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Abstract

Recent work studies the cognitive capabilities
of language models through psychological tests
designed for humans. While these studies are
helpful for understanding the general capabili-
ties of these models, there is no guarantee that a
model possessing sufficient capabilities to pass
those tests would actually use those capabilities
in performing real-life tasks. In this work, we
formulate task-oriented cognitive capabilities,
which are human-like cognitive capabilities
that language models leverage to perform
tasks. These capabilities are (i) the ability to
quickly generate good candidate utterances
(the search capability) (ii) the ability to predict
how a listener interprets those utterances and
choose the most appropriate one (the pragmatic
capability). We design an evaluation scheme
for comparing these capabilities of a language
model with those of a human. Applying
this scheme to examine various models in a
navigation instruction generation problem, we
find that their pragmatic capability is severely
lacking. This insight leads us to augment them
with better models of the listener and obtain
a significant boost of 11% in success rate in
guiding real humans. Our work advocates for
having a principled procedure for aligning
language models with humans that involves
(i) formulating task-oriented capabilities, (ii)
devising a method to quantify their deficiency,
and (iii) iteratively improving them.

1 Introduction

To communicate successfully with humans, lan-
guage models must possess cognitive capabilities
similar to those that facilitate human commu-
nication. Examining the cognitive capabilities
of language models is notoriously challenging
because the operations of these models are largely
unintelligible to humans. Psychologists faced
similar challenges when investigating human cog-
nition, and have devised various behavioral tests
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to diagnose human cognitive capabilities (Premack
and Woodruff, 1978; Wimmer and Perner, 1983;
Baron-Cohen et al., 1985; Gopnik and Astington,
1988). Recent work (Sap et al., 2022; Kosinski,
2023; Ullman, 2023) applies these tests to evaluate
large language models by inputting the tests to
these models as prompts and verifying whether
they behave like a normal human would.

While this approach is helpful for understanding
the general limitations of language models, it has
two potential drawbacks. First, it is applicable to
only large language models that can comprehend
human-written prompts, entangling linguistic
capability with reasoning capability. Second,
it shows that a language model can or cannot
demonstrate certain mental skills, but does not
imply that the model would employ those skills to
perform a downstream task. For example, passing
false-belief tests does not guarantee that a model
will reason about the interpretation of the readers
when generating summaries. In general, scoring
high on psychological tests may not be sufficient to
ensure language models would behave like humans
in real-life scenarios.

In this work, we take a different approach to
evaluating the cognitive capabilities of language
models. We define and evaluate task-oriented cog-
nitive capabilities, which are human-like capabili-
ties that a model actually employs to perform the
task it is designed for. Enhancing these capabil-
ities thus warrants improved performance on the
task. To identify these capabilities, we build on
two lines of work from socio-cognitive science:
Bayesian models of cooperative communication
(Wang et al., 2020; Goodman and Frank, 2016;
Shafto et al., 2014) and studies on how humans im-
plement Bayesian reasoning (Sanborn and Chater,
2016; Sanborn et al., 2010; Vul et al., 2014; Ma-
massian et al., 2002). We propose a mathemat-
ical cognitive model called bounded pragmatic
speaker, which can reasonably characterize the rea-
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soning processes of both humans and language
models. Casting humans and language models in
the same way enables us to juxtapose their cogni-
tive capabilities. We mathematically formulate two
capabilities that a bounded pragmatic agent must
possess in order to generate optimally pragmatic
utterances. These conditions correspond to well-
known cognitive capabilities of humans: (i) the
ability to efficiently generate relevant utterances
(the search capability) (Bloom and Fischler, 1980;
Gold et al., 2000; Trosborg, 2010) and (ii) the abil-
ity to accurately simulate the listener’s interpreta-
tions of their utterances (the pragmatic capability)
(Premack and Woodruff, 1978; Gopnik and Asting-
ton, 1988; Tomasello, 2019; Call and Tomasello,
2011; Frank and Goodman, 2012). We design a
simple procedure to quantitatively evaluate these
capabilities of a language model. To evaluate each
capability, we compute the task performance gap
between the model and an oracle model, which is
identical except that the evaluated capability of this
model is at human level. Figure 1 illustrates our
procedure, which theoretically can be applied to
any language model.

We evaluate various language models on a nav-
igation instruction generation problem (Anderson
et al., 2018b), where a model generates English
instructions to guide real humans in photo-realistic
3D environments.1 Our evaluation reveals an
interesting finding: all evaluated agents possess
relatively efficient search capability but inadequate
pragmatic capability. We improve the pragmatic
capability of the evaluated models by enabling
them to reason probabilistically about human
listeners (Andreas and Klein, 2016; Fried et al.,
2018a), employing state-of-the-art instruction-
following agents (Magalhaes et al., 2019; Shen
et al., 2022; Hong et al., 2021) as models of human
listeners. We obtain significant improvement in
success rate over the original agents, shrinking
the gap with human performance on held-out
data by 36%. Towards eliminating the remaining
gap, we illustrate with empirical evidence a major
challenge in developing better listener models.
Specifically, when the instruction-following
agents are employed as listener models for the
instruction-generating agent, they are required to
evaluate AI-generated instructions, which may
be significantly different from human-generated

1Our human-evaluation dataset and interface are pub-
licly released at https://lingjunzhao.github.io/coop_
instruction.html.

