-to-text model’s cross-task general-
izability, which is captured in neither the training
methods nor the evaluation setup in existing work.

In this paper, we propose the use of composi-
tional task configurations, a set of text prompts
prepended to the encoder to improve the cross-task
generalizability of unified table-to-text models. For
a given task, we design its configuration prompt to
be compositional, describing the task type, dataset
name, input type, and output type. This design
offers at least two key advantages. First, the task
configurations explicitly inform the model what
is shared between different tasks. For example,
the model is able to learn from the configurations
that table-based fact checking and table-based QA
share the same inputs but different outputs. Second
and more importantly, using task configurations
allows us to have explicit control over the model’s
behaviors. For the example in Figure 1, we can
now compose a new configuration for long-form
table QA at test time to instruct the model to first
produce a set of relevant cells and synthesize them
to produce a long-form answer, which is within the
capabilities of the two training tasks. We discuss
this further in the next section.

Our evaluation focuses model’s cross-task gen-
eralizability. Specifically, we train our model on 5
table-to-text datasets and test it on an additional set
of 5 new datasets that cover either a new domain of
an existing task or a new task of which the capabil-
ities can be composed by the ones learned through
the 5 training datasets. Our main findings can be
summarized as follows:

• Our method not only outperforms the strong
UnifiedSKG baseline consistently on the 5 in-
domain datasets, but also demonstrates much
stronger cross-task generalization.

• In zero-shot evaluation on the 5 test-only tasks,
our model outperforms UnifiedSKG by a sub-
stantial margin of +6.5 and +12.6 average
scores from using T5-base and T5-large, re-
spectively. Notably, we find that in zero-shot
evaluation on FETAQA (Nan et al., 2022a),
a long-form table QA task, while the base-
line completely fails with a 0.6 F1 score, our
method leads to much better generalization,
achieving a 21.2 F1 score.

• We also show that using the compositional
task configurations allows the model to output
supporting table cells that supplement its final
prediction in a zero-shot manner. Human eval-
uation of the generated supporting cells for the
TABFACT dataset reveals that more than 80%
of the generated cells have high relevance to
the task.

2 Method & Tasks

Prompting is a natural and feasible way to impose
explicit control over the behaviors of pre-trained
language models (Wei et al., 2021; Chung et al.,
2022; Sanh et al., 2022). In this work, we im-
plement the task configurations as prompts of an
encoder-decoder model. Each task configuration
contains the following four aspects: task type, in-
put type, output type, and dataset name. The task
type is the end goal of a task, e.g., QA and sum-
marization, as shown in Figure 2. Input and output
types specify the inputs of the encoder and the
outputs of the decoder of table-to-text models, re-
spectively. These types can be compositional, for
example, both long-form and short-form table QA
in Figure 2 require the decoder to output a set of rel-
evant cells and the final answer. The dataset name
specifies the dataset used for training. As different
datasets can share the same task type, input and
output types, we assume that the model is able to
learn the shared and the unique knowledge across
different datasets by adding the dataset names as
configurations. When testing the model on a new
dataset, we can simply omit the dataset name since
it is not trained.

One of the major advantages of having explicit
task configurations is that it enables the model to
learn the mapping between a configuration and its
behavior. At test time, we can compose a new set of
configurations which suits best for an unseen task
using the trained configurations. Figure 2 demon-
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Title: List of awards and received by Masterpiece

Year Work Award Result

2010
Merindang Ke 

Bintang
The Album of 

the Year Won

…

2016 Ngap Sayot Best Vocals Won

Long-form Table QA (Test)

Answer: Masterpiece 
received nine awards from 
the Dayak Music Awards—
winning the Album of the 
Year twice in 2010 and 
2016, and Best Vocal once 
in 2016.      

Table Summarization (Train)

Short-form Table QA (Train)

Question: How many times 
did the Masterpiece won 
the Album of the Year?

2016 Ngap Sayot Best Vocal Won

…
The Album of the Year Won

The Album of the Year Won

2010 The Album of the Year Won

2016 The Album of the Year Won

2016 Best Vocal Won

Answer: Two times 

Answer: Ngap Sayot won 
the Best Vocals award in 
2016.Unified Model

Question: What were the 
awards received by the 
Masterpiece in 2010 and 
2016?

