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Abstract

Grammar induction, the task of learning a set
of grammatical rules from raw or minimally
labeled text data, can provide clues about what
kinds of syntactic structures are learnable with-
out prior knowledge. Recent work (e.g., Kim
et al., 2019; Zhu et al., 2020; Jin et al., 2021a)
has achieved advances in unsupervised induc-
tion of probabilistic context-free grammars
(PCFGs). However, categorial grammar induc-
tion has received less recent attention, despite
allowing inducers to support a larger set of syn-
tactic categories—due to restrictions on how
categories can combine—and providing a trans-
parent interface with compositional semantics,
opening up possibilities for models that jointly
learn form and meaning. Motivated by this, we
propose a new model for inducing a basic (Aj-
dukiewicz, 1935; Bar-Hillel, 1953) categorial
grammar. In contrast to earlier categorial gram-
mar induction systems (e.g., Bisk and Hocken-
maier, 2012), our model learns from raw data
without any part-of-speech information. Exper-
iments on child-directed speech show that our
model attains a recall-homogeneity of 0.33 on
average, which dramatically increases to 0.59
when a bias toward forward function applica-
tion is added to the model.

1 Introduction

One of the core motivating questions of modern lin-
guistics relates to language acquisition: How can a
child pick up complex linguistic rules from limited
exposure to language? Chomsky (e.g., 1965) intro-
duced the well-known argument from the poverty
of the stimulus, which claims that the linguistic
input received by children is insufficiently rich to
account for the knowledge they acquire—and there-
fore that humans must be born with prior knowl-
edge about language. In contrast, empiricist ac-
counts of language acquisition argue that statistical
cues (Saffran et al., 1996) or other factors such
as social interaction (Tomasello, 2005) may pro-

vide enough information on their own to support
language acquisition.

Computational modeling provides one useful
tool for judging between these competing accounts.
Questions about the learnability of linguistic struc-
tures can be tested empirically by seeing if a model
with minimal prior knowledge can learn these struc-
tures from corpus data (Pullum and Scholz, 2002).

Along these lines, a range of studies over sev-
eral decades have tested whether induction models
can acquire probabilistic context-free grammars
(PCFGs) from text data (Lari and Young, 1990;
Klein and Manning, 2002). Although PCFG in-
duction is considered a difficult problem (Carroll
and Charniak, 1992), recent systems have achieved
performance improvements thanks to new types
of Bayesian and neural network models. Recent
systems have been able to induce grammars with ac-
curacy levels (measured by recall-homogeneity) ap-
proaching fifty percent on corpora of child-directed
speech (Jin et al., 2018, 2021a,b).

Although PCFGs are a convenient formalism for
computational modeling, they are not the only vi-
able option. A second line of research—albeit one
less currently active than PCFG modeling—has ex-
amined the learnability of categorial grammar for-
malisms (Bisk and Hockenmaier, 2012; Bisk et al.,
2015), particularly Combinatory Categorial Gram-
mar (CCG; Steedman, 2000). A notable advantage
of categorial grammars over PCFGs is their clean
mapping between syntactic and semantic compo-
sition, which allows them to be used as a tool for
predicting lambda calculus encodings of meaning
(Zettlemoyer and Collins, 2005). Categorial gram-
mars also impose constraints regarding which syn-
tactic categories can combine, providing a practical
advantage for designing induction systems that sup-
port a large set of categories.

Motivated by these advantages, this work
presents a neural network–based system that adapts
a state-of-the-art PCFG induction model (Jin et al.,
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2021a) to instead learn a basic categorial gram-
mar.1 Unlike the previously mentioned categorial
grammar induction systems, our model learns from
entirely unlabeled data.

An initial version of the model attains an av-
erage recall-homogeneity (RH) score of 0.33 on
an English corpus of child-directed speech (Exper-
iment 1). A high variance across randomly ini-
tialized runs is observed, with a cluster of runs
achieving RH on par with state-of-the-art PCFG
inducers and another cluster achieving poor RH.
In Experiment 2, we test a modified version of
the model with a bias term encouraging forward
function application, which appeared more often
in the better-performing runs in Experiment 1. The
modified model reaches an average RH of 0.59,
surpassing results reported from Jin et al. (2021a)
and other PCFG inducers.