Repeat N times
   (i) Generate candidate (search capability)
           ui ~ Sbase( ᐧ | e*)
   (ii) Evaluate candidate (pragmatic capability)
           score(ui) = LToM(e* | ui)
Return argmaxu∈D score(u), D = { u1 ,..., uN }
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Figure 1: We propose a framework called bounded prag-
matic speaker which can characterize pragmatic reason-
ing in both humans and language models (a). A bounded
pragmatic speaker is composed of a base speaker
Sbase, representing prior knowledge that helps generate
instructions efficiently, and a theory-of-mind (ToM) lis-
tener LToM, a hypothetical model of how the real listener
interprets instructions. Viewing language models and
humans through this unifying lens enables comparing
their cognitive capabilities (b). To evaluate a capability
of a model, we compare it with an oracle model which
is identical except that the evaluated capability is at
human level. The outcome of our evaluation can better
inform the future direction for improving the model (c).

instructions. Hence, a standard supervised-learning
training scheme that only exposes these models to
human-generated instructions would be inadequate
for learning reliable models. We thus call for
construction of novel datasets, algorithms, and
evaluation methods for developing the pragmatic
capability of language models.

2 Related Work

Navigation Instruction Generation. Instruction
generation has been commonly studied in naviga-
tion settings (Anderson et al., 1991; Byron et al.,
2009; Koller et al., 2010; Striegnitz et al., 2011;
Goeddel and Olson, 2012; Fried et al., 2018a,b).
The Matterport3D simulator and the accompanying
datasets (R2R (Anderson et al., 2018b), R4R (Jain
et al., 2019), and RxR (Ku et al., 2020)) offer more
challenging settings by combining photo-realistic
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scenes with long, verbally rich instructions. Recent
work on evaluating instruction generation agents
(Zhao et al., 2021) reveals the ineffectiveness of
standard learning and modeling approaches to this
problem. Wang et al. (2021) improve the accuracy
and interpretability of instructions in the RxR set-
ting. Kamath et al. (2023) leverage this model to
synthesize additional data for training instruction-
following agents. Our work aim to offer useful
principles to further improve these models.

Mathematical Models of Human Communi-
cation. Different from communication within
agents (Lazaridou et al., 2020; Roman Roman et al.,
2020), human communication is a cooperative
act (Grice, 1975; Scott-Phillips, 2014; Tomasello,
2019). Pragmatic communication in humans may
involve different cognitive capabilities like basic
understanding of language and social rules (Tros-
borg, 2010) and reasoning about the physical world
(Bender and Koller, 2020) and human behavior
(Enrici et al., 2019; Rubio-Fernandez, 2021). Our
work describes similar capabilities but provides
a formal mathematical description. Development
of mathematical models of human communication
have been greatly useful for understanding human
behaviors (Ho et al., 2016; Sumers et al., 2022)
and building communication agents (Andreas and
Klein, 2016; Fried et al., 2018a,b; FAIR, 2022; Lin
et al., 2022; Zhu et al., 2021; Bao et al., 2022).
Wang et al. (2020) unify these models under an
optimal-transport framework. The model we pro-
pose in this work is a generalized version capturing
the essence of these models.

Evaluating Cognitive Capabilities of Neural Net-
works. Many benchmarks for evaluating the cog-
nitive capabilities of AI-based agents have been cre-
ated, focusing on theory-of-mind capabilities (Le
et al., 2019; Nematzadeh et al., 2018), grounding
(Lachmy et al., 2022; Udagawa and Aizawa, 2019;
Haber et al., 2019), or commonsense reasoning
(Talmor et al., 2019; Levesque et al., 2012; Zellers
et al., 2019; Sap et al., 2019). Large language mod-
els have demonstrated exceptional performance on
following human instructions and solving complex
reasoning tasks (Bubeck et al., 2023; Anil et al.,
2023), raising the question of whether their cog-
nitive capabilities are similar or as advanced as
those of humans. Mahowald et al. (2023) advo-
cate for separating formal competence (knowledge
about linguistic rules and patterns) from their func-

tional competence (knowledge about the world us-
age in the world) when assessing these models. Our
bounded pragmatic speaker framework mathemati-
cally formalizes this description, allowing for quan-
titative evaluation of these competencies. Recent
work (Sap et al., 2022; Kosinski, 2023; Ullman,
2023; Hu et al., 2023) examines cognitive capabili-
ties of large language models through tests inspired
by human psychological tests. The goal of these
studies is to determine the limits of large language
models, potentially calibrating the expectation on
them. On the other hand, our focus is to devise a
method that can be applied to language models of
any size and benchmark cognitive capabilities that
are relevant for accomplishing a specific task.

3 Problem Setting

We are concerned with instruction generation:
learning a speaker agent r that generates language
instructions to guide a human listener h to reach
states in an environment.

Human Listener. We imagine a human listener
h acting in a partially observed environment
with states s. The human does not have access
to states but only observations oh and takes
actions ah. An instruction u ∈ U is a language
utterance consisting of words. A trajectory
e = (s1, o1, a1, · · · , sT , oT , aT ) is an execution of
an instruction. The human can follow instructions
to generate trajectories in the environment. For
example, in an indoor navigation setting, upon
hearing “go the kitchen and stop next to the oven”,
a human walks to the specified location. We
define Lh(e | u) as the probability that the human
generates e upon hearing u.

Speaker Agent. In each task, the speaker
agent first imagines an intended trajectory e⋆ =
(s1, o

r
1, a

r
1, · · · , sT , orT , arT ), which specifies a path

to get to an intended goal state sT from the human’s
current state s1. Because the human’s actions and
perception may differ from those of the speaker,
they may not be able to comprehend e⋆ even if it
is presented to them. Thus, the speaker needs to
translate the trajectory into an instruction û that
the human can understand and follow. To do so, it
implements a language model Sr(u | e), and an in-
ference algorithm Gen(Sr, e) to craft instructions
based on the model (e.g., greedy or beam-search
decoding). The speaker’s objective is to generate
instructions that maximize the expected chance of
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the listener reconstructing the intended trajectories

argmax
Sr

Ee⋆ [Lh(e
⋆ | Gen(Sr, e

⋆))] (1)

Evaluation. The speaker is evaluated using a
dataset Deval of held-out trajectories. For each
trajectory e⋆k ∈ Deval, we generate an instruction
ûk = GEN(Sr, e

⋆
k). The instruction is then pre-

sented to a (real) human listener to follow, produc-
ing a trajectory eh

k ∼ Lh(· | ûk). The performance
of the speaker, denoted by ρ(r), is the average sim-
ilarity, Ψ, between the human-generated and the
intended trajectories:

ρ(r) ≜ 1

|Deval|
∑

e⋆k∈Deval

Ψ(eh
k, e

⋆
k) (2)

We will specify the choices for the metric Ψ in the
experimental setup section (§6).