Short-form Table QA (Train)

Table Summarization (Train)

Composi'onal 
Configs

Encoder Input Decoder output

Long-form Table QA (Test)

Tasks: … Input: … Output: …

…

QA Fact-check Summarization Table Text Query Cell Short answer Long answer

QA Table Query Cell

Short answer

Summarization Table

Cell Long answer

Summarization Table

Cell Long answer

Query

+

+

+

Figure 2: Our method allows us to reformulate the unseen task of long-form table QA as a query-based summarization
task by composing a new configuration using the existing ones from the two training tasks. At test time, this
composed configuration allows the model to first identify relevant cells in the table based on the input question using
the cell generation skills learned from short-form table QA, and then generates a long-form answer by utilizing the
knowledge acquired from table summarization. For all three tasks, the model also takes the linearized table as input;
for simplicity, we omit the linearized table and dataset name configuration in the figure.

strates that by training on short-form table QA, the
model learns the ability to generate a set of relevant
table cells according to the question and then de-
rive the answer based on those cells. By training on
table summarization, the model learns to produce
a summary based on a set of table cells.1 At test
time, by reformulating the long-form table QA as
a query-based summarization task, our model is
able to first generate a set of relevant cells (learned
through short-form table QA) and then synthesize
those cells to yield a long-form answer (learned
from table summarization).

Note that our method is an efficient extension to
the original UnifiedSKG model. It only requires
a small input prefix, comprising less than 5% of
the total sequence length, making it flexible for
generalization to more tasks and datasets.

2.1 Datasets and Task Configurations

A detailed list of our datasets with their task in-
formation is shown in Table 1. We consider
5 datasets as in-domain datasets for both train-

1Conventionally, when using ToTTo, it is common to feed
the cells to the encoder and decode the summary. To make
the task more compatible with other table-to-text tasks, we
feed the relevant cells as starting inputs to the decoder and the
model’s loss is not calculated on those cells.

ing and testing: WIKISQL (Zhong et al., 2017),
WIKITQ (Pasupat and Liang, 2015), SQUAD (Ra-
jpurkar et al., 2016), TOTTO (Parikh et al., 2020)
and TABFACT (Chen et al., 2019). For SQUAD
and TOTTO, since no official test set is released,
we follow UnifiedSKG (Xie et al., 2022) and re-
port results on the official development sets. In
addition, we consider 5 datasets for test only:
NQ-TABLES (Kwiatkowski et al., 2019; Herzig
et al., 2021), HYBRIDQA (Chen et al., 2020), TAT-
QA (Zhu et al., 2021), FETAQA (Nan et al., 2022b)
and FEVEROUS (Aly et al., 2021).

The test-only evaluation setup aims to assess the
effectiveness of our method in enabling the model
to generalize to unseen tasks with new composi-
tional configurations, as well as to a new dataset
with existing configurations. Specifically, we test
if the model can benefit from a combination of in-
put configurations for tasks such as HYBRIDQA,
TAT-QA, and FEVROUS, which involve both
passages and tables as inputs, despite the model
is only trained on one or the other during train-
ing. Similarly, we examine if the configuration
for FETAQA, a combination of WIKISQL and
TOTTO as shown in Figure 2, allows for explicit
control over the model’s behaviors, resulting in
improved generalization. Finally, we assess the
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Dataset Task Type Input Output Unseen?

Train + Test

WIKISQL QA (table) query + table cells + short-form answer -
WIKITQ QA (table) query + table short-form answer -
SQUAD QA (text) query + passage short-form answer -
TOTTO Summarization table cells + summary -
TABFACT Fact-check query + table binary answer -

Test-only

NQ-TABLES QA (table) query + table short-form answer -
HYBRIDQA QA (hybrid) query + passage + table short-form answer ✓
TAT-QA QA (hybrid) query + passage + table short-form answer ✓
FETAQA QA (abstractive) query + table cells + long-form answer ✓
FEVEROUS Fact-check query + passage + table binary answer ✓

Table 1: Datasets and tasks considered in our experiments. Tasks that have an input/output combination unseen at
training time are marked with ✓in the “Unseen?” column. We include detailed statistics and task configurations
applied for each dataset in Appendix A & B due to space limitation.

model’s ability to generalize to a new dataset, NQ-
TABLES, which has the same configurations as
WIKISQL and WIKITQ.

For all of these datasets, we linearize the tables
following the strategy used in UnifiedSKG (Xie
et al., 2022). By inserting several special tokens
like vertical bars to indicates the boundaries be-
tween cells and rows, a table can be linearized as:
“Headers: h1|...|hm, Row 1: c11|...|c1m ... Row
n: cn1|...|cnm”. Here, hi denotes the ith header
of a table and cij denotes the cell content in the
ith row and the jth column. For simplicity, we
fix the order of the task configurations to be task
type, dataset name, input type, and output type. We
prepend the task configuration to the original input
of a dataset and feed it to the model. To make our
input and output better aligned with the configu-
rations, we also introduce some special markups
to separate different parts of inputs and outputs:
Figure 3 illustrates the actual model’s input and
output of the short-form table QA example from
Figure 2. See Appendix B for inputs and outputs
constructed for all of the datasets and Appendix A
for preprocessing details of each dataset.

