
Findings of the Association for Computational Linguistics: ACL 2023, pages 2482–2494
July 9-14, 2023 ©2023 Association for Computational Linguistics

Unsupervised Keyphrase Extraction by Learning Neural
Keyphrase Set Function

Mingyang Song♠, Haiyun Jiang♣∗, Lemao Liu♣, Shuming Shi♣, Liping Jing♠∗
♣Tencent AI Lab, Shenzhen, China

♠Beijing Key Lab of Traffic Data Analysis and Mining
♠Beijing Jiaotong University, Beijing, China

mingyang.song@bjtu.edu.cn

Abstract

We create a paradigm shift concerning building
unsupervised keyphrase extraction systems in
this paper. Instead of modeling the relevance
between an individual candidate phrase and the
document as in the commonly used framework,
we formulate the unsupervised keyphrase ex-
traction task as a document-set matching prob-
lem from a set-wise perspective, in which the
document and the candidate set are globally
matched in the semantic space to particularly
take into account the interactions among all can-
didate phrases. Since it is intractable to exactly
extract the optimal subset by the document-set
matching function during the inference, we pro-
pose an approximate approach, which obtains
the candidate subsets via a set extractor agent
learned by reinforcement learning. Exhaustive
experimental results demonstrate the effective-
ness of our model, which outperforms the re-
cent state-of-the-art unsupervised keyphrase ex-
traction baselines by a large margin.

1 Introduction

Keyphrase Extraction (KE) is the task of extracting
a keyphrase set that provides readers with high-
level information about the key ideas or important
topics described in the document. KE methods
can be divided into supervised (Sun et al., 2021;
Song et al., 2021, 2022a) or unsupervised (Bennani-
Smires et al., 2018; Sun et al., 2020). The former
requires large-scale annotated training data and is
often domain-specific, whereas unsupervised meth-
ods do not need annotated data (Hasan and Ng,
2014). Therefore, in this paper, we focus on Unsu-
pervised Keyphrase Extraction (UKE).

Currently, most UKE methods mainly consist
of two components: candidate set generation and
keyphrase importance estimation. The former uses
heuristic rules to obtain a candidate set for a given
document. The latter scores individual phrase from

∗Corresponding Author

Document: 𝓓, Candidate Set: 𝓒, Candidate Subset: 𝓢

𝓓

𝑝!

𝑝"

𝑝#

𝑝$

…
ℱ!(𝑝", 𝒟)

ℱ!(𝑝#, 𝒟)

ℱ!(𝑝$, 𝒟)

ℱ!(𝑝% , 𝒟)

…

𝓓

𝑝!

𝑝"

𝑝#

𝑝$

(𝑝", 𝑝#, 𝑝% , …)

(𝑝", 𝑝$, 𝑝% , …)

(𝑝#, 𝑝$, 𝑝% , …)

ℱ!(𝒮#, 𝒟)

ℱ!(𝒮$, 𝒟)

ℱ!(𝒮#! , 𝒟)

𝑝# > 𝑝" > 𝑝% > 𝑝$ > ⋯

(a) Point-Wise Perspective (b) Set-Wise Perspective

(𝑝", 𝑝#, 𝑝$, …) ℱ!(𝒮", 𝒟)

… … …

𝓒 𝓒

𝒮" > 𝒮$ > 𝒮# > 𝒮#! > ⋯

𝒮"

𝒮#

𝒮$

𝒮#!

Figure 1: Illustration of extracting keyphrases from
different perspectives. Fs(·) denotes a scoring function
measuring the relevance between a candidate phrase pi
(a) or a candidate subset Si (b) and the document D.

the candidate set with respect to a document, and
then selects top-ranked phrases to form a keyphrase
set. For example, Bennani-Smires et al. (2018);
Sun et al. (2020); Liang et al. (2021); Song et al.
(2022b); Zhang et al. (2022) address it with the
pre-trained embeddings (Peters et al., 2018; De-
vlin et al., 2019). These methods independently
estimate the relevance between each phrase in the
candidate set and the document as the importance
of the phrase from a point-wise perspective, as il-
lustrated in Figure 1(a).

Unfortunately, the above point-wise models are
essentially phrase-level UKE approaches, and they
can not take into account the interactions among
all candidate phrases and fails to consider the se-
mantics of the complete candidate set. This makes
them more inclined to select keyphrases with high-
frequency words while ignoring the coupling of
multiple phrases. As a result, the diversity of the
selected keyphrases suffers as quantified in our ex-
periments (as shown in Table 6), leading to subop-
timal performance.

To address the above issue, we investigate ex-
tracting keyphrases globally from a set-wise per-
spective (as illustrated in Figure 1(b)) and concep-

2482

Candidate subset 𝒮
Candidate set 𝒞
Document 𝒟

The optimal subset 𝒮∗

Semantic Space

Figure 2: The document-set matching framework. Intu-
itively, better candidate subset should be semantically
closer to the document in the semantic space, while the
optimal subset should be the closest.

tualize the UKE task as a document-set matching
problem, as shown in Figure 2. Specifically, the
proposed UKE system is based on a document-set
matching framework as the set function that mea-
sures the relevance between a candidate set and its
corresponding document in the semantic space via
a siamese-based neural network. The set function
is learned by the margin-based triplet loss with or-
thogonal regularization, effectively capturing simi-
larities of documents and candidate sets. However,
it is intractable to exactly search the optimal subset
from the candidate set by the set function during the
inference because the subset space is exponentially
large, and the set function is non-decomposable.
To this end, we propose an approximate method
whose key idea is to learn a set extractor agent and
search for efficient inference. Concretely, after the
neural keyphrase set function is well-trained, we
use it to calculate the document-set matching score
as the reward. Then, we adopt the policy gradi-
ent training strategy to train the set extractor agent
for extracting the optimal subset with the highest
reward from numerous candidate subsets. Ideally,
the optimal subset is the closest semantically to the
document, as shown in Figure 2. Exhaustive exper-
iments demonstrate the effectiveness of our model
SetMatch: it effectively covers the ground-truth
keyphrases and obtains higher recall than the tradi-
tional heuristics, and it outperforms recent strong
UKE baselines.

We summarize our contributions as follows:

• Instead of individually scoring each phrase,
we formulate the UKE task as a document-set
matching problem and propose a novel set-
wise framework.

• Since the exact search with the document-set
matching function, we propose an approxi-
mate method by learning a set extractor agent
to search the keyphrase set.

Policy
Gradient
Update

Document 𝒟

Candidate Set
Generation

Keyphrase Set
Extractor Agent 𝜋!

Neural Keyphrase
Set Function ℱ"

Candidate Subset 𝒮

Reward

Candidate Set 𝒞

Figure 3: The overall pipeline of our model.