2 Related Work

PCFG induction is a longstanding area of inter-
est in computational linguistics (Lari and Young,
1990; Carroll and Charniak, 1992; Klein and Man-
ning, 2002). As neural modeling has made un-
supervised induction more feasible, recent work
has experimented with learning compound PCFGs
(Kim et al., 2019), simultaneously inducing phrase
structure grammars and lexical dependencies (Zhu
et al., 2020), and boosting model performance by
grounding on multimodal data (Zhao and Titov,
2020; Zhang et al., 2021, 2022), among other inno-
vations.

A somewhat earlier line of research established
the potential for learning an alternative type of
grammar, a CCG, from data with a small set of
broadly defined part-of-speech categories (noun,
verb, etc.) (Bisk and Hockenmaier, 2012, 2013;
Bisk et al., 2015). Bisk et al. (2015) showed that
only a small number of labeled data points with
POS tags are needed to induce a CCG. However,
induction of CCGs (or other categorial grammars)
has received less recent attention, with CCG re-
search more focused on tasks such as supertagging
(Bhargava and Penn, 2020; Prange et al., 2021) or
incremental parsing (Stanojević et al., 2021).

A third relevant area of research is work fo-
cused on mapping a sentence to its logical form
via CCG parsing (Zettlemoyer and Collins, 2005;

1The code for the categorial grammar inducer is
available at https://github.com/christian-clark/
cgInduction.
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Figure 1: Example derivation using a basic categorial
grammar with the primitives S, N, and NP.

Kwiatkowski et al., 2010; Kwiatkowski et al.,
2013). These studies reveal that categorial gram-
mar induction may be useful not only as a method
of testing the learnability of syntactic rules, but also
as a tool for semantic parsing.

3 Background

3.1 Basic Categorial Grammar

The induction models in this paper learn a basic
categorial grammar, also known as an AB grammar
(Ajdukiewicz, 1935; Bar-Hillel, 1953). This type
of grammar was chosen for its simplicity and its
suitability for extension through additional com-
position operations. A basic categorial grammar
uses a set of primitive categories (e.g., S or N for
sentences or nouns) as well as the type-combining
operators \ and /, which indicate compatibility with
an argument preceding or following the category,
respectively. These type-combining operators can
be used to define complex categories (e.g., N\N or
(S/N)/N).

The models use two composition operations:
backward function application and forward func-
tion application. Backward function application
occurs when a phrase of category X\Y combines
with a phrase of category Y on the left to yield a
larger phrase of category X. Forward function ap-
plication occurs when a phrase of category X/Y
combines with a phrase of category Y on the right
to yield a larger phrase of category X. In such cases,
X\Y and X/Y are called the functor categories, Y
is called the argument category, and X is called the
result category. See Figure 1 for an example parse
using a basic categorial grammar.
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3.2 The Jin et al. (2021a) PCFG induction
model

Our induction model uses a formulation for sen-
tence probabilities based on the word-level PCFG
model from Jin et al. (2021a), which we summarize
in this section.

In unsupervised training, the objective function
that the model maximizes is the marginal proba-
bility of the sentences in the dataset. For a single
sentence σ, each possible parse tree (assumed to
be in Chomsky Normal Form) can be divided into
a set of of nodes τ undergoing nonterminal expan-
sions cη → cη1 cη2 and a set of nodes τ′ undergoing
terminal expansions cη → wη. Here, η ∈ {1, 2}∗ is
a Gorn address specifying a path of left and right
branches from the root node of the parse tree, cη
is the nonterminal category at node η, and wη is
the word located at node η. C is the set of nonter-
minal categories. The marginal probability of σ
is calculated by summing over all possible parse
trees:

P(σ) =
∑

τ,τ′

∏

η∈τ
P(cη → cη1 cη2) ·

∏

η∈τ′
P(cη → wη)

(1)
A set of Bernoulli distributions are defined to

separate the nonterminal and terminal expansion
rules:

P(Term | cη) = softmax
{0,1}

(NTerm(E δcη)) (2)

Here, cη is a nonterminal category, δcη is a vec-
tor representing a Kronecker delta function with
1 at index cη and 0 elsewhere, and E ∈ Rd×|C| is
a matrix of nonterminal category embeddings of
size d. NTerm is a residual network with 2 identical
blocks. Given the input xb−1,cη , each residual block
computes its output as follows:

xb,cη = ReLU(W′
b ReLU(Wb xb−1,cη + bb)

+ b′b) + xb−1,cη (3)

Fully connected layers are used before and after
the residual blocks:

x0,cη = ReLU(W0 E δcη + b0), (4)

scη = ReLU(Wsoft xB,cη + bsoft) (5)

All W’s and b’s are weight and bias parameters
respectively.

Binary-branching nonterminal expansion proba-
bilities are computed as follows:

P(cη → cη1 cη2) = P(Term=0 | cη) ·
P(cη → cη1 cη2 | cη,Term=0), (6)

which in turn uses the following distribution over
expansion rules:

P(cη → cη1 cη2 | cη,Term=0) =

softmax
cη1,cη2

(Wnont E δcη + bnont), (7)

where Wnont and bnont are additional model param-
eters. The categorial grammar induction model
presented in this work modifies Equation (7); see
Section 4.2.

Finally, lexical unary-expansion rule probabili-
ties are computed as follows:

P(cη → wη) = P(Term=1 | cη) ·
P(cη → wη | cη,Term=1) (8)

A softmax is taken over words in the vocabulary:

P(cη → wη | cη,Term=1) = softmax
wη

(N′(E δcη)),

(9)
where N′ is another residual network, similar to
NTerm except that the output layer’s dimension is
the size of the vocabulary.

Jin et al. (2021a) also introduce a character-level
expansion model as an alternative to Equation (9).
However, they report that the word-level model
performs slightly better on English data from the
CHILDES corpus. Because the current study works
with the same English data, we only test the word-
level model.

4 Induction Model

The model introduced in this paper extends the Jin
et al. (2021a) model from Section 3.2 to induce a
categorial grammar. This section details how cate-
gories and expansion rule probabilities are defined
in the new model.

4.1 Categories
We define the set of categories C according to a
number of primitives P and a maximum category
depth D. Primitives in the induction model are la-
beled as integers 0, 1, 2, . . . . A category’s depth is
defined according to its tree representation (see Fig-
ure 3(a) of Prange et al. (2021) for an example).2

For instance, the primitive category 1 has depth 0,
and the category 2/(1\0) has depth 2.

The number of possible categories |CP,D| with P
primitives and maximum depth D can be computed

2The tree representation of a syntactic category should not
be confused with the parse tree for an entire sentence.
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with the following recurrence relation:

|CP,0| = P (10)

|CP,i| = 2|CP,i−1|2 + P (11)

Our experiments below use the category set C =
C3,2, the entire set of 885 possible categories with
P = 3 and D = 2. This is nearly 10 times the
number of categories (90) used by Jin et al. (2021a).

4.2 Binary expansion rule probabilities
The categorial grammar induction model modifies
Equation (7) from Jin et al. (2021a) to take advan-
tage of constraints imposed by categorial grammar
categories. In a PCFG, a parent category cη may
expand into any two child categories cη1 and cη2
However, in a basic CG, this expansion is only pos-
sible if one child (the functor) can combine with
the other child (the argument) to produce the parent
(the result). There are two possibilities:

• The argument is the left child cη1. Then the
right child must be the functor, and its cate-
gory must be cη2 = cη\cη1.

• The argument is the right child cη2. Then the
left child must be the functor, and its category
must be cη1 = cη/cη2.