3 Experiments

Experimental settings We evaluate our method
by following the experimental setup shown in Ta-
ble 1. We follow the experimental settings of
UnifiedSKG (Xie et al., 2022) and use T5 (Raf-
fel et al., 2020) as the backbone of our table-to-text
model. Our implementation is based on the pub-
licly released code of UnifiedSKG which is devel-
oped based on the transformer library (Wolf
et al., 2019). To balance the size of different
datasets during training, we use the temperature up-
sampling method proposed in the original T5 paper

[Task: QA] [Input: query] [Input: table] 
[Output: cells] [Output: short answer] [query] 
How many times did the Masterpiece won the Album 
of the year? [/query] [table] Headers: Year | 
Work | Award | Result | Row1: 2010 | Masterpiece 
| Best New Artist | Nominated | Row2 … [/table]

[cell] 2016 | Merindang Ke Bintang | the Album 
of the year | Won | 2016 | Ngarap Ka Nuan Kikal 
Pulai | the Album of the year | Won | [/cell] 
[answer] Two times [/answer]

Encoder	Input

Decoder	Output

Figure 3: An example of the input and output given to
the model. After training, the model is able to establish
a correspondence between the task configurations and
the input/output format. Dataset name is omitted here
for simplicity.

and set the temperature to 2. For all experiments,
we use a batch size of 128 and AdamW (Loshchilov
and Hutter, 2018) as the optimizer with the initial
learning rate set to 5e-5. We limit the maximum
length of the input, including task configuration
and the actual inputs, to be 1080 sentence-piece
tokens. We train both the T5-base and T5-large
models on the training set for 20 epochs and we
use early stopping with the patience set to 2. We
use deepspeed (Rasley et al., 2020) to reduce the
GPU memory loads when training the T5-large
model. The approximate GPU hours for T5-base
and T5-large are 250 and 650 respectively on A100
GPUs with 40G memory.

Baseline We mainly compare our method against
UnifiedSKG (Xie et al., 2022), a strong baseline
that was shown to achieve state-of-the-art results
on many table-to-text tasks via multi-task training.
In UnifiedSKG, for each task, a dataset name is
prepended to the encoder during multi-task fine-
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Zero-shot Test-only Tasks

Models NQ-TABLES FETAQA HYBRIDQA TAT-QA FEVEROUS Avg.
BLEU EM EM EM Acc. –

T5-base
Single Task 51.6 29.9 54.3 34.5 81.3 50.3

UnifiedSKG 37.8 0.6 22.5 18.2 67.5 29.3
Task Configs (Ours) 39.4 21.0 28.9 20.8 68.9 35.8

T5-large
Single Task 52.2 33.0 56.6 36.2 82.1 52.0

UnifiedSKG 42.6 0.7 34.1 20.4 41.4 27.8
Task Configs (Ours) 43.0 25.2 38.0 20.8 75.0 40.4

In-domain Tasks

Models WIKISQL WIKITQ TOTTO SQUAD TABFACT Avg.
EM EM BLEU (dev.) EM (dev.) Acc. –

T5-base
Single Task 81.6 35.8 36.7 83.6 76.1 62.8

UnifiedSKG 82.9 41.1 37.2 82.5 77.1 64.2
Task Configs (Ours) 83.5 42.5 37.4 83.0 77.5 64.8

T5-large
Single Task 85.5 43.4 37.8 86.0 81.0 66.7

UnifiedSKG 86.0 48.5 38.7 86.1 83.0 68.5
Task Configs (Ours) 86.7 50.0 38.7 86.2 83.3 69.0

Table 2: Zero-shot and in-domain performance of our proposed method (Task Configs) vs. baselines for both
T5-base and T5-large. Here, “EM” denotes exact match accuracy. For all tasks we also include the results from
single-task finetuning as references. Note that a direct comparison with single-task result is not fair as the latter has
access to training data in each task. Higher numbers among our method and UnifiedSKG are highlighted in bold.

tuning as a pseudo-task configuration. For fair
comparisons, we re-trained UnifiedSKG models on
the five in-domain datasets by using the authors’
implementation.2

Evaluation For the in-domain tasks, we simply
train on their training sets and evaluate on their
test sets. For the test-only tasks, we evaluate our
method in two settings: 1) a zero-shot setting,
where we directly apply the model trained on in-
domain datasets and use a new set of task configs
designed for each test dataset; 2) a few-shot setting,
where for each test dataset, we further fine-tune the
model using n randomly sampled training exam-
ples (where n is small). Since we observed that the
few-shot training is unstable and heavily depends
on the sampled examples, we report average perfor-
mance from 5 different random seeds (each with a
different set of few-shot examples).