• Experiments show that it has achieved supe-
rior performance compared with the state-of-
the-art UKE baselines on three benchmarks.

2 Methodology Overview

In this paper, keyphrases are globally selected from
a set-wise perspective. More formally, consider
a KE system: given the document D, generate its
candidate set first. And then, an optimal subset
S∗ ⊆ C is selected from the candidate set C. To
achieve this goal, we propose a two-stage model
(SetMatch), including candidate set generation and
neural keyphrase set function Fs. First, candidate
set generation aims to generate a candidate set C
from the document D with a higher recall to cover
more ground-truth keyphrases (Sec 2.1). Second, a
neural keyphrase set function Fs is learned to es-
timate the document-set matching score (Sec 2.2),
which is used to guide the keyphrase set extractor
agent to search an optimal subset (Sec 2.3).

2.1 Candidate Set Generation
We adopt various strategies to obtain a candidate set
to cover the ground-truth keyphrases fully. These
strategies can be mainly divided into two categories,
using heuristic rules and pre-trained language mod-
els (fine-tuned via keyphrase extraction or genera-
tion tasks). The former first tokenize the document,
tag the document with part-of-speech tags, and
extract candidate phrases based on part-of-speech
tags. Next, only keep noun phrases that consist of
zero or more adjectives followed by one or multiple
nouns. The latter uses neural keyphrase extraction
or generation models based on Pre-trained Lan-
guage Models (PLMs) fine-tuning on other corpora.
The details are described in Sec 5.

2.2 Neural Keyphrase Set Function
To estimate the importance from a set-wise per-
spective, we propose a novel neural keyphrase set
function Fs, which is implemented by a document-
set matching framework (Sec 3). With the neural

2483

Input Document 𝓓!

Positive Candidate Set 𝓒!"

Negative Candidate Set 𝓒!#

B
E
R
T

𝜑!

𝜑"

𝜑!#

𝜑"#

$ℎ𝒟!

$ℎ𝒞!"

$ℎ𝒞!#

&ℎ𝒟!

&ℎ𝒞!"

&ℎ𝒞!#

ℎ𝒟!

ℎ𝒞!"

ℎ𝒞!#

ℱ$(𝒟% , 𝒞%&)
ℱ$(𝒟% , 𝒞%')

Encoder Decoder

Figure 4: The overall architecture of our document-set matching module.

keyphrase set function Fs, we can score all candi-
date subsets in the candidate set C and thus find the
optimal subset S∗ depending on these scores.

2.3 Keyphrase Set Extractor Agent

However, it is intractable to exactly search an op-
timal subset by the keyphrase set function Fs dur-
ing the inference because the subset space is ex-
ponentially large, and the keyphrase set function
Fs is non-decomposable. Therefore, we propose a
keyphrase set extractor agent to search the optimal
subset S∗, which is trained by using the keyphrase
set function Fs as the reward via the policy gra-
dient training strategy to select the optimal subset
S∗ as the keyphrases (Sec 4). Finally, we infer the
optimal subset by using the learned set extractor
agent rather than Fs.

3 Neural Keyphrase Set Function (Fs)
There are many ways to judge whether a keyphrase
set is good or bad under the document D. One intu-
itive way is through a matching framework. There-
fore, we formulate the neural keyphrase set func-
tion Fs as a document-set matching task in which
the document D and the candidate set C will be
matched in a semantic space, as shown in Figure 2.
Then, we propose a margin-based triplet loss with
multiple perspectives orthogonal regularization LE
to optimize the Siamese-BERT Auto-Encoder ar-
chitecture. The following section details how we
instantiate our neural keyphrase set function Fs
using a simple siamese-based architecture.

3.1 Siamese-BERT Auto-Encoder

Inspired by siamese network structure (Bromley
et al., 1993), we construct a Siamese-BERT Auto-
Encoder architecture to match the document D and
the candidate set C. Concretely, our Siamese-BERT
Auto-Encoder consists of two BERTs with shared
weights, two auto-encoders, and a cosine-similarity

layer to predict the document-set score. The overall
architecture is shown in Figure 4.

Given a batch of candidate sets {Ci}Mi=1 and doc-
uments {Di}Mi=1, we adopt the original BERT (De-
vlin et al., 2019) to derive the semantically mean-
ingful embeddings as follows,

hCi = BERT(Ci), hDi = BERT(Di), (1)

where M indicates the batch size. hCi , hDi ∈ Rdr
are the i-th candidate set Ci and document Di rep-
resentations within a training batch. Here, we use
the vector of the ‘[CLS]’ token from the top BERT
layer as the representation of the candidate set C
and the document D. Next, we employ two auto-
encoders (with two encoders ϕ1, ϕ2 and two de-
coders ϕ′1, ϕ

′
2, as shown in Figure 4) to transfer

BERT representations into the latent space as,

ĥDi = ϕ1(hDi), ĥCi = ϕ2(hCi),

h̃Di = ϕ′1(ĥDi), h̃Ci = ϕ′2(ĥCi),
(2)

where ϕ1, ϕ2 ∈ Rdr×dl and ϕ′1, ϕ
′
2 ∈ Rdl×dr are

learnable parameters. Here, let ĥCi , ĥDi ∈ Rdl
denote the representations of the candidate set Ci
and the document Di in the latent space, respec-
tively. Finally, their similarity score is measured by
Fs(Ci,Di) = cosine(ĥCi , ĥDi).

3.2 Margin-based Triplet Loss with
Orthogonal Regularization

To fine-tune Siamese-BERT Auto-Encoder, we use
a margin-based triplet loss with orthogonal regular-
ization to update the weights. We use a simple and
intuitive way to generate positive C+i and negative
C−i candidate sets. Most existing embedding-based
UKE models (Liang et al., 2021; Ding and Luo,
2021) truncate the document to satisfy the encoding
requirements of BERT. However, truncating doc-
uments will lose a small number of phrases, thus
reducing the recall of the candidate set C. There-
fore, we generate a positive candidate set C+i (i.e.,

2484

A†1, as illustrated in Table 3) before truncating the
document D, and generate a negative candidate set
C−i (i.e., A1, as illustrated in Table 3) after truncat-
ing the document D (more details in Sec 5). Then,
the loss LT can be computed as,

LT =
M∑

i=1

max(Fs(ĥDi , ĥC−i
)−Fs(ĥDi , ĥC+i

)+δ, 0), (3)

where δ denotes the margin. The basic idea of LT
is to let the positive candidate set with higher recall
have a higher document-set matching score than the
negative candidate set with lower recall. Further-
more, we propose orthogonal regularization from
multiple perspectives, which explicitly encourages
each representation within a batch to be different
from the other. This is inspired by Bousmalis et al.
(2016), who adopts orthogonal regularization to
encourage representations across domains to be as
distinct as possible. Here, we use the following
equations as the orthogonal regularization:

LCC =
M∑

i=1

∑

j,j 6=i
Fs(ĥCi , ĥCj)2,

LDD =
M∑

i=1

∑

j,j 6=i
Fs(ĥDi , ĥDj)

2,

LCD =
M∑

i=1

∑

j,j 6=i
Fs(ĥCi , ĥDj)

2,

(4)

where LCC encourages the similarities between all
candidate sets under a batch as distinct as possible,
LDD encourages the similarities between all doc-
uments under a batch as distinct as possible, LCD
encourages the similarities between candidate sets
and documents under a batch as distinct as possible.
Therefore, the final loss function LE of the neural
keyphrase set function is re-formulated as,

LE = λ1LT +λ2(LCC+LDD+LCD)+λ3(LD+LC) (5)

where λ1, λ2, λ3 are the balance factors. Here,
LD,LC denote the reconstruction loss of our two
auto-encoders and are calculated as follows,

LD = ||hDi − h̃Di ||2,LC = ||hCi − h̃Ci ||2, (6)

where ||X ||2 indicates L2 norm of each element
in a matrix X . After the set function Fs is well-
trained, we fix its parameters and only use it as a
non-differential metric to measure a document-set
matching score without optimizing parameters.

4 Keyphrase Set Extractor Agent

As mentioned before, it is intractable to search the
optimal subset by the set function precisely. There-
fore, we propose a keyphrase set extractor agent
to efficiently search an optimal subset. We first
exploit a pre-trained BERT model to obtain repre-
sentations of phrases in the candidate set C and the
document D, and then learn a subset sampling net-
work to sample a subset S from the candidate set
C based on their representations. After obtaining
the candidate subset S, we use the keyphrase set
functionFs to calculate the document-set matching
score Fs(S,D) as the rewardR(S,D) to optimize
the keyphrase set extractor agent for extracting an
optimal subset S∗ via reinforcement learning.

4.1 Encoding Network
We employ a pre-trained BERT model to obtain
H, hD, the representations of phrases in the candi-
date set C and the document D, respectively. Here,
the representations are obtained by using average
pooling on the output of the last BERT layer:

hD = BERT(D),
H = [h>p1 , ..., h

>
pn , ..., h

>
pN]>

= BERT(pi), i = 1, ..., n, ..., N ,

(7)

where hD denotes the document representation and
hpn is the n-th phrase representation in the candi-
date set C (contains N candidate phrases).

4.2 Candidate Subset Searching
To obtain a candidate subset S from the candidate
set C, we adopt a self-attention layer as the extrac-
tor network to search subsets. We calculate the
attention function on all candidate phrases in the
candidate set C simultaneously, packed together
into a matrixH. We compute the matrix of outputs
as follow,

Ĥ = HW1 + REP(hD)W2, (8)

where W1,W2 ∈ Rdr×dr are the trainable pa-
rameters and the REP operator converts the input
vector to a RN×dr matrix by repeating elements up
to N rows. Then, the probability distribution can
be obtained by,

πθ(S,D) =
∏

p∈S
softmax(fd(Ĥ))[p] (9)

where πθ(S,D) denotes the predicted probability
over the candidate set C, θ indicates the trainable pa-
rameters of our keyphrase set extractor, fd ∈ Rdr×1

2485

Dataset # Doc. Type
Avg. Avg. Present Keyphrases Present Keyphrases

Words # Keyphrases in Truncated Doc. (512) in Original Doc.

Inspec (Hulth, 2003) 500 Short 134.60 9.83 0.7341
DUC2001 (Wan and Xiao, 2008) 308 Long 847.24 8.08 0.8436 0.9339(↑0.0903)

SemEval2010 (Kim et al., 2010) 100 Long 1587.52 12.04 0.5156 0.6576(↑0.1420)

Table 1: The statistics of several benchmarks. # Doc. is the number of documents. Type indicates the length of docu-
ments. Avg. # Words is the average number of words for documents. Present Keyphrases in Truncated Doc. (512)
and in Original Doc. indicate the ratio of keyphrases, which present in the truncated and original documents.

is a fully-connected layer, and p is the candidate
phrase in the candidate set C. To obtain the candi-
date subset, we rank phrases in the candidate set C
with the predicted probability πθ(S,D) and extract
top-ranked K(K < N) keyphrases as a candidate
subset S.

4.3 Reinforce-Guided Selection

We exploit an exploitation and exploration training
strategy to train the set extractor agent for optimiz-
ing its parameters. Here, we adopt the policy gra-
dient algorithm (REINFORCE, (Williams, 1992))
to optimize the policy πθ(S,D). Specifically, in a
training iteration, we first use the policy πθ(S,D)
to search a candidate subset S from the candidate
set C of the document D. Next, the well-trained
set function Fs computes a document-set matching
scoreFs(S,D) between the candidate subset S and
the documentD. Finally, we treat the document-set
matching score Fs(S,D) as the reward R(S,D)
to optimize the policy πθ(S,D) with the policy
gradient :

∇θJ(θ) = E[∇θ log πθ(S,D)R(S,D)]. (10)

Inspired by the self-critical training strategy (Ren-
nie et al., 2017), we propose a new teacher-critical
training strategy to regularize the rewardR(S,D),
which uses the top-K predicted keyphrases of the
baselines (e.g., JointGL (Liang et al., 2021)) as a
reference set Ŝ . Ideally, when maximizing rewards,
the teacher-critical training strategy ensures that
our model obtains an optimal candidate subset S∗
better than the reference set Ŝ . Then, we calculate
a document-set matching score Fs(Ŝ,D) to regu-
larize the reward R(S,D). Finally, the expected
gradient can be approximated by,

∇θJ(θ) = E[∇θ log πθ(S,D)(R(S,D)−Fs(Ŝ,D))].
(11)

Generally, the policy πθ(S,D) is gradually opti-
mized through the continuous iteration of the train-
ing process to search a better candidate subset S

to obtain a higher rewardR(S,D). The candidate
subset S∗ with the highest rewardR(S∗,D) is the
final predicted keyphrase set of the document D.

5 Experiments

5.1 Datasets and Evaluation Metrics

We verify our model on three benchmarks, includ-
ing the DUC2001 (Wan and Xiao, 2008), Inspec
(Hulth, 2003), and SemEval2010 (Kim et al., 2010)
datasets. Both keyphrases and their corresponding
document are preprocessed via Porter Stemmer1.
The statistics are provided in Table 1.

Following the recent studies (Liang et al., 2021;
Ding and Luo, 2021; Zhang et al., 2022), the per-
formance of our model SetMatch and the selected
baselines is evaluated using Precision (P), Recall
(R), and F1 measure (F1) on the top 5, 10, and 15
ranked phrases.