If cη2 , cη\cη1 and cη1 , cη/cη2, then it is im-
possible for cη to expand to cη1 and cη2, and so
P(cη → cη1 cη2 | cη,Term=0) = 0. For all other
cases, where the binary expansion is possible, the
probabilities are calculated as follows:

P(cη → cη1 cη2 | cη,Term=0) =

softmax
(c′,o)∈Carg×{L,R}

( [WL
WR

]
δcη +

[
bL
bR

] )
(12)

The model parameters WL,WR ∈ R|Carg |×|Cres |

are weights associating each parent category with
each possible left-child and right-child argument
category; bL,bR ∈ R|Carg | are the corresponding
bias vectors. Carg,Cres ⊂ C are the sets of possible
argument and result categories respectively, both of
which comprise all categories of depth up to D − 1:

Carg = Cres = {c ∈ C | depth(c) ≤ D − 1} (13)

Argument and result categories cannot have depth
D because this would require functor categories to
have depth greater than D.

The variable o ∈ {L,R} expresses the location
of the argument child relative to the functor child.

If o = L, then the argument is to the left of the
functor, and so cη1 = c′ and cη2 = cη\c′. If o = R,
then the argument is to the right of the functor, and
so cη1 = cη/c′ and cη2 = c′.

Equation (12) results in a considerable space
complexity improvement compared to (7). For an
induction model using category set C, Equation (7)
requires taking a softmax over |C|2 possible pairs
of children. Equation (12) only requires a softmax
over 2|Carg| = O(

√|C|) categories.
The experiment presented in Section 6 uses a

modified bias term in Equation (12) in order to
encourage the model to prefer forward function ap-
plication over backward function application. The
bias term for left-child arguments bL is replaced
with a new bias b′L = bL − k, where k ∈ R|Carg | has
the same constant value in each dimension. As will
be explained below, a bias toward forward func-
tion application results in a preference for right-
branching structures, which improves the perfor-
mance of the induction model.

5 Experiment 1: Basic Induction Model

5.1 Corpora

The induction model was evaluated on child-
directed speech in English from CHILDES
(MacWhinney, 2000), specifically the Adam and
Eve sections of the Brown corpus (Brown, 1973).
The Adam section, which was used for hyperparam-
eter optimization, contains interactions between a
child and his caretakers, with the child’s age rang-
ing from 2 years and 3 months to 5 years and 2
months and a total of 28,780 sentences. The Eve
section was used for held-out testing; it contains
similar interactions from a child whose age ranges
from 1 year and 6 months to 2 years and 3 months,
with a total of 14,251 sentences. Syntactic anno-
tations for the Adam and Eve sections came from
Pearl and Sprouse (2013).

5.2 Procedures

The induction model used the Adam optimizer with
a learning rate of 0.0001, a category embedding
size of 64, and a hidden layer size of 64. Hyperpa-
rameters were selected based on a grid search on
the Adam corpus. For evaluation on Eve, ten ran-
domly initialized models were run for 20 epochs
each with a batch size of 2 sentences.

The evaluation metrics we considered were un-
labeled F1 score and recall-homogeneity (RH; Jin
et al., 2021b). Recall measures what proportion
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of (unlabeled) constituents in the annotated trees
are present in the predicted trees. Homogeneity—a
commonly used metric in part-of-speech tagging
evaluations—measures to what degree a single in-
duced category maps to a single category in the
annotations. Specifically, it measures the relative
increase in the log of the expected probability of
a gold category, given the predicted category that
covers the same span. RH is simply the product
of unlabeled recall and homogeneity. The RH met-
ric is motivated by assumptions that (a) induced
grammars should not be penalized for predicting
extra constituents, since flatter trees in the annota-
tions may have been chosen for convenience rather
than any theoretical motivation; and (b) induced
grammars should not be penalized for making finer-
grained distinctions between categories (e.g., noun
cases) than are present in the annotations, since
less granular categories similarly may have been
chosen for convenience.