2We in fact found that our version of the UnifiedSKG
model fine-tuned over the five in-domain datasets outperforms
the original authors’ version on several datasets, establishing a
more competitive baseline. For example, our version achieves
82.9 on WikiSQL and 77.1 on TabFact, whereas the original
model by Xie et al. (2022) achieves 81.9 and 71.2, respectively.

4 Results

4.1 Main Results

We present the in-domain and zero-shot evaluation
results for all datasets in Table 2 and the few-shot
evaluation results for OOD datasets in Figure 4.
We have the following observations:

First, using compositional task configs shows
much stronger performance on zero-shot
datasets unseen at training time (Table 2). For
example, the UnifiedSKG baseline fails to gener-
alize at test time to FETAQA, a long-form table
QA task where the input is a question-table pair
and the output is a long-form abstractive answer.
This is due to the baseline model having no clue of
what format of output should be produced and what
knowledge learned through the training datasets
should be leveraged for this task. In contrast, by
reformulating the long-form table QA as a query-
based summarization task and composing the input
configurations to be table and query as well as the
output task configs to be relevant cell and summary,
our method notably improves the zero-shot perfor-
mance and closes the gap between zero-shot and
single-task finetuning results. Note that among the
zero-shot datasets, NQ-TABLES represents a new
dataset for an existing task (short-form table QA),
whereas others represent new tasks unseen at train-
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Figure 4: Few-shot performance on out-of-domain tasks, with results aggregated from 5 random training runs. Our
method demonstrates better few-shot performance than the baseline in most settings, with the gap reduced as more
supervised examples are added.

ing. Nevertheless, we found the improvements to
be consistent for all zero-shot datasets, with aver-
age improvements of +6.5 and +12.6 for base and
large models, respectively.

Second, in most cases, using compositional
task configs consistently improves the in-domain
performance over the UnifiedSKG baseline and
single-task training (Table 2). The observation is
consistent for both base and large model sizes,
with average improvements of +0.6 and +0.5
over UnifiedSKG, respectively. The improvement
over single-task fine-tuning is even greater for all
datasets. One explanation to this improvement is
that by adding task configs we explicitly encourage
the model to learn the shared knowledge between
different tasks and datasets.

Last but not the least, in few-shot evaluation (as
depicted in Figure 4), we find that using task con-
figurations has improved few-shot learning per-
formance for most test-time tasks. Overall the dif-
ference between our method and the UnifiedSKG
baseline is particularly notable when the number
of supervised examples (n) is small; and the perfor-
mance gap diminishes for HYBRIDQA, TAT-QA,
and FEVEROUS as n gets larger. One possible
explanation is that the prior captured by the task
configurations during training is not closely aligned
with these three datasets, when n getting larger, the
prior introduced by the task configurations is grad-
ually overridden by knowledge learned from the
supervised data.

4.2 Ablation of Task Configs at Training time

The impact of individual configurations on model
performance was evaluated by removing one con-
figuration at a time during training. The results,
presented in Table 3, indicate that the removal of
the output type resulted in the largest performance
drop, as the model was only able to guess the de-

Models FETAQA NQ HYBRID TAT FEVR Avg.

Full configs 21.0 39.4 28.9 20.8 68.9 35.8
- dataset 21.2 36.1 25.3 19.8 68.1 34.1
- task type 0.4 38.4 28.3 21.3 68.5 31.4
- input 20.3 39.5 29.1 19.4 68.3 35.3
- output 17.3 34.8 17.9 16.1 68.2 30.9

Table 3: Ablation of task configurations during train-
ing. We only report zero-shot performance here. We
see removing any one of the configurations causes a
performance drop on average.

sired output type based on learned parameters. The
removal of the input type had the least impact on
performance. This is likely due to the fact that
learning the representation of the two input types
was not difficult for the model, and explicitly in-
forming the model about the input type does not
provide significant benefit, as observed in the pre-
vious section. The removal of the dataset name
also results in a performance drop, particularly on
the NQ-TABLES dataset, indicating that even when
the task type, input, and output are the same, in-
cluding the dataset name helps the model learn
dataset-independent knowledge more effectively.
The removal of the task type results in a complete
failure on the FETAQA dataset, demonstrating that
all configurations are needed to produce the correct
form of output. A more detailed discussion of these
findings can be found in Section 7.