5.2 Baselines

We compare the proposed model with recent state-
of-the-art UKE baselines, which extract keyphrases
from a point-wise perspective (KeyGames (Sax-
ena et al., 2020), EmbedRankd2v, EmbedRanks2v
(Bennani-Smires et al., 2018), SIFRank, SIFRank+
(Sun et al., 2020), JointGL (Liang et al., 2021),
MDERank (Zhang et al., 2022)).

5.3 Implementation Details

Candidate Set Generation. All the models use
Stanford CoreNLP Tools2 for tokenizing, part-of-
speech tagging and noun phrase chunking. Three
regular expressions are used to extract noun phrases
as the candidate set via the python package NLTK3:
A1,A2, andA3, as shown in Table 3. Furthermore,
we use two fine-tuned pre-trained language models

1https://tartarus.org/martin/PorterStemmer/
2https://stanfordnlp.github.io/CoreNLP/
3https://github.com/nltk

2486

https://tartarus.org/martin/PorterStemmer/
https://stanfordnlp.github.io/CoreNLP/
https://github.com/nltk

Embedding-based UKE Model
DUC2001 Inspec SemEval2010

F1@5 F1@10 F1@15 F1@5 F1@10 F1@15 F1@5 F1@10 F1@15

Point-Wise Perspective
EmbedRankd2v (Bennani-Smires et al., 2018) 24.02 28.12 28.82 31.51 37.94 37.96 3.02 5.08 7.23

EmbedRanks2v (Bennani-Smires et al., 2018) 27.16 31.85 31.52 29.88 37.09 38.40 5.40 8.91 10.06

KeyGames (Saxena et al., 2020) 24.42 28.28 29.77 32.12 40.48 40.94 11.93 14.35 14.62

SIFRank (Sun et al., 2020) 24.27 27.43 27.86 29.11 38.80 39.59 - - -

SIFRank+ (Sun et al., 2020) 30.88 33.37 32.24 28.49 36.77 38.82 - - -

JointGL(Liang et al., 2021) 28.62 35.52 36.29 32.61 40.17 41.09 13.02 19.35 21.72

MDERank (Zhang et al., 2022) 23.31 26.65 26.42 27.85 34.36 36.40 13.05 18.27 20.35

Set-Wise Perspective
SetMatch 31.19 36.34 38.72 33.54 40.63 42.11 14.44 20.79 24.18

Table 2: Performance of embedding-based UKE models on the DUC2001, Inspec, and SemEval2010 test sets in
terms of F1@5, F1@10, and F1@15 evaluation metrics. The best/2nd-best scores are in bold/underlined.

(B14 and B25, as shown in Table 3) to generate
candidate sets. Here, we take the entire document
as input for the truncated document to generate a
candidate set (document-level). For the document,
without truncating, we leverage fine-tuned PLMs
to obtain candidate keyphrases from each sentence
in the document individually and combine them as
a candidate set (sentence-level).
Neural Keyphrase Set Function. Specifically, we
set the margin δ for the margin-based triplet loss to
1, λ1 = λ2 = λ3 = 1/3, and the learning rate is set to
5e-5 for both the neural keyphrase set function and
the keyphrase set extractor agent. We use a single
NVIDIA A4000 GPU for training, the batch size is
2. We train twenty epochs. dr = 768 and dl = 512.
We set K to 15 and N to 30. In this paper, we use
A†1∪B†2,A1∪B2, andA1∪B1 to obtain candidate
sets for the Inspec, DUC2001, and SemEval2010
datasets, respectively.
Candidate Set Pruning. The subset sampling idea
of our subset sampler is more intuitive, while it suf-
fers from combinatorial explosion problems. For
example, how could we determine the number of
phrases in the candidate set, or should we score all
possible subsets? To alleviate these difficulties, we
propose a simple candidate pruning strategy, which
adopts the recent baseline JointGL (Liang et al.,
2021) to prune the candidate set from a point-wise
perspective and keep top-ranked N phrases as the
candidate set C.

5.4 Results and Analysis

Table 2 illustrates the experimental results on the
DUC2001, Inspec, and SemEval2010 datasets.

4https://github.com/Shivanandroy/
KeyPhraseTransformer

5https://github.com/MaartenGr/KeyBERT

Analysis. The experimental results show that glob-
ally extracting keyphrases from a set-wise perspec-
tive helps our model outperform recent state-of-the-
art baselines across the benchmark datasets. The
detailed analysis is presented as follows:

(1) The keyphrases of the document are usually
considered to be disordered and treated as a set.
Similar claims have been reported previously in the
keyphrase generation literature (Ye et al., 2021; Xie
et al., 2022). However, most UKE models score
and extract keyphrases from a point-wise perspec-
tive, which also rank good keyphrases in order. The
impact caused by ranking in order is also visible in
the results. It will result in higher scores for F@5
and F@10 but less boost for F@15. Instead, our
model globally extracts keyphrases from the set-
wise perspective. Not only does it focus on mod-
eling the relationship between phrases within the
document at a deeper level, but it also ensures that
the extracted keyphrase set is semantically closer to
its corresponding document in the semantic space.
Moreover, the keyphrases predicted by our model
are disordered.

(2) Most existing embedding-based UKE mod-
els obtain the candidate set and the embeddings
of phrases after truncating the document. Notable
that this is done for two main reasons. First, it
benefits to calculate the document-phrase matching
similarity. Second, it is subject to the limitation of
the input length by the pre-trained language model.
However, truncating documents reduces the qual-
ity of candidate sets, reducing the performance of
keyphrase extraction. Our document-set matching
framework alleviates this problem, allowing our
model to consider all phrases in the original doc-
ument to form a candidate set. From the results,
the improvement of our model on the DUC2001

2487

https://github.com/Shivanandroy/KeyPhraseTransformer
https://github.com/Shivanandroy/KeyPhraseTransformer
https://github.com/MaartenGr/KeyBERT

Candidate Set Generation Strategy
Inspec DUC2001 SemEval2010

R@50 R@M R@50 R@M R@50 R@M
Regular Expression for Truncated Document (with length limitation→512)
A1 → {< NN. ∗ |JJ > ∗ < NN.∗ >} 0.5350 0.5359(26) 0.5845 0.6840(76) 0.2885 0.3301(69)

A2 → {< JJ|V BG > ∗ < NN.∗ > 0, 3} 0.5267 0.5309(30) 0.5540 0.6793(86) 0.2730 0.3383(81)

A3 → {< NN. ∗ |JJ|V BG|V BN > ∗ < NN.∗ >} 0.5321 0.5330(26) 0.5791 0.6770(76) 0.2822 0.3288(71)

Pre-trained Keyphrase Predictor for Truncated Document (with length limitation→512)
B1 →Pre-trained Keyphrase Generator (T5, document-level) 0.2901 0.2901(8) 0.3425 0.3538(38) 0.3490 0.3756(62)