In keeping with Seginer (2007) and Jin et al.
(2021a), punctuation was retained in the input
data during training but removed during evalua-
tion. Unary chains were removed from parse trees,
with only the top category used for evaluation.

5.3 Results

Figure 2 presents the main results. The mean RH
and F1 score across the ten runs were 0.33 and 0.52
respectively. The mean RH value is well below
the average of 0.49 reported for the word-level
PCFG inducer from Jin et al. (2021a). However, the
means alone do not best describe Figure 2, as RH
and F1 both seem to show bimodal distributions.
Six runs produced poor RH and F1 (averaging 0.22
and 0.37 respectively), while the other four runs
produced much better values (averaging 0.50 and
0.74 respectively).3

Figure 3 offers another vantage point into the
pattern of results by separating recall and homo-
geneity, the two metrics combined in RH. (Recall
also influences F1.) Again, a sharp division is ob-
served between runs with low versus high recall.
However, homogeneity appears to vary somewhat
independently from recall.

One possible explanation for this trend would be
that the poorly performing runs get caught in local
maxima of the objective function. If this were the
case, we would expect to see higher log likelihood

3We verified that these were the same six and four runs,
i.e., no run produced good RH and poor F1 or vice versa.

Figure 2: Box plots of the labeled recall-homogeneity
(RH) and unlabeled F1 scores of 10 runs of the induction
system on the Eve corpus (Experiment 1). Scattered
points show results from the 10 individual runs. The
mean RH was 0.33 (median 0.26) and the mean F1 was
0.52 (median 0.39).

Figure 3: Recall and homogeneity of the 10 runs of the
induction system from Experiment 1.

in the well-performing runs, which should reach a
better maximum. However, Figure 4 shows that this
does not occur: The well-performing and poorly
performing runs are associated with similar ranges
of log likelihood values.
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Figure 4: Log likelihood and recall-homogeneity of the
10 runs of the induction system from Experiment 1.

If log likelihood fails to distinguish the clusters
of good and poor runs, what else might? One
pattern immediately stood out during qualitative
inspection of the models’ predicted trees: Mod-
els with high RH and F1 scores tend to predict
trees with frequent forward function application
and right branching, while poorly performing mod-
els predict trees with backward function application
and left branching. This pattern was quantitatively
confirmed by counting the proportion of right- and
left-branching nodes in the induced trees. The six
runs with worse performance use left branching
82% of the time, while the four runs with better
performance use right branching 65% of the time.
These values were computed by counting the pro-
portion of branching nodes who appear as left ver-
sus right children.

As an illustration, Figure 5 compares predictions
from two models on the same sentence from the
Eve corpus. Figure 5a shows the prediction from
a model that performed poorly overall, containing
a left-branching pattern combined with the use of
backward function application. Figure 5b shows
the prediction from a model that performed well,
which has opposite patterns. In both cases, the
dispreferred type-combining operator (e.g., / in 5a)
appears in complex categories but is rarely applied,
so that a category such as 1/2 in 5a is treated like
a primitive.

Figure 6 contains confusion matrices relating
the induced categories with the human-annotated

2/0

(2/0)\(1/2)

you

1/2

(1/2)\(0/2)

see

0/2

(0/2)\(0/2)

to

0/2

0\1

wanted

(0/2)/(0\1)

he

(a) Left-branching
1

2\0

0\1

2\0

2/2

you

(2\0)/(2/2)

see

(0\1)/(2\0)

to

(2\0)/(0\1)

wanted

1/(2\0)

he

(b) Right-branching

Figure 5: Examples of left- and right-branching struc-
tures predicted for the same sentence in the Eve corpus,
using induction models from two different runs from
Experiment 1. The model that predicted (a) had an RH
of 0.16, F1 score of 0.35, and log likelihood of -309,217
on the full Eve corpus, compared with an RH of 0.57,
F1 score of 0.77, and log likelihood of -308,764 for the
model that predicted (b).

categories for the run that produced the highest RH
and F1 score in Experiment 1. The recall table
(a) shows that most of the annotated categories are
only represented by one or two different induced
categories, and the precision table (b) shows that
induced categories are seldom crossing brackets.