4 Task-Oriented Cognitive Capabilities

Human have evolved highly effective cognitive ca-
pabilities for communication. How can we endow a
speaker agent with similar capabilities and quantify
the degree of resemblance between its capabilities
and those of a human?

We propose a mathematical framework that rea-
sonably characterizes the human cognitive process
for instruction generation (§4.1). We show that this
model can also describe the operation of language
models, which allows us to compare them with
humans on specific cognitive capabilities. We iden-
tify two capabilities that are requisite for any agent
implementing our framework to generate optimal
instructions (§ 4.2), and introduce an evaluation
scheme for collating these capabilities (§4.3).

4.1 A Mathematical Cognitive Model of
Instruction Generation

To formulate how humans generate instructions,
we build on mathematical models of coopera-
tive communication (Wang et al., 2020; Goodman
and Frank, 2016; Shafto et al., 2014). We con-
sider a general version where a speaker agent con-
structs a pragmatic speaker model Sprag(u | e)
based on two constituents: a base speaker model
Sbase(u | e) and a theory-of-mind (ToM) listener
model LToM(e | u). The base speaker represents
general knowledge of the agent about the world
and the language it speaks. The ToM listener re-
flects situated knowledge about the listener, simu-
lating how they would behave in the environment
given an instruction. A pragmatic speaker aims to

maximize the chance of the listener interpreting its
instruction correctly, but it is still influenced by its
general knowledge (e.g., social biases, language
style). Formally, it is defined as:

Sprag(u | e) ∝ LToM(e | u)Sbase(u | e) (3)

To convey an intended trajectory e⋆, this speaker
utters an instruction of maximum probability under
its model:

ûprag ≜ argmax
u∈U

Sprag(u | e⋆)

= argmax
u∈U

LToM(e⋆ | u)Sbase(u | e⋆) (4)

Humans as bounded pragmatic speakers. The
pragmatic speaker model accounts for human be-
haviors highly accurately on problems where U
is a small discrete space (Frank and Goodman,
2012). However, in problems like instruction gen-
eration where U is an unbounded set of linguistic
expressions, it is unlikely that humans, which are
known to be agents with bounded rationality (Si-
mon, 1957), are able to compute the optimal utter-
ance in Eq 4 exactly. A hypothesis, supported by
empirical evidence, is that humans perform approx-
imate inference via Monte-Carlo sampling (San-
born and Chater, 2016; Sanborn et al., 2010; Vul
et al., 2014; Mamassian et al., 2002). Applying this
hypothesis to our setting, we derive a more practi-
cal model of how human generate instructions, in
which they perform the search for the best utter-
ance on only a subspace Usub of U defined by a set
of candidates sampled from Sbase

ûbounded-prag ≜ argmax
u ∈ Usub ⊂ U

LToM(e⋆ | u) (5)

where Usub = {ui ∼ Sbase(· | e⋆) | 1 ≤ i ≤ N}.
We call an agent that generates instructions
according to Eq 5 a bounded pragmatic speaker
(Figure 2). For such a speaker, instruction gen-
eration involves two tasks: candidate generation
(performed by Sbase) and candidate evaluation (per-
formed by LToM). The former task ensures that the
generation of an instruction is efficient, while the
latter guarantees the generated instruction conveys
the intended meaning to the human listener.

4.2 Formulating Task-Oriented Cognitive
Capabilities

What cognitive capabilities enable humans to gen-
erate effective instructions? Viewing humans as
bounded pragmatic speakers allows us to mathe-
matically characterize those capabilities. Specifi-
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Theory-of-mind 
Listener Model

Base Speaker 
Model

 

Start

Goal

Human Listener

Candidate set

u1: Walk past the stairs and 
out the door that leads 
outside. Wait on the porch. 

u2: Walk across the living 
room and out the doors on the 
other side. Stop just outside 
the door
…

e1 e2

Figure 2: The cognitive process of a bounded pragmatic speaker. In every task, the speaker first imagines a trajectory
it wants to convey to the human listener. To reduce the search space, it then uses the base speaker to generate a small
set of relevant candidate instructions. After that, it employs the theory-of-mind listener to simulate how the human
listener would follow each instruction in the candidate set. The speaker finally elects the candidate instruction that
causes the theory-of-mind listener to generate the trajectory most similar to the intended trajectory. The output
instruction is finally sent to the human listener for a real execution in the environment.

cally, we require a bounded pragmatic speaker to be
able to output the optimal utterance, i.e. satisfying

ûbounded-prag = u⋆ ≜ argmax
u

Lh(e
⋆ | u) (6)

where Lh is the human listener.

For this equation to hold, the constituent models
Sbase and LToM of the bounded pragmatic speaker
must meet certain conditions. The condition for
Sbase is that the candidate set it generates must con-
tain the optimal instruction, i.e. u⋆ ∈ Usub. This
condition requires Sbase to be capable of quickly
generating candidates and placing high probability
on u⋆ so the instruction can be found by sampling
a few candidates. We refer to this capability as the
search capability.

Meanwhile, the condition for LToM is that it has
to rank u⋆ first among the candidates in Usub. Meet-
ing this condition demands having the capability of
constructing a mental emulation of the human lis-
tener and simulating the actions of the listener after
receiving an instruction. We refer to this capability
as the pragmatic capability.