B2 →Pre-trained Keyphrase Extractor (BERT, document-level) 0.4107 0.5328(88) 0.3082 0.4844(94) 0.3597 0.4340(90)

♣ Ensemble Strategies for Truncated Document (with length limitation→512)
A1 ∪ B1 0.6263 0.6314(30) 0.5826 0.7933(108) 0.3778 0.5020(125)

A1 ∪ B2 0.6197 0.6894(102) 0.5827 0.8211(165) 0.2853 0.4353(155)

Regular Expression for Original Document (without length limitation)
A†1 → {< NN. ∗ |JJ > ∗ < NN.∗ >} 0.5492 0.5503(27) 0.5845 0.7960(138) 0.2885 0.4789(192)

A†2 → {< JJ|V BG > ∗ < NN.∗ > 0, 3} 0.5407 0.5452(31) 0.5540 0.7932(160) 0.2730 0.4893(226)

A†3 → {< NN. ∗ |JJ|V BG|V BN > ∗ < NN.∗ >} 0.5452 0.5465(27) 0.5791 0.7898(140) 0.2822 0.4859(201)

Pre-trained Keyphrase Predictor for Original Document (without length limitation)
B†1 →Pre-trained Keyphrase Generator (T5, sentence-level) 0.0041 0.0041(11) 0.3605 0.3826(49) 0.3449 0.4093(90)

B†2 →Pre-trained Keyphrase Extractor (BERT, sentence-level) 0.2781 0.2784(26) 0.2796 0.3935(143) 0.2187 0.3744(237)

♣ Ensemble Strategies for Original Document (without length limitation)
A†1 ∪ B

†
1 0.5354 0.5471(38) 0.5831 0.8556(162) 0.3609 0.5785(238)

A†1 ∪ B
†
2 0.6078 0.6228(47) 0.5833 0.8661(256) 0.2853 0.5601(383)

Table 3: Results of the different candidate set generation strategies on three benchmark datasets. The best results
are bold, and the second results are underlined. Here, R@M compares all the keyphrases extracted by the strategy
with the ground-truth keyphrases, which means it considers all phrases in the candidate set. Specifically, for
Inspec, A1 ∪ B2 = 0.6894(102), where 0.6894 indicates the value of R@M, and 102 indicates the average number of
keyphrases in candidate sets.

and SemEval2010 datasets (with long documents)
is better than that on the Inspec dataset (with short
documents). Compared with the underlined re-
sults in Table 2, our model has achieved 10.65%,
7.44%, and 11.32% improvement in F@5, F@10,
and F@15 on the SemEval2010 dataset.

5.5 Ablation Study

Effect of generating candidate sets with differ-
ent strategies. The details of the candidate gen-
eration strategies and the associated performance
are reported in Table 3. For easy description, A∗
denotes A1, A2, A3 and B∗ denotes B1, B2. We
summarize the detailed analysis as follows:

(1) The ensemble candidate set generation strat-
egy obtains higher recall than using A∗ or B∗.

(2) A∗ obtain more stable and higher recall than
B∗ in most cases on three benchmark datasets.

(3) B∗ get higher recall scores on the long docu-
ment dataset, such as the SemEval2010 dataset.

(4) Intuitively, the longer the document, the more
the candidate loss is caused by truncation.
Effect of training with different loss functions.
As illustrated in Table 4, our ablation study consid-
ers the effect of the reconstruction loss (LC+LD),
the margin-based triplet loss (LT), and the orthog-
onal regularization (LCC + LDD + LCD) on the

SetMatch Acc F1@5 F1@10 F1@15

LC+LD 0.12 9.96 17.41 20.76
LT +LC+LD 0.98 11.13 16.31 20.49
LT +LCC+LDD+LCD 0.81 12.32 18.66 22.93
LT +LCC+LDD+LCD+LC+LD 0.96 14.44 20.79 24.18

Table 4: Performance of training the neural keyphrase
set function Fs by using different loss functions. The
best results are in bold.

SemEval2010 dataset. To verify the effectiveness
of the neural keyphrase set function directly, we
propose a simple method to construct the pseudo
label li,

li =

1 if score(C+i ,Sri) > score(C−i ,Sri)
-1 if score(C+i ,Sri) < score(C−i ,Sri)
0 if score(C+i ,Sri) = score(C−i ,Sri)

(12)

where Sri is the ground-truth keyphrase set of the
i-th document Di. Here, we calculate the score(·)
via F1@M, which takes all the phrases in the can-
didate set C to evaluate F1 score. After obtaining
pseudo labels, we use the keyphrase set function to
predict scores following Eq. 12 instead of F1@M,
verifying the effectiveness of our keyphrase set
function by comparing the predicted scores with
pseudo labels for acquiring accuracy. From the

2488

SetMatch Acc F1@5 F1@10 F1@15
Positive : A†1,Negative : A1 0.96 14.44 20.79 24.18
Positive : A†2,Negative : A2 0.91 14.10 19.69 22.09
Positive : A†3,Negative : A3 0.93 14.32 20.08 22.17

Table 5: Effect of training the keyphrase set function
by using different training samples on the SemEval2010
dataset.

0

5

10

15

20

25

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Teacher-critical Fixed value

Av
er

ag
e

F1

Figure 5: Results of comparing the teacher-critical train-
ing strategy with a series of fixed values.

results in Table 4, we can find that LT can distin-
guish positive and negative samples well, and the
orthogonal regularization significantly improves
the performance.
Effect of different training samples. We adopt
different positive and negative samples to train the
keyphrase set function Fs, as illustrated in Table 5.
The best results are obtained by using A†1 and A1.
Effect of the teacher-critical training strategy.
To verify the effectiveness of the proposed teacher-
critical training strategy, we adopt a series of fixed
values to regularize the rewardR(S,D). Figure 5
shows the results under different values of the reg-
ularization on the SemEval2010 dataset. The best
results are achieved by using our teacher-critical
training strategy. However, dropping the regulariza-
tion (i.e., the fixed value is set to 0) of the reward
R(S,D) will significantly damage the final perfor-
mance. Moreover, our model can be treated as an
optimization model for the SOTA UKE baselines
by adopting the teacher-critical training strategy.

5.6 Diversity Evaluation
To evaluate the diversity, we follow the previous
studies (Bahuleyan and Asri, 2020) and define two
evaluation metrics:

(1) Duplicate% = (1− # Unique Tokens
Extracted Tokens)× 100

(2) EditDist6: String matching can be carried
out at the character level. Through this evaluation

6https://github.com/seatgeek/fuzzywuzzy. We uti-
lize the fuzzywuzzy library, which calculates a score between
0 and 100, where 100 means exactly matching keyphrases.