4.3 Ablation of Task Configs at Test time

While our method demonstrates much stronger
zero-shot task performance, it is crucial to under-
stand the extent to which input and output configu-
rations contribute to this success, particularly for
tasks involving hybrid input or output types that are
not present during training. To examine the con-
tributions of input configurations, we remove each
configuration from the hybrid tasks (HYBRIDQA,
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TAT-QA and FEVEROUS) at test time, with re-
sults shown in Table 4. We found that deleting
either of the input configurations results in a per-
formance drop in most cases, and the drop is quite
notable when the table and passage input configura-
tions are removed together. This suggests that the
input configuration captures useful priors about the
input during training, and different configurations
can be combined to yield better performance in
the zero-shot transfer to hybrid tasks. We also
observe a similar trend in Figure 5 where we test
the model performance by removing the cell output
configurations for FETAQA (thereby skipping cell
generation). We see that in both zero-shot and few-
shot settings, model performance drops by a large
margin. This shows not only that the model can
generate different outputs by combining the out-
put configurations, but also that it can better utilize
the prior captured by the configurations to improve
task performance.

4.4 Human Evaluation of Generated Cells

In addition to the strong task generalizability, a key
advantage of applying the proposed task configu-
rations to table-to-text tasks is that we can modify
the task configurations to output more results for
improved explainability, even when such a config-
uration combination is never seen at training time.
An example of this is for the table-based fact verifi-
cation task, TABFACT, instead of only generating
a binary label, we can extend the output configura-
tion to include a cell component that can serve as
supporting evidence of the binary prediction. We
include two examples of this setting in Figure 6.

To understand how well our model can generate
supporting cells without ever being trained for it,
we conduct a human evaluation over 50 randomly
sampled outputs from the TABFACT dataset. We
ask annotators to manually evaluate the generated
cells based on their level of relevance and com-
pleteness. Relevance denotes the usefulness of the
generated cells in verifying a claim (precision) and
completeness refers to the extent to which all of
the relevant cells are generated (recall). Detailed
annotation instructions are shown in Appendix C.
For each aspect, we ask the annotators to select
between three labels that characterize its degree:
“full”, “partial” or “none”. Three of the authors con-
duct the annotations, achieving 0.72 and 0.80 Fleiss
Kappa (Fleiss, 1971) for relevance and complete-
ness, respectively. We conduct majority vote to get

Models HYBRIDQA TAT-QA FEVR Avg.

Full Configs 28.9 20.8 68.9 39.5
- input:passage 28.8 19.8 68.6 39.1
- input:table 29.4 20.3 66.7 38.8
- input:all 27.3 19.3 66.1 37.6

Table 4: Ablation of the input configurations at test
time. The inputs of the three datasets include both table
and passage. We show the model can achieve better
performance by combining two input configurations.

n=0 8 16 32 64 128

10

15

20

25

30

BL
EU

Output: cell + summary
Output: summary
95% Confidence interval

Figure 5: Ablation of the output configurations on
FETAQA. The model has better cross-task performance
by generating a set of relevant cells in both zero-shot
and few-shot settings. “n=0” denotes zero-shot setting.

the consensus label and the results are shown in
Table 5. Overall we found that the model is able to
generate cells with high relevance (with 72% exam-
ples being fully relevant generations), but struggle
with full completeness (with 34% fully complete).

5 Related Work

Table-to-text tasks Table-based tasks, includ-
ing table-based question answering (Pasupat and
Liang, 2015; Zhong et al., 2017; Chen et al.,
2020; Cheng et al., 2022; Zhao et al., 2022), table-
based fact-checking (Chen et al., 2019; Aly et al.,
2021), table summarization (Parikh et al., 2020;
Suadaa et al., 2021; Moosavi et al., 2021), have
gained increasing attention in recent years. A
flurry of work using transformer-based structure
explored modeling table structure via pretraining,
for example, TabTransformer (Huang et al., 2020),
VIME (Yoon et al., 2020), TABBIE (Iida et al.,
2021), TaBERT (Yin et al., 2020), TUTA (Wang
et al., 2021), TabT5 (Andrejczuk et al., 2022), and
TableFormer (Yang et al., 2022).