The search and pragmatic capabilities are orthog-
onal and complementary. An agent with flawless
pragmatic capability can evaluate the goodness of
instructions given to it, but may not be able to ef-
ficiently generate good instructions by itself. In
contrast, an agent with effective search capability
can quickly bring to attention highly relevant utter-
ances but cannot select the best one to output if its
ToM model is erroneous.

4.3 Evaluating Task-Oriented Cognitive
Capabilities

We have defined two cognitive capabilities that are
requisite for humans in instruction generation. In
this section, we will prove that a language model
can also be cast as a bounded pragmatic speaker.
Hence, we can compare it with a human on the two
cognitive capabilities.

Language models as bounded pragmatic speak-
ers. We consider a speaker agent r that learns
a language model Sr(u | e) and runs an infer-
ence algorithm to compute an output ûinfer =
GEN(Sr, e

⋆) ≈ argmaxu∈U Sr(u | e⋆). Gen-
erative LSTM- or Transformer-based models that
implement greedy or beam-search decoding are
examples of this agent. We make the following
assumption about the inference algorithm.2

Assumption (Better-than-sampling inference al-
gorithm). We assume the inference algorithm is
better at finding argmaxu∈U Sr(u | e⋆) than
drawing a small number of N samples from Sr.
Formally, let γ be the probability of drawing e⋆

and a set of N instructions from Sr such that
Sr(ûinfer | e⋆) > maxu∈Usub Sr(u | e⋆), where
ûinfer = GEN(Sr, e

⋆). We assume that γ is large
for a small integer N > 0.

2We empirically verify that this assumption holds for the
agents we evaluate with N = 10 and γ ranging from 0.7 to
0.9. We estimate γ by computing the fraction of evaluation ex-
amples where the agent’s model ranks ûinfer above N samples
drawn from it.
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If this assumption holds, then with high proba-
bility, the agent r behaves identically to a bounded
pragmatic speaker that computes its output as:

û ≜ argmax
u∈Ur

sub

Sr(u | e⋆) (7)

Ur
sub ≜ {ûinfer} ∪ {ui ∼ Sr | 1 ≤ i ≤ N} (8)

This agent uses Sr as both the base speaker Sbase
and ToM listener LToM. Due to our assumption, on
most inputs, the agent outputs ûinfer, similar to the
original agent. We employ this bounded pragmatic
speaker as the proxy for the original agent in
comparisons with humans, and also refer to it as r.

Evaluation scheme. To evaluate a cognitive ca-
pability (search or pragmatic) of a speaker r, we
compute the performance gap between it and an
oracle agent that is at human level on the evaluated
capability, but is equally good as it is at the other
capability. Specifically, we define r⋆search to be an
oracle speaker that employs Sr as the ToM model
but is given a “gold” candidate set U⋆

cand that always
contains a human-generated reference instruction
u⋆. It selects its output as follows

u⋆
search ≜ argmax

u∈U⋆
cand

Sr(u | e⋆) (9)

This agent has similar pragmatic capability as r but
human-level search capability. Next, we construct
r⋆pragmatic, an oracle that generates candidates using
Sr but employs a human Lh to rank the candidates

u⋆
pragmatic ≜ argmax

u∈Ur
sub

Lh(e
⋆ | u) (10)

with Ur
sub from Eq 8. The search capability of

r⋆pragmatic is as good as r but its pragmatic capability
is that of a human.

We calculate the prospective performance gain
(PPG) with respect to each capability as follows

PPGsearch(r) ≜ ρ(r⋆search)− ρ(r) (11)

PPGpragmatic(r) ≜ ρ(r⋆pragmatic)− ρ(r) (12)

where ρ is the performance on held-out data (Eq 2
of § 3). Each metric computes the potential im-
provement if the corresponding capability is up-
graded to match with that of a human. Comparing
the two metrics reveals which of the two capabil-
ities of r is currently more deficient and informs
future development direction for the agent. For ex-
ample, if PPGsearch(r) is large and PPGpragmatic(r)
is small, it means that r is scoring the candidate
instructions highly accurately but it is bad at find-
ing high-score instructions. In this case, developers

may want to focus on devising a more effective in-
ference algorithm to improve the search capability
of r. On the other hand, if r estimates poorly cal-
ibrated scores, signified by PPGpragmatic(r) being
large, enhancing its inference algorithm is fruitless,
but endowing it with a module that simulates the
listener’s behavior more accurately would boost its
performance.

5 Improving Pragmatic Capability with
Ensemble Instruction-Following Agents

In cases where our evaluation scheme indicates that
the pragmatic capability of a language model is de-
ficient, we improve it by installing a better ToM
listener model. A common approach to learning
this listener model is to use the same dataset used
for learning the speaker model (Andreas and Klein,
2016; Fried et al., 2018a,b). We argue that this
approach has a potential drawback. A ToM model
learned in this way is only exposed to human-
generated input instructions. At deployment time,
it would likely experience a covariate shift because
as a ToM model, the model is then asked to score in-
structions generated by a speaker model, not by hu-
mans. These instructions may be incorrect, ungram-
matical, or may simply have a different style than
human-generated instructions. This covariate shift
would hamper the model’s judgement. Our prelim-
inary experiments (Appendix §A.6) confirm that
using a listener trained on only human-generated
inputs as the ToM model hurts rather than improves
the performance of various speakers.

We show that this problem can be alleviated by
employing ToM models that have calibrated uncer-
tainty on unseen instructions. We obtain calibrated
models through ensembling (Lakshminarayanan
et al., 2017): we train listener models L̂(k)(e | u),
k = 1 . . .K, each on a random 90% subset of the
training data with different random initial seeds.