Model Duplicate%@15 EditDist@15
Inspec

JointGL(Liang et al., 2021) 34.91 32.77
SetMatch 28.55 32.14
Ground Truth 14.95 31.37

DUC2001
JointGL(Liang et al., 2021) 31.60 34.53
SetMatch 27.96 33.01
Ground Truth 13.60 31.65

SemEval2010
JointGL(Liang et al., 2021) 54.90 44.48
SetMatch 39.88 35.63
Ground Truth 15.88 30.56

Table 6: Diversity evaluation on three benchmark. The
lower value is better in diversity. Note that Porter Stem-
ming is applied before evaluation.

metric, we can calculate the pairwise Levenshtein
Distance between extracted keyphrases.

As shown in Table 6, the results demonstrate that
globally extracting keyphrases from a set-wise per-
spective can avoid the repeated selection of phrases
with high-frequency words and consider the cou-
pling of multiple keyphrases.

5.7 Case Study

To further provide an intuitive understanding of
how our model benefits from a set-wise perspec-
tive, we present an example in Table 7. In the given
an example, "trajectories" and "feature" are high-
frequency words in the document. Therefore, if
keyphrases are extracted individually from a point-
wise perspective, the phrases containing these two
words will get a higher score and be extracted as
the keyphrases. However, from a set-wise perspec-
tive, it will alleviate the above issue and extract
diverse keyphrases. These results further demon-
strate that it is effective to extract keyphrases via
the document-set matching framework.

6 Related Work

Unsupervised keyphrase extraction approaches can
be mainly categorized into statistics-, graph-, and
embedding-based methods (Hasan and Ng, 2014;
Papagiannopoulou and Tsoumakas, 2019; Song
et al., 2023). The statistics-based methods (Jones,
2004; Campos et al., 2018) exploit to use vari-
ous features (e.g., word frequency, position, lin-
guistic, etc.) for capturing context information.
Graph-based methods (Mihalcea and Tarau, 2004;
Bougouin et al., 2013; Florescu and Caragea, 2017;
Boudin, 2018) usually convert the document into a
graph and rank candidate phrases in the graph.

2489

https://github.com/seatgeek/fuzzywuzzy

Ground Truth Keyphrase:
(1) event detection (2) word trajectory (3) aperiodic event (4) periodic
event (5) word signal (6) spectral analysis (7) topic detection (8) topic
tracking (9) text streams (10) news stream (11) time series
A point-wise perspective (Liang et al., 2021):
(1) feature trajectories (2) word trajectories (3) event detection (4) docu-
ment frequency (5) time-series word signal (6) feature trends (7) periodic
features (8) different event characteristics (9) periodic events (10) retro-
spective event detection (11) aperiodic words (12) identical trends (13)
time series (14) spectral analysis (15) representative features
A set-wise perspective (SetMatch):
(1) event detection (2) document frequency (3) time-series word signal
(4) unsupervised greedy event detection algorithm (5) text streams (6)
aperiodic event (7) aperiodic word (8) word trajectories (9) time series
data (10) word trajectory (11) retrospective event detection (12) spectral
analysis (13) topic detection (14) unsupervised manner (15) inverse
document frequency

Table 7: An example from the SemEval2010 dataset.
The bold and italic phrases are the correctly predicted
keyphrases by the corresponding models.

Recently, embedding-based methods (Bennani-
Smires et al., 2018; Saxena et al., 2020; Sun et al.,
2020; Liang et al., 2021; Ding and Luo, 2021;
Song et al., 2022b; Zhang et al., 2022), benefit-
ing from the development of pre-trained embed-
dings (Mikolov et al., 2013; Peters et al., 2018;
Devlin et al., 2019), have achieved significant per-
formance. Bennani-Smires et al. (2018) ranks and
extracts phrases by estimating the similarities be-
tween the embeddings of phrases and the docu-
ment. Sun et al. (2020) improves embeddings
via the pre-trained language model (i.e., ELMo
(Peters et al., 2018)) instead of static embeddings
(i.e., Word2Vec (Mikolov et al., 2013)). Ding and
Luo (2021) models the phrase-document relevance
from different granularities via attention weights
of the pre-trained language model BERT. Liang
et al. (2021) enhances the phrase-document rele-
vance with a boundary-aware phrase centrality to
score each phrase in the candidate set individually.
Zhang et al. (2022) leverages a masking strategy
and ranks candidates by the textual similarity be-
tween embeddings of the source document and the
masked document. Unlike existing UKE models,
we propose to extract keyphrases from a set per-
spective by learning a neural keyphrase set function,
which globally extracts a keyphrase set from the
candidate set of the document.

7 Conclusion and Future Work

We formulate the unsupervised keyphrase extrac-
tion task as a document-set matching problem and
propose a novel set-wise framework to match the
document and candidate subsets sampled in the can-
didate set. It is intractable to exactly search the opti-
mal subset by the document-set matching function,

and we thereby propose an approximate algorithm
for efficient search which learns a keyphrase set ex-
tractor agent via reinforcement learning. Extensive
experimental results show SetMatch outperforms
the current state-of-the-art unsupervised keyphrase
extraction baselines on three benchmark keyphrase
extraction datasets, which demonstrates the effec-
tiveness of our proposed paradigm.

Lately, the emergence of Large Language Mod-
els (LLMs) has garnered significant attention from
the computational linguistics community. For fu-
ture research, exploring effectively utilizing LLMs
to generate candidates and rank candidates to ex-
tract keyphrases may be an exciting and valuable
direction (i.e., exploring LLM-based UKE).

8 Acknowledgments

We thank the three anonymous reviewers for care-
fully reading our paper and their insightful com-
ments and suggestions. This work was partly sup-
ported by the Fundamental Research Funds for the
Central Universities (2019JBZ110); the National
Natural Science Foundation of China under Grant
62176020; the National Key Research and Devel-
opment Program (2020AAA0106800); the Beijing
Natural Science Foundation under Grant L211016;
CAAI-Huawei MindSpore Open Fund; and Chi-
nese Academy of Sciences (OEIP-O-202004).

9 Limitations

In this paper, we propose a novel set-wise frame-
work to extract keyphrases globally. To verify the
effectiveness of the new framework, we design sim-
ple yield effective neural networks for both the
neural keyphrase set function and the keyphrase set
extractor agent modules. In general, a complex neu-
ral network should yield better performance. More-
over, for the sake of fairness, our model adopts the
same pre-trained language model (i.e., BERT) as
the recent state-of-the-art baselines (Liang et al.,
2021; Ding and Luo, 2021; Zhang et al., 2022).
Actually, other pre-trained language models can be
applied to our model, such as RoBERTa (Liu et al.,
2019). These pre-trained language models may
yield better results, which also demonstrates that
there is much room for improvement in our pro-
posed framework. Therefore, we believe the power
of this set-wise framework has not been fully ex-
ploited. In the future, more forms of document-set
matching models can be explored to instantiate the
set-wise framework.