Our work mainly focuses on table-to-text tasks
but the ideal neural architecture for encoding ta-
ble structures is not our focus. Instead, we em-
phasize multi-task knowledge-sharing (similar to
UnifiedSKG (Xie et al., 2022)) and cross-task gen-
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Caption: 1976 world junior figure skating championships

rank name nation points places

1
sherri baier / 
robin cowan

canada 128.39 9

2
lorene mitchell / 
donald mitchell

united states 124.94 16

3
elizabeth cain / 

peter cain
australia 116.67 33

4
jana bláhová / 

ludek
czechoslovakia 113.74 36

Input claim: 
the top 2 ranked team be in north America

Output:
[cell] 1 | sherri baier / robin cowan | canada | 2 | lorene mitchell / donald 
mitchell | united states [/cell] [answer] entailed [/answer]

Task configs:
[Task: Fact-checking] [Input: table] [Output: cells] [Output: binary answer]

Caption: Charl Schwartzel

tournament wins top - 5

…

top - 25 events

masters tournament 1 1 2 4

us open 0 0 3 7

the open championship 0 0 4 9

pga championship 0 0 2 8

totals 1 1 11 28

Input claim:
there be a total of 28 event that make up the 4 tournament

Output:
[cell] 4 [/cell] [answer] refuted [/answer]

Task configs:
[Task: Fact-checking] [Input: table] [Output: cells] [Output: binary answer]

Figure 6: Two examples from the development set of TABFACT where we force the model to produce relevant cells
by changing the output configurations. For the left example, the model produces a set of complete and relevant cells
that help understand its “entailed” prediction. For the right example, the model is misled by the number “4” when
generating the cells, and we are able to check that the final answer “refuted” is wrong.

Full Partial None

Relevance 72% 10% 18%
Completeness 34% 48% 18%

Table 5: Human evaluation results of the zero-shot cell
generation quality for the TABFACT task.

eralization in table-to-text tasks. Also, the pro-
posed framework is capable of generalizing to a
broader range of tasks and datasets.

Task unification There have been a vein of work
that tries to solve various NLP tasks using a sin-
gle model. This includes encoder-decoder models
like T5 (Raffel et al., 2020), UnifiedQA (Khashabi
et al., 2020), UnifiedQA2 (Khashabi et al.,
2022), UnifiedSKG (Xie et al., 2022); decoder-
only models driven by prompts, for example,
GPT3 (Brown et al., 2020), Codex (Chen et al.,
2021), PaLM (Chowdhery et al., 2022). Our work
extends UnifiedSKG by using an encoder-decoder
model as the backbone and designing prompts to
encourage better knowledge sharing between dif-
ferent tasks and enable control over the model’s
behaviors.

Cross-task generalization with pretrained mod-
els Various efforts have been made to improve the
ability of unified models to generalize to new tasks
and datasets, including instruction-tuning using a
wide range of natural language instructions (Chung
et al., 2022; Sanh et al., 2022; Wei et al., 2021;

Zhong et al., 2021), better design of prompts in
zero-shot and few-shot setting (Wei et al., 2022;
Zhou et al., 2022; Kojima et al., 2022). Our pro-
posed method differs from instruction-tuning mod-
els like FLAN (Wei et al., 2021) in that we use a
more symbolized prompt structure and it is possi-
ble to attribute cross-task generalizability to spe-
cific tasks and configurations. Also, instruction-
tuning models like FLAN achieve behavior control
and cross-task generalizability through costly large-
scale instruction tuning. In contrast, our approach
demonstrates that within a specific task domain
with limited datasets like table-to-text, this can
be achieved by utilizing a compositional prompt
structure.

Our method is also relevant to Macaw (Tafjord
and Clark, 2021), ProQA (Zhong et al., 2022b),
and SchemaPro (Zhong et al., 2022a), which also
utilize explicit task descriptions to facilitate knowl-
edge sharing between various NLP tasks. Our work
differs in two main aspects: (1) Our work focuses
on compositional generalization at test time, ex-
amining whether the model can combine different
configurations from multiple tasks during training
to generalize to unseen tasks at test time. (2) Our
work focuses on table-to-text tasks.

6 Conclusion

We introduced compositional task configurations
for unified table-to-text models. Compared to ex-
isting unified encoder-decoder models that sim-
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ply use dataset names as input prefix, composi-
tional task configurations allow us to specify the
task type, input, and output types at a finer level,
which improve multi-task learning effectiveness
and cross-task generalization. Further, we showed
that our method allows fine-grained control over
the model’s generation at test time, enabling the
model to generalize to unseen tasks and improving
explainability via generating high-quality support-
ing table cells.

7 Limitations

Task configurations are entangled with the full
model parameters. In our ablation study of task
configurations at training time (Table 3), we see
that when training without task type, the model
fails to generalize to FETAQA. Upon examining
the model output, we find that although we change
the output configuration to “long answer”, the
model still produces a short-form answer. This in-
dicates that model behaviors are not always aligned
with a single configuration, leading us to question
the extent to which each individual configuration
influences the model. In order to have better and
more interpretable control over the models, one
potential avenue for future research is to develop
pluggable task configurations, where each configu-
ration controls a more atomic function of the model
and can be plugged, unplugged, and combined to
yield different model behaviors.