We also leverage access to a simulation of the
environment to construct better ToM models. Note
that the probability that a ToM model LToM as-
signs to an instruction can be seen as an ex-
pectation of a binary metric: LToM(e⋆ | u) =
Ee∼LToM(·|u) [1{e = e⋆}], which does not award
credit if e overlaps only partially with e⋆. We
propose two augmentations: (i) replace the binary
metric with a soft metric Ψ(e, e⋆) that can mea-
sure partial similarity between trajectories and (ii)
approximate the expectation by executing listeners
L̂(k) in the simulated environment to sample trajec-
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tories. Our final model selects its instruction as:

ûaugment-ToM ≜ argmax
u∈Ur

sub

LToM(e⋆ | u) (13)

LToM(e⋆ | u) ∝ 1

KM

K∑

k=1

M∑

j=1

Ψ(ej(L̂
(k),u), e⋆)

Ur
sub ≜ {ûinfer} ∪ {ui ∼ Sr | 1 ≤ i ≤ N}

where e(L,u) denotes a trajectory sampled from
a listener model L conditioned on an instruction
u, and M is the number of trajectories we
sample from each listener. Essentially, the score
LToM(e⋆ | u) of each candidate instruction is the
average performance metric of K listeners, each of
which attempts to follow the instruction M times.

6 Experimental Setup

Environment and Dataset. We employ Matter-
port3D (Anderson et al., 2018b), a photo-realistic
simulator of the visual perception of a person walk-
ing in an indoor environment. At any location, an
agent is provided with RGB images capturing the
360-degree panoramic view when looking from
that location.

We train and evaluate our models using the
Room-to-Room (R2R) language-based navigation
dataset. Each data point was collected by asking
an English-speaking crowd-worker to write a
verbal description of a path in an environment. The
dataset is split into a training set (61 environments,
4,675 paths), a seen validation set (environments
seen during training, 340 paths), and an unseen
validation set (11 environments unseen during
training, 783 paths). We train the models using
the training set and perform model selection on
the unseen validation set. Performance metrics are
computed on the seen validation set.

Speaker Models. We evaluate three speaker ar-
chitectures: (1) a decoder-only GPT-2 pre-trained
on text (Radford et al., 2019); (2) an LSTM
encoder-decoder (Shen et al., 2022); (3) a Trans-
former encoder-decoder (Vaswani et al., 2017).
Parameters of the latter two models are randomly
initialized. Details are in Appendix §A.2.

Human Evaluation. We evaluate each speaker
model on 75 paths in the seen validation data
split. In the end, we have annotated 1,200 instruc-
tions generated by 16 different systems (humans, 3
speaker models, and their ablated and augmented
versions). To evaluate a speaker model, we present
its generated instructions to a human annotator

and ask them to follow the instructions to nav-
igate in Matterport3D environments. We adapt
the PanGEA tool3 to setup a web navigation in-
terface and create a task on Amazon Mechanical
Turk (MTurk). We recruit 213 human evaluators
in total. More details about the setting are given in
Appendix §A.5.

Performance Metrics. The quality of a speaker
is determined by the similarity between the in-
tended trajectories and the actual trajectories that
the human evaluators generate by following the
speaker’s instructions. We compute these similar-
ity metrics: Success rate (SR) averages binary
indicators of whether the final location of a human-
generated trajectory is within three meters of the fi-
nal location of the intended trajectory; SPL (Ander-
son et al., 2018a) weights the success indicator with
the ratio between the intended traveling distance
and the actual one; and NDTW and SDTW are
metrics based on dynamic time-warping alignment
(Magalhaes et al., 2019), capturing the similarity
between two point sequences. NDTW computes
only a sequence similarity score while SDTW
weights the score with the success indicator.

7 Experiments

We investigate the following questions:
(a) How well do the speakers perform on our

problem? We find that, despite implement-
ing advanced architectures, these speakers per-
form poorly compared to human speakers.

(b) What causes their performance deficiency?
Using our evaluation scheme, we identify that
the speakers possess decent search capability
but inadequate pragmatic capability.

(c) Can we improve the speakers by equipping
them with better ToM listeners? We em-
ploy ensembles of state-of-the-art instruction-
following agents as ToM listeners for the
speakers, and obtain significant improve-
ments.

(d) What are the challenges in bridging the per-
formance gap with human speakers? We show
that instruction-following agents trained with
only human-generated instructions are not op-
timal for serving as ToM listener models.

How well do the speakers perform on our
problem? As seen in Figure 3, there is a wide
margin between the agent speakers and the human

3https://github.com/google-research/pangea
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Figure 3: Performance of different speakers on held-
out evaluation data, grouped by performance metrics
(NDTW, SR, SPL, SDTW). Human speakers are anno-
tators of the R2R dataset. There is a considerable gap
between model and human speakers.
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Figure 4: Performance (in NDTW) of the speakers and
their human-augmented versions. Possessing human-
level pragmatic capability improves performance of the
speakers, showing that their original pragmatic capa-
bility is highly deficient compared to that of a human.

instructors. The best model speaker (EncDec-
Transformer) lags behind the humans by 21.6
NDTW points. The encoder-decoder architecture
with cross-attention of EncDec-Transformer
outperforms the decoder-only self-attention
architecture of GPT-2 (+11.7 NDTW), indicating
that fusing the vision and language features too
early in an architecture may be detrimental. On
the other hand, EncDec-Transformer leads over
EncDec-LSTM by 4.1 points NDTW, suggesting
that the Transformer architecture is more effective
than LSTM in this problem.

What causes the speakers’ deficiency? Next,
we investigate whether the lack of search or
pragmatic capability is responsible for the defi-
ciency of the speakers. The prospective perfor-
mance gains presented in Figure 4 show that it is
under-performed pragmatic capability that primar-
ily causes the models to perform poorly. Specif-
ically, while equipping the models with oracle
search capability only improves their performance
by 9.4% on average, granting them oracle prag-
matic capability nearly doubles their performance
metrics. In fact, the search capability of the models
is already as good as that of the humans we employ,
because the models with oracle pragmatic capabil-

ity achieve even slightly higher NDTW scores than
the human speakers.