2490

References
Hareesh Bahuleyan and Layla El Asri. 2020. Diverse

keyphrase generation with neural unlikelihood train-
ing. CoRR, abs/2010.07665.

Kamil Bennani-Smires, Claudiu Musat, Andreea Hoss-
mann, Michael Baeriswyl, and Martin Jaggi. 2018.
Simple unsupervised keyphrase extraction using sen-
tence embeddings. In CoNLL, pages 221–229. Asso-
ciation for Computational Linguistics.

Florian Boudin. 2018. Unsupervised keyphrase extrac-
tion with multipartite graphs. In NAACL-HLT (2),
pages 667–672. Association for Computational Lin-
guistics.

Adrien Bougouin, Florian Boudin, and Béatrice Daille.
2013. Topicrank: Graph-based topic ranking for
keyphrase extraction. In IJCNLP, pages 543–551.
Asian Federation of Natural Language Processing /
ACL.

Konstantinos Bousmalis, George Trigeorgis, Nathan
Silberman, Dilip Krishnan, and Dumitru Erhan. 2016.
Domain separation networks. In Proceedings of the
30th International Conference on Neural Information
Processing Systems, NIPS’16, page 343–351, Red
Hook, NY, USA. Curran Associates Inc.

Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard
Säckinger, and Roopak Shah. 1993. Signature verifi-
cation using a "siamese" time delay neural network.
In Advances in Neural Information Processing Sys-
tems, volume 6. Morgan-Kaufmann.

Ricardo Campos, Vítor Mangaravite, Arian Pasquali,
Alípio Mário Jorge, Célia Nunes, and Adam Jatowt.
2018. Yake! collection-independent automatic key-
word extractor. In ECIR, volume 10772 of Lecture
Notes in Computer Science, pages 806–810. Springer.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In NAACL-HLT (1), pages 4171–4186. Associa-
tion for Computational Linguistics.

Haoran Ding and Xiao Luo. 2021. Attentionrank: Un-
supervised keyphrase extraction using self and cross
attentions. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 1919–1928.

Corina Florescu and Cornelia Caragea. 2017. Position-
rank: An unsupervised approach to keyphrase extrac-
tion from scholarly documents. In ACL (1), pages
1105–1115. Association for Computational Linguis-
tics.

Kazi Saidul Hasan and Vincent Ng. 2014. Automatic
keyphrase extraction: A survey of the state of the art.
In ACL (1), pages 1262–1273. The Association for
Computer Linguistics.

Anette Hulth. 2003. Improved automatic keyword
extraction given more linguistic knowledge. In
EMNLP.

Karen Spärck Jones. 2004. A statistical interpretation
of term specificity and its application in retrieval. J.
Documentation, 60(5):493–502.

Su Nam Kim, Olena Medelyan, Min-Yen Kan, and Tim-
othy Baldwin. 2010. Semeval-2010 task 5 : Auto-
matic keyphrase extraction from scientific articles.
In SemEval@ACL, pages 21–26. The Association for
Computer Linguistics.

Xinnian Liang, Shuangzhi Wu, Mu Li, and Zhoujun Li.
2021. Unsupervised keyphrase extraction by jointly
modeling local and global context. In Proceedings of
the 2021 Conference on Empirical Methods in Nat-
ural Language Processing, pages 155–164, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. CoRR, abs/1907.11692.

Rada Mihalcea and Paul Tarau. 2004. Textrank: Bring-
ing order into text. In EMNLP, pages 404–411. ACL.

Tomás Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word representa-
tions in vector space. In 1st International Conference
on Learning Representations, ICLR 2013, Scottsdale,
Arizona, USA, May 2-4, 2013, Workshop Track Pro-
ceedings.

Eirini Papagiannopoulou and Grigorios Tsoumakas.
2019. A review of keyphrase extraction. CoRR,
abs/1905.05044.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In NAACL-HLT, pages 2227–2237. Asso-
ciation for Computational Linguistics.

Steven J. Rennie, Etienne Marcheret, Youssef Mroueh,
Jerret Ross, and Vaibhava Goel. 2017. Self-critical
sequence training for image captioning. In CVPR,
pages 1179–1195. IEEE Computer Society.

Arnav Saxena, Mudit Mangal, and Goonjan Jain. 2020.
Keygames: A game theoretic approach to automatic
keyphrase extraction. In Proceedings of the 28th
International Conference on Computational Linguis-
tics, pages 2037–2048.

Mingyang Song, Yi Feng, and Liping Jing. 2022a. Hy-
perbolic relevance matching for neural keyphrase
extraction. In Proceedings of the 2022 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, NAACL 2022, Seattle, WA, United States,
July 10-15, 2022, pages 5710–5720. Association for
Computational Linguistics.