Our exploration scope is limited to table-to-text
tasks. Due to the constraints of the computational
resources, we haven’t explored joint training with
a broader range of other NLP tasks. We think with
some modifications, such as the inclusion of dataset
domains in the configuration set, it would be pos-
sible to extend our approach to additional datasets
and tasks.

8 Ethics Statement

The authors of this paper are committed to conduct-
ing research ethically. Data used in this work has
been collected from public sources and used in ac-
cordance with all applicable laws and regulations.
The only area of work that involves human anno-
tation of data is described in Section 4.4, where
authors of this paper annotated a group of samples
for analyzing models’ behaviors. We ensure that
no external human subject was involved or harmed.
In addition, this work uses language models, for

which the risks and potential harms are discussed
in numerous previous works (Bender et al., 2021;
Weidinger et al., 2021). The authors strive to en-
sure that the research and its results do not cause
harm.
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A Dataset Statistics and Preprocessing

The statistics and the licenses of the datasets we
used in this paper are shown in Table 6. All datasets
are English-based and all of them are based on
Wikipedia except for TAT-QA which is based on

financial reports. To fit the data into the encoder,
for all datasets, we limit the max length of each cell
to be 15 sentence-piece tokens. If the length (mea-
sured by sentence-piece tokens) of the linearized
table is longer than 1024, we truncate random rows
to reduce the table size.

The original annotation of WIKISQL dataset
does not include the relevant cells. We extract
the relevant cells by executing the accompanied
SQL query annotations. In most cases, the relevant
cells equal to the final answer annotations; for the
rest of the cases, aggregations or numerical oper-
ations need to be run to obtain the final answer.
During training, we also create another version of
the WIKISQL dataset, in which we exclude the
relevant cells and only use the final answer as su-
pervision to improve output diversity. We use both
versions at training time.

NQ-TABLES is a table-based QA dataset derived
from the NaturalQuestions dataset (Kwiatkowski
et al., 2019) and was originally released by Herzig
et al. (2021). The original test set of NQ-TABLES

contains 966 unique examples. In our experiments,
to make the dataset more compatible with other
table-based QA tasks, we evaluate on a customized
version of NQ-TABLES where we only include an
example if the answer is uniquely locatable as one
or more table cells. This filtering step results in
549 unique triples of table, question and answers.

To make TOTTO more compatible with other
table-to-text tasks, we feed the selected cells as
inputs to the decoder, as we mentioned in Section 2.
Also, we find it helpful to create a reversed version
of the TOTTO dataset, where we treat the annotated
summary and the table as input and let the model
predict the relevant cells. We add both versions of
TOTTO to the training of all models, including the
baseline.

B Task Configurations Applied for Each
Dataset

Below we list the task configurations applied to
all datasets. For each dataset, we present input to
the encoder and output from the decoder separately.
For encoder, we include the template of the full
input, including task configurations as well as how
the dataset input is structured (with actual data
replaced by “...”). For decoder, we include how we
structure the annotated output during training and
how we parse the output during testing.
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Dataset Train Dev Test License Domain Language

Train+Test

WIKISQL 56,355 8,421 15,878 BSD 3-Clause Wikipedia English
WIKITQ 11,321 2,810 4,344 CC BY-SA 4.0 Wikipedia English
SQUAD 87,599 10,570 – CC BY-SA 4.0 Wikipedia English
TOTTO 120,761 7,700 – CC BY-SA 3.0 Wikipedia English
TABFACT 92,283 12,792 9,750 CC BY 4.0 Wikipedia English

Test-only

NQ-TABLES – – 549 Apache License 2.0 Wikipedia English
HYBRIDQA – 3,466 – CC BY 4.0 Wikipedia English
TAT-QA – – 1,669 MIT License Finance English
FETAQA – – 2,003 CC BY-SA 4.0 Wikipedia English
FEVEROUS – 7,890 – CC BY-SA 3.0 Wikipedia English

Table 6: Dataset statistics of the datasets we used in the paper. Note that for the test-only datasets, except for
few-shot experiments, only the test splits of the original datasets are used. For SQUAD, HYBRIDQA, FEVEROUS,
and TOTTO, as no public test set is offered, we evaluate the model on the original development sets following
UnifiedSKG (Xie et al., 2022). For NQ-TABLES, we use a modified version of it in our experiments as described in
Appendix A.