Can we improve the speakers by equipping them
with better ToM models? Following the proce-
dure described in Section §5, we train state-of-the-
art instruction-following agents to serve as ToM
listener models for the speakers. Performances of
different combinations of speakers and listeners are
given in Table 1. We see the largest improvement
(+7.9 NDTW) over the best base speaker (EncDec-
Transformer) by augmenting this speaker with an
ensemble of 10 EnvDrop-CLIP listeners as the ToM
model. In Figure 5, we show a qualitative example
where having a ToM listener enables the speaker to
generate a more accurate instruction. More exam-
ples are shown in Appendix §A.7.

We observe that ensemble models consistently
outperform single models. More results about the
effectiveness of ensemble listeners compared to
single listeners are given in Appendix §A.6.

What are the challenges in bridging the perfor-
mance gap with human speakers? Despite the
promising improvements, there remains a large gap
of 17.9 NDTW points between our best speaker
and the human speakers. As suggested by Figure 4,
this gap can be closed by developing accurate ToM
models. We argue that optimal ToM models cannot
be simply obtained by learning optimal instruction-
following agents, because the latter is learned to
execute human-generated instructions while the
former is asked to rank model-generated instruc-
tions. To illustrate the difference, we measure the
agreement between human and model listeners on
instructions generated by different speakers. We
define the agreement score between a human Lh

and a model L̂ as

Agreement(Lh, L̂)

= Averageu∈Deval
(NDTW(eh(u), ê(u))) (14)

where eh(u) and ê(u) are the trajectories gener-
ated by Lh and L̂ given u, respectively, and Deval
denotes the R2R seen validation set.

As seen in Table 2, the listener agents agree more
with the humans on human-generated instructions
than on model-generated ones. The results imply
even an optimal instruction-following agent can
fail to improve a base speaker in the presence of an
input distribution mismatch. We thus advocate for
developing ToM models that are robust or can adapt
quickly against covariate shift, and for evaluating
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Base speaker Sbase

ToM listener LToM Fine-tuned GPT-2 EncDec-LSTM EncDec-Transformer

None 37.7 (▲ 0.0) 45.3 (▲ 0.0) 49.4 (▲ 0.0)

Single VLN-BERT (Majumdar et al., 2020) 38.9 (▲ 1.2) 39.8 (▼ 5.5) 46.2 (▼ 3.2)

Ensemble of 10 EnvDrop-CLIP (Shen et al., 2022) 37.8 (▲ 0.1) 53.1† (▲ 7.8) 57.3† (▲ 7.9)

Ensemble of 10 VLN⟳ BERT (Hong et al., 2021) 43.4 (▲ 5.7) 56.4‡ (▲ 11.1) 54.2 (▲ 4.8)

Humans (skyline) 72.9‡ (▲ 35.2) 76.2‡ (▲ 30.9) 75.2‡ (▲ 25.8)

Table 1: Performance (in NDTW) of the speakers when equipped with different ToM models. Each base speaker
generates 11 candidates (i.e. N = 10). Ensemble listeners significantly improve performance. ‡ and † indicate
results that are significantly higher than those of “None” (row 1) with p < 0.05 and p < 0.1, respectively
(two-related-sample t-test).

Listener
Instructions generated by VLN-BERT EnvDrop-CLIP VLN⟳ BERT

Humans (R2R dataset) 65.4 (▼ 0.0) 47.2 (▼ 0.0) 65.0 (▼ 0.0)

Fine-tuned GPT-2 43.1‡ (▼ 22.3) 31.6‡ (▼ 15.6) 39.9‡ (▼ 25.1)

EncDec-LSTM 50.0‡ (▼ 15.4) 43.7 (▼ 3.5) 49.3‡ (▼ 15.7)

EncDec-Transformer 52.1‡ (▼ 13.3) 41.5 (▼ 5.5) 51.9‡ (▼ 13.1)

Table 2: Agreement (in NDTW) of human and model listeners on instructions generated by different speakers. The
level of agreement decreases substantially when shifting from human-generated to model-generated instructions.
‡ indicate results that are significantly lower than the human skyline (row 1) with p < 0.05 (according to a
two-related-sample t-test).

Human: Turn around and walk down the stairs to the bottom. Walk 
into the kitchen and stand near the kitchen table.

EncDec-Transformer: Go down the stairs and stop at the bottom of 
the stairs. [correct destination is next to dining table]

EncDec-Transformer + ToM Listener (Ensemble of 10 VLN↻ BERTs): 
Walk down the stairs and wait by the dining room table and chairs.

Figure 5: A qualitative example where the pragmatic speaker (the last model) avoids missing information by
simulating the interpretation of the human listener.

performance of these models on model-generated
instructions.

8 Conclusion

This work introduces a framework for analyzing
task-oriented cognitive capabilities of instruction-
generation language models. We show that insights
from the analysis are helpful in directing develop-
ment on these models. Our results highlight the
necessity of constructing better ToM models for
improving these models. We argue that learning
accurate ToM listener models is met with novel,
distinct challenges. We hope that our findings will
motivate the community to focus more on eval-
uating task-oriented cognitive capabilities and to

create datasets, training methods, and evaluation
procedures for enhancing the pragmatic capability
of language models.

Limitations

Our work is predicated on hypothetical models of
human cognition. These models are still under
development by cognitive scientists and need to be
validated in more realistic domains. Our method
assumes access to a simulation of the environment,
which may be costly to construct in some domains.