2491

http://dblp.uni-trier.de/db/journals/corr/corr2010.html#abs-2010-07665
http://dblp.uni-trier.de/db/journals/corr/corr2010.html#abs-2010-07665
http://dblp.uni-trier.de/db/journals/corr/corr2010.html#abs-2010-07665
http://dblp.uni-trier.de/db/conf/conll/conll2018.html#Bennani-SmiresM18
http://dblp.uni-trier.de/db/conf/conll/conll2018.html#Bennani-SmiresM18
http://dblp.uni-trier.de/db/conf/naacl/naacl2018-2.html#Boudin18
http://dblp.uni-trier.de/db/conf/naacl/naacl2018-2.html#Boudin18
http://dblp.uni-trier.de/db/conf/ijcnlp/ijcnlp2013.html#BougouinBD13
http://dblp.uni-trier.de/db/conf/ijcnlp/ijcnlp2013.html#BougouinBD13
https://proceedings.neurips.cc/paper/1993/file/288cc0ff022877bd3df94bc9360b9c5d-Paper.pdf
https://proceedings.neurips.cc/paper/1993/file/288cc0ff022877bd3df94bc9360b9c5d-Paper.pdf
http://dblp.uni-trier.de/db/conf/ecir/ecir2018.html#0001MPJNJ18a
http://dblp.uni-trier.de/db/conf/ecir/ecir2018.html#0001MPJNJ18a
http://dblp.uni-trier.de/db/conf/naacl/naacl2019-1.html#DevlinCLT19
http://dblp.uni-trier.de/db/conf/naacl/naacl2019-1.html#DevlinCLT19
http://dblp.uni-trier.de/db/conf/naacl/naacl2019-1.html#DevlinCLT19
http://dblp.uni-trier.de/db/conf/acl/acl2017-1.html#FlorescuC17
http://dblp.uni-trier.de/db/conf/acl/acl2017-1.html#FlorescuC17
http://dblp.uni-trier.de/db/conf/acl/acl2017-1.html#FlorescuC17
http://dblp.uni-trier.de/db/conf/acl/acl2014-1.html#HasanN14
http://dblp.uni-trier.de/db/conf/acl/acl2014-1.html#HasanN14
http://dblp.uni-trier.de/db/conf/emnlp/emnlp2003.html#Hulth03
http://dblp.uni-trier.de/db/conf/emnlp/emnlp2003.html#Hulth03
http://dblp.uni-trier.de/db/journals/jd/jd60.html#Jones04
http://dblp.uni-trier.de/db/journals/jd/jd60.html#Jones04
http://dblp.uni-trier.de/db/conf/semeval/semeval2010.html#KimMKB10
http://dblp.uni-trier.de/db/conf/semeval/semeval2010.html#KimMKB10
https://aclanthology.org/2021.emnlp-main.14
https://aclanthology.org/2021.emnlp-main.14
http://dblp.uni-trier.de/db/journals/corr/corr1907.html#abs-1907-11692
http://dblp.uni-trier.de/db/journals/corr/corr1907.html#abs-1907-11692
http://dblp.uni-trier.de/db/conf/emnlp/emnlp2004.html#MihalceaT04
http://dblp.uni-trier.de/db/conf/emnlp/emnlp2004.html#MihalceaT04
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1905.05044
http://dblp.uni-trier.de/db/conf/naacl/naacl2018-1.html#PetersNIGCLZ18
http://dblp.uni-trier.de/db/conf/naacl/naacl2018-1.html#PetersNIGCLZ18
http://dblp.uni-trier.de/db/conf/cvpr/cvpr2017.html#RennieMMRG17
http://dblp.uni-trier.de/db/conf/cvpr/cvpr2017.html#RennieMMRG17
https://doi.org/10.18653/v1/2022.naacl-main.419
https://doi.org/10.18653/v1/2022.naacl-main.419
https://doi.org/10.18653/v1/2022.naacl-main.419

Mingyang Song, Yi Feng, and Liping Jing. 2022b. Uti-
lizing BERT intermediate layers for unsupervised
keyphrase extraction. In Proceedings of the 5th In-
ternational Conference on Natural Language and
Speech Processing (ICNLSP 2022), pages 277–281,
Trento, Italy. Association for Computational Linguis-
tics.

Mingyang Song, Yi Feng, and Liping Jing. 2023. A sur-
vey on recent advances in keyphrase extraction from
pre-trained language models. In Findings of the Asso-
ciation for Computational Linguistics: EACL 2023,
pages 2153–2164, Dubrovnik, Croatia. Association
for Computational Linguistics.

Mingyang Song, Liping Jing, and Lin Xiao. 2021. Im-
portance Estimation from Multiple Perspectives for
Keyphrase Extraction. In Proceedings of the 2021
Conference on Empirical Methods in Natural Lan-
guage Processing, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Si Sun, Zhenghao Liu, Chenyan Xiong, Zhiyuan Liu,
and Jie Bao. 2021. Capturing global informativeness
in open domain keyphrase extraction. In CCF In-
ternational Conference on Natural Language Pro-
cessing and Chinese Computing, pages 275–287.
Springer.

Yi Sun, Hangping Qiu, Yu Zheng, Zhongwei Wang,
and Chaoran Zhang. 2020. Sifrank: A new base-
line for unsupervised keyphrase extraction based on
pre-trained language model. IEEE Access, 8:10896–
10906.

Xiaojun Wan and Jianguo Xiao. 2008. Single document
keyphrase extraction using neighborhood knowledge.
In AAAI, pages 855–860. AAAI Press.

Ronald J. Williams. 1992. Simple statistical gradient-
following algorithms for connectionist reinforcement
learning. Mach. Learn., 8(3-4):229–256.

Binbin Xie, Xiangpeng Wei, Baosong Yang, Huan
Lin, Jun Xie, Xiaoli Wang, Min Zhang, and Jinsong
Su. 2022. WR-ONE2SET: towards well-calibrated
keyphrase generation. CoRR, abs/2211.06862.

Jiacheng Ye, Tao Gui, Yichao Luo, Yige Xu, and
Qi Zhang. 2021. One2set: Generating diverse
keyphrases as a set. In Proceedings of the 59th An-
nual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing, ACL/IJCNLP
2021, (Volume 1: Long Papers), Virtual Event, Au-
gust 1-6, 2021, pages 4598–4608. Association for
Computational Linguistics.

Linhan Zhang, Qian Chen, Wen Wang, Chong Deng,
ShiLiang Zhang, Bing Li, Wei Wang, and Xin Cao.
2022. MDERank: A masked document embedding
rank approach for unsupervised keyphrase extraction.
In Findings of the Association for Computational Lin-
guistics: ACL 2022, pages 396–409, Dublin, Ireland.
Association for Computational Linguistics.

2492

https://aclanthology.org/2022.icnlsp-1.32
https://aclanthology.org/2022.icnlsp-1.32
https://aclanthology.org/2022.icnlsp-1.32
https://aclanthology.org/2023.findings-eacl.161
https://aclanthology.org/2023.findings-eacl.161
https://aclanthology.org/2023.findings-eacl.161
https://aclanthology.org/2021.emnlp-main.215
https://aclanthology.org/2021.emnlp-main.215
https://aclanthology.org/2021.emnlp-main.215
http://dblp.uni-trier.de/db/journals/access/access8.html#SunQZWZ20
http://dblp.uni-trier.de/db/journals/access/access8.html#SunQZWZ20
http://dblp.uni-trier.de/db/journals/access/access8.html#SunQZWZ20
http://dblp.uni-trier.de/db/conf/aaai/aaai2008.html#WanX08
http://dblp.uni-trier.de/db/conf/aaai/aaai2008.html#WanX08
https://doi.org/10.1007/BF00992696
https://doi.org/10.1007/BF00992696
https://doi.org/10.1007/BF00992696
https://doi.org/10.48550/arXiv.2211.06862
https://doi.org/10.48550/arXiv.2211.06862
https://doi.org/10.18653/v1/2021.acl-long.354
https://doi.org/10.18653/v1/2021.acl-long.354
https://doi.org/10.18653/v1/2022.findings-acl.34
https://doi.org/10.18653/v1/2022.findings-acl.34

ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

8

�3 A2. Did you discuss any potential risks of your work?
8

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
1

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �3 Did you use or create scientific artifacts?
5

�3 B1. Did you cite the creators of artifacts you used?
5

�3 B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
5

�3 B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
5

�3 B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
5

�3 B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
5

�3 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
5

C �3 Did you run computational experiments?
5

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
5

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

2493

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
5

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
5

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
5

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

2494