B.1 WikiSQL
Encoder:
[Task: QA] [Dataset: WikiSQL] [Input:
query] [Input: table] [Output: cells] [
Output: short answer] [query] ... [/
query] [table] ... [/table]

Decoder:
[cell] ... [/cell] [answer] ... [/answer
]

B.2 WikiTQ
Encoder:
[Task: QA] [Dataset: WikiTQ] [Input:
query] [Input: table] [Output: short
answer] [query] ... [/query] [table] ...
[/table]

Decoder:
[answer] ... [/answer]

B.3 SQuAD
Encoder:
[Task: QA] [Dataset: SQuAD] [Input:
query] [Input: passage] [Output: short
answer] [query] ... [/query] [passage]
... [/passage]

Decoder:
[answer] ... [/answer]

B.4 ToTTo
Encoder:
[Task: Summarization] [Dataset: ToTTo] [
Output: cells] [Output: long answer]

Decoder:
[cell] ... [/cell] [answer] ... [/answer
]

B.5 TabFact
Encoder:
[Task: Fact-checking] [Dataset: TabFact]
[Input: query] [Input: table] [Output:

binary answer] [query] ... [/query] [
table] ... [/table]

Decoder:
[answer] ... [/answer]

B.6 NQ-Tables
Encoder:
[Task: QA] [Input: query] [Input: table]
[Output: short answer] [query] ... [/

query] [table] ... [/table]

Decoder:
[answer] ... [/answer]

B.7 HybridQA
Encoder:
[Task: QA] [Input: query] [Input: table]
[Input: passage] [Output: short answer]
[query] ... [/query] [table] ... [/

table] [passage] ... [/passage]

Decoder:
[answer] ... [/answer]

B.8 TAT-QA
Encoder:
[Task: QA] [Input: query] [Input: table]
[Input: passage] [Output: short answer]
[query] ... [/query] [table] ... [/

table] [passage] ... [/passage]

Decoder:
[answer] ... [/answer]
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B.9 FeTaQA
Encoder:
[Task: Summarization] [Input: query] [
Input: table] [Output: cells] [Output:
long answer] [query] ... [/query] [table
] ... [/table]

Decoder:
[cell] ... [/cell] [answer] ... [/answer
]

B.10 FEVEROUS
Encoder:
[Task: Fact-checking] [Input: query] [
Input: table] [Input: passage] [Output:
binary answer] [query] ... [/query] [
table] ... [/table] [passage] ... [/
passage]

Decoder:
[answer] ... [/answer]

B.11 WikiSQL-Answer-only
Encoder:
[Task: QA] [Dataset: WikiSQL] [Input:
query] [Input: table] [Output: short
answer] [query] ... [/query] [table] ...
[/table]

Decoder:
[answer] ... [/answer]

B.12 ToTTo-Reverse
Encoder:
[Task: Cell-generation] [Input: query] [
Input: table] [Output: cell] [query] ...
[/query] [table] ... [/table]

Decoder:
[cell] ... [/cell]

C Annotation Interface

The annotation interface we used for our human
study in this paper is shown in Figure 7
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1/20/23, 4:44 PM cell quality annotation

file:///Users/jfchen/Downloads/generate_annotation_samples.html 1/1

Zero-shot cell generation (TabFact)
Annotation guideline:

For each claim, the corresponding table, and the generated cells, our main goal is to evaluate the
generated cells under the following two aspects:

1. cell relevance: whether the predicted cells are relevant to check the claim (precision). We have
the following three labels: (1) relevant: all cells are relevant (precision == 1) (2) partially relevant:
some cells are relevant (0 < precision < 1) (3) irelevant: none of the cells are relevant (precision ==
0)

2. cell completeness: whether the predicted cells contain all information needed. For example,
claim mentions two entities but only one is predicted. We have the following three labels: (1)
complete: all necessary information is contained by the cells. (2) partially complete: only part of the
information is covered by the cells. (3) incomplete: none of the information is covered by the cells.

Example ID: 17

Submit

Input claim:

the top 2 ranked team be in north america

Output:

[cell] 1 | sherri baier / robin cowan | canada | 2 | lorene mitchell / donald mitchell | united states
[/cell] [answer] entailed [/answer]

rank name nation points places
1 sherri baier / robin cowan canada 128.39 9
2 lorene mitchell / donald mitchell united states 124.94 16
3 elizabeth cain / peter cain australia 116.67 33
4 jana bláhová / ludek czechoslovakia 113.74 36
5 sabine fuchs / xavier vide france 114.12 39
6 karen wood / stephen baker united kingdom 100.33 55
7 catherine brunet / philippe brunet france 94.27 62

table caption:

1976 world junior figure skating championships

Figure 7: Instruction and the annotation interface we used for the human study in section 4.4.
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