In general, instruction generation agents pose
substantial risk to humans. Previous studies have
shown that humans can become overly reliant on
AI instructions and commit disastrous mistakes
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(Robinette et al., 2016). It is thus important for
practitioners to comprehend the constraints of our
experimental setting. Our experiments take place
in a coarse simulator of real-world indoor environ-
ments, which restricts the action and perception
of the human listeners. Due to the expensive cost
and the large number of agent variants, our hu-
man evaluation remains limited in terms of popula-
tion scale and diversity, and the comprehensiveness
of the questionnaires. As each instruction is only
evaluated by a single human, we have not investi-
gated the variance of the interpretation of the same
instruction among different humans. In addition,
human evaluators may “guess” a path even if a
part of the instruction is misleading or impossi-
ble to follow. Hence, the path-similarity metrics
may not reflect faithfully the quality of the instruc-
tions. Nevertheless, results shown in Table 4 of
§A.5 indicates that instructions generated by our
agents are almost as easy to interpret as those gen-
erated by humans. But again, these results are still
subject to the constraints of our annotator popula-
tion. To deploy our method, practitioners should
carefully re-evaluate its safety and effectiveness
in conditions that closely emulate the deployment
conditions.
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Hyperparam GPT-2 Transformer

Learning rate 10−4 10−4

Batch size 4 32
Optimizer AdamW AdamW
Num. of training iterations 2× 105 16× 104

Max. action steps 15 35
Max. instruction length 100 80
Image feature size 2048 512
Orientation feature size 128 128
Embedding dropout 0.1 0.3
Hidden size 768 512
Num. of hidden layers 1 1
Hidden-layer dropout rate 0.0 0.6
Num. of encoder layers - 2
Num. of decoder layers 12 2
Transformer dropout rate 0.1 0.3
Beam size 5 1

Table 3: Hyperparameters for training the GPT-2
EncDec-Transformer speakers.

A Appendices

A.1 The Room-to-Room dataset

The R2R dataset (Anderson et al., 2018b) was
originally created for training instruction-following
agents. Each data point was collected by asking
a crowd-worker to write a verbal description of a
path in an environment. In the end, each path was
annotated with three instructions. Each instruction
contains 29 words on average. The dataset is split
into a training set (61 environments, 4,675 paths),
a seen validation set (340 paths) whose paths are
sampled in the training environments, and an un-
seen validation set (11 environments unseen during
training, 783 paths). We do not use the unseen test
split because it does not provide ground-truth paths
of the descriptions. We use the dataset consistent
to their MIT License.

A.2 Implementation of Speaker Models

We train the speakers with a standard maximum-
likelihood objective using the AdamW optimizer
(Loshchilov and Hutter, 2019) with a learning rate
of 10−4.

The speaker models take a sequence of visual
observations and actions from the trajectory e⋆

as input and output a text instruction u. The
model is trained to estimate conditional probability
Sθ(u|e⋆). We use grid search to select the model
and training hyperparameters, and the best-found

values are listed in Table 3.

Input. The input trajectory e⋆ is a sequence of
panoramic views and actions. Each panoramic
view at time step t is represented by 36 vectors
{ot,i}36i=1, each of which is a visual feature vec-
tor extracted from a pre-trained vision model con-
catenated with orientation features describing the
agent’s current gaze direction. The image features
of the GPT-2 model are extracted from a ResNet-
152 model (He et al., 2016), whereas those of the
encoder-decoder models are from a CLIP model
(Radford et al., 2021). Each ground truth action
a⋆t , which moves the agent to an adjacent location,
is represented by image features from the gaze
direction of the agent when looking towards that
adjacent location, and orientation features captur-
ing the direction of the adjacent location relative to
the agent’s current gaze direction.

Output. The output of a speaker model is a lan-
guage instruction describing the input trajectory. At
test time, the GPT-2 model employs beam search,
and the encoder-decoder models generate instruc-
tions via greedy decoding (Shen et al., 2022).

Training Objective. We train the speakers with
maximum-likelihood objective:

max
θ

∑

(u⋆,e⋆)∈Dtrain

|u⋆|∑

t=1

logSθ(u
⋆
t | e⋆,u⋆

<t) (15)

where θ is the speaker model parameters, u⋆
t is t-th

word of the ground-truth instruction, and u⋆
<t is the

first t− 1 words of the instruction.
We select the best model based on the unseen-

validation BLEU score (Papineni et al., 2002) of
the model-generated instructions with the respect
to the ground-truth instructions.

Tools. We use SacreBLEU 2.2.1 to compute
BLEU scores. For preprocessing and implement-
ing the speaker models, we use Pytorch 1.7.1,
NLTK 3.6.7, SentencePiece 0.1.97, and Hugging-
face Transformers 4.5.1.

Computation. The GPT-2 model has 124.4 mil-
lion parameters, and was trained for 24 hours on
single NVIDIA GEFORCE RTX 2080 Ti. The
EncDec-LSTM model has 7.5 million parameters,
taking 24 hours to train on single NVIDIA RTX
A6000. The EncDec-Transformer model has 56.6
million parameters, trained on single NVIDIA RTX
A6000 for 48 hours.
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Performance Metrics

Speaker SR ↑ SPL ↑ NDTW ↑ SDTW ↑ Path Len ↓ Interpretability ↑

Without ToM listener

Finetuned GPT-2 36.0 27.8 37.7 24.5 20.9 2.9

EncDec-LSTM 49.3 37.6 45.3 33.8 17.4 3.3

EncDec-Transformer 54.7 43.8 49.4 40.4 15.8 3.4

With 10 VLN⟳ BERT as ToM listener

Finetuned GPT-2 46.7 30.9 43.4 28.1 21.2 3.0

EncDec-LSTM 54.7 46.0 56.4 41.9 14.0 3.1

EncDec-Transformer 52.0 44.0 54.2 41.6 17.7 3.2

Humans (R2R dataset) 76.0 67.6 71.0 64.8 14.2 3.6

Table 4: Humans evaluation results on instructions generated by the speaker models. The similarity metrics are
defined in §6. Path Len measures the average length of the generated trajectories. Interpretability indicates how easy
or difficult to follow the instructions according to human evaluators (without knowing the ground-truth trajectory).