6 Experiment 2: Induction Model with
Forward Function Application Bias

To try to produce more consistent induction results
with English-like branching behavior, our second
experiment biased the induction model toward us-
ing forward function applications (i.e., the / op-
erator). While in principle it is possible for right-
branching structures to use backward function ap-
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(a) Recall

(b) Precision

Figure 6: Comparison of frequent induced and annotated categories in the Eve corpus, according to the Experiment 1
run with the best RH and F1 score. The “NotBracketed” column in (a) tells the proportion of phrases of a particular
category that were not bracketed together in the predicted parse. In (b), the “NonCross” column tells the proportion
of phrases belonging to an induced category that did not appear as constituent in the annotated parse but did not cross
constituent boundaries in the annotation. “Cross” tells what proportion did cross annotated constituent boundaries.

plication and left-branching structures to use for-
ward function application, this did not often occur
in the results from Experiment 1 and seems less
likely in general given the available categories in C.

6.1 Procedures

This experiment used the same corpora and proce-
dures as Experiment 1, with the exception of the
modified bias term mentioned at the end of Sec-
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Figure 7: Box plot of the labeled recall-homogeneity of
10 runs of the induction model with a bias for forward
function application (Experiment 2). The mean and
median RH were 0.59 and 0.60 respectively. Unlabeled
F1 is not shown because all runs reached an identical
score of F1=0.76.

tion 4.2. Each dimension in the vector k was set
to 100; this value was large enough to ensure that
forward function application and right-branching
tree structures were exclusively used. Smaller val-
ues for k were also tested on the Adam corpus but
achieved slightly worse log likelihoods.

6.2 Results
Figure 7 shows the RH across the 10 runs in this
experiment. Because the models invariably pre-
dicted right-branching structures, all had the same
F1 score of 0.76. Compared to Experiment 1, RH
scores showed much more consistency, with a rel-
atively uniform spread of values within the nar-
row range of 0.57 to 0.62. (Since recall did not
vary, all variation in RH was due to differences in
homogeneity between models.) Despite the mod-
els’ inflexibility in assigning tree structures, these
RH scores surpassed those reported by Jin et al.
(2021a,b).

7 Discussion and Conclusion

We introduce an induction model that learns a basic
categorial grammar from unlabeled data. The orig-
inal version of the model, tested in Experiment 1,
shows promising results in several runs, but incon-
sistent performance in general. A modified version
of the model that consistently uses forward func-

tion application far outperforms the original model.
In general, the experimental results appear to sup-
port the empiricist claim that syntactic structure is
learnable with relatively simple prior knowledge.

While results from the biased model achieve an
impressive RH compared to Jin et al. (2021a,b),
they leave open several questions. One obvious
question is whether it is possible to consistently
achieve comparable results to the biased runs with-
out removing the model’s ability to do backward
function application, since this operation is a core
ingredient of basic categorial grammars and is reg-
ularly used in hand-labeled parses of English sen-
tences, e.g., to combine the NP and N\NP in Fig-
ure 1. Although the log likelihood objective on
its own appears to be insufficient to ensure stable
behavior (similar to behavior reported in earlier
PCFG studies such as Johnson et al. 2007), it may
be possible to find a middle ground between Exper-
iments 1 and 2 with a modified objective function
or a weaker form of bias.

Another question is whether the induction model
can support more complex operations, such as the
forward and backward composition operations de-
fined by CCG. This seems possible in principle;
additional weight matrices could be added to Equa-
tion (12), so that probabilities for additional opera-
tions could be learned. We are excited to explore
this possibility in future work.

Limitations

More work is needed to uncover the causes of the
inconsistent performance across randomly initial-
ized models in Experiment 1. Although the bias
toward forward function application implemented
in Experiment 2 was effective in our experiments,
it is unlikely to work as a general-purpose method,
since languages vary in their branching characteris-
tics and in the contexts in which they apply forward
and backward function application.
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