A.3 Fine-tuning GPT-2 Speaker Model

To represent the trajectory features as a sequence
of feature vectors to feed into the GPT-2 model, we
first average the view features ōt for each time step:

ōt =
1

36

36∑

i=1

ot,i (16)

We compute the input features e⋆t by concatenat-
ing the panoramic view features and ground truth
action features:

e⋆t = [ōt; a
⋆
t ] (17)

The sequence of feature vectors e⋆ representing
a trajectory is calculated as follows

e⋆ = [tanh(e⋆1W ); · · · ; tanh(e⋆TW )] (18)

where W is parameters of a linear layer.
For the instruction u⋆, we perform an embed-

ding look-up of its words. Then, we first prompt
the model with e⋆ and then train it to generate u⋆

as a suffix.

A.4 Training Encoder-Decoder Speaker
Models

Our EncDec-LSTM model follows the implementa-
tion of the speaker in Shen et al. (2022). We imple-
ment the EncDec-Transformer model by replacing
the LSTM layers of the speaker model described in
Tan et al. (2019) with Transformer layers (Vaswani
et al., 2017).

A.5 Human Evaluation Interface and Data
Collection

We pay the evaluator $5.20 per task which takes
about 25 minutes, and the payment is decided by
state minimum wage. For each task, we ask the
evaluator to follow six instruction-following ses-
sions. One of the six sessions, which appears in all
tasks, is a quality-control test featuring an easy-to-
follow human-written instruction. We only approve
an evaluator if they navigate successfully to the
goal destination in this test. Following Zhao et al.
(2021), we instruct the judges to not explore the en-
vironments unnecessarily and not wander back and
forth unless they are lost. We record the trajectories
created by the human and use them to compute the
performance metrics.

Figure 6 shows the interface for our human evalu-
ation to collect annotations, which we adapted from
the PanGEA tool4 consistent with their Apache Li-
cense v2.0. After a human evaluator finishes fol-
lowing an instruction, we recorded the path they
generate and compute similarity metrics with re-
spect to the ground-truth path. After the instruction-
following sessions, we ask each evaluator to assess
the interpretability of the instructions by asking
them how easy (or difficult) it was for them to fol-
low the instruction. We provide four rating levels
ranging from “1: I couldn’t follow any part of the
instruction” to “4: very easy, the instructions gave

4https://github.com/google-research/pangea
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Figure 6: Human evaluation interface.

Figure 7: Comparison of using single and ensemble
ToM listeners.

accurate and sufficient information for me to fol-
low”. The answer of the evaluators is converted to
a score between one and four.

Table 4 shows the human evaluation results of
the three speaker models we evaluated.

For the human evaluation survey, participants
will be restricted to those fluent in English. There
are no other restrictions for this study. Participants

must be at least 18 years old. Before completing
the survey, participants will be shown information
about the task requirement: You are in a building,
and are provided with a short set of instructions
to navigate to a target location. Please follow the
instructions as closely as possible. Do NOT explore
the building unnecessarily and do NOT wander
back and forth unless you are lost. Please read
ALL of the instructions before you start moving.

We waive consent for this study for several rea-
sons: 1) Minimal risk: The study collects minimal
identifying information and there are no known
risks for the subjects beyond everyday computer
use. 2) Rights and welfare: All participants will be
shown all information regarding task requirements
before they complete our survey. They must con-
sent to performing the task before they are shown
the questions. 3) Practicality: Since the sessions
are conducted online on a large scale, it would
be infeasible to require all users to send a signed
form. 4) Post participation information: We do
not think there is any pertinent information that is
not already shared with the participants before or
during our experiments, so we do not feel it is nec-
essary to provide any additional information after
participation. PI information will be shared with
the participants to enable them to obtain additional
information about the study post completion.

For data anonymization, we removed the only
identifying information, Amazon Mechanical Turk
ID, after collecting the human annotation data.
This information would also be removed for fu-
ture dataset release. The dataset will be released
under MIT license terms, which are compatible
with those of the tools used to create it, and will be
intended for research usage.

A.6 Single vs. Ensemble Listeners
As a preliminary experiment, we compare the ef-
fectiveness of a single and an ensemble of 10
VLN⟳ BERT agents when serving as the ToM
model of a speaker. Results in Figure 7 show that
the ensemble listener is significantly better than the
single listener for two different speakers.

A.7 Qualitative Examples
In Figure 8, we show additional qualitative ex-
amples where having a ToM listener enables the
speaker to generate a more accurate instruction.
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Human: Walk along the patio towards the couch. Stop next to 
the table that is in front of the couch.
EncDec-Transformer: Walk straight down the walkway and 
stop next to the first chair on the left. [Correct destination is 
next to the couch and table]
EncDec-Transformer + ToM Listener (Ensemble of 10 EnvDrop-
CLIP): Go straight down the walkway. Go straight and pass the 
two chairs. Stop near the landing with the pillars.

(a)

Human: Turn around and exit out the door in the right corner. Enter the next room and 
walk straight ahead towards the outdoor area. Stop once you pass the columns and are 
in the middle facing all the chairs looking outside.
EncDec-LSTM: Exit the bathroom and turn left. Walk past the bed and wait by the two 
chairs. [Correct destination is next to the chairs in the outdoor area]
EncDec-LSTM + ToM Listener (Ensemble of 10 EnvDrop-CLIP): Walk out of the 
bathroom and make a left. Walk through the bedroom and continue straight towards 
the red chair. Stop at the chair before getting to the red front of the patio.

(b)

Figure 8: Additional qualitative examples where the pragmatic speaker (the last model) avoids missing information
by simulating the interpretation of the human listener.
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