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Abstract

Class-incremental learning (CIL) aims to de-
velop a learning system that can continually
learn new classes from a data stream without
forgetting previously learned classes. When
learning classes incrementally, the classifier
must be constantly updated to incorporate new
classes, and the drift in decision boundary may
lead to severe forgetting. This fundamental
challenge, however, has not yet been studied
extensively, especially in the setting where no
samples from old classes are stored for re-
hearsal. In this paper, we take a closer look at
how the drift in the classifier leads to forgetting,
and accordingly, design four simple yet (super-
) effective solutions to alleviate the classifier
drift: an Individual Classifiers with Frozen Fea-
ture Extractor (ICE) framework where we in-
dividually train a classifier for each learning
session, and its three variants ICE-PL, ICE-O
and ICE-PL&O which further take the logits of
previously learned classes from old sessions or
a constant logit of an Other class as constraint
to the learning of new classifiers. Extensive ex-
periments and analysis on 6 class-incremental
information extraction tasks demonstrate that
our solutions, especially ICE-O, consistently
show significant improvement over the pre-
vious state-of-the-art approaches with up to
44.7% absolute F-score gain, providing a strong
baseline and insights for future research on
class-incremental learning.1

1 Introduction

Conventional supervised learning assumes the data
are independent and identically distributed (i.i.d.)
and usually requires a pre-defined ontology, which
may not be realistic in many applications in nat-
ural language processing (NLP). For instance, in
event detection, the topics of interest may keep
shifting over time (e.g., from attack to pandemic),
and new event types and annotations could emerge

1The source code, model checkpoints and data are publicly
available at https://github.com/VT-NLP/ICE.
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Figure 1: Illustration of class-incremental event detec-
tion where the model needs to classify each candidate
mention into a label from all learned types or Other.
The figure shows two classifiers that are incrementally
trained from Session 1 and Session 2 and are evaluated
on the same sample. After training on session 2, the
classifier mistakenly predicts Other for an Arrest men-
tion due to the classifier drift. The model here uses
pre-trained features and only the classifier is trained.

incessantly. Previous studies (Ring et al., 1994;
Kirkpatrick et al., 2017; Lopez-Paz and Ranzato,
2017) therefore proposed continual learning (CL),
a.k.a., lifelong learning or incremental learning, a
learning paradigm aiming to train a model from a
stream of learning sessions that arrive sequentially.
In this work, we focus on the class-incremental
learning (CIL) setting (Wang et al., 2019), where
a new session2 is composed of previously unseen
classes and the goal is to learn a unified model that
performs well in all seen classes.

When new learning sessions arrive sequentially,
the classification layer must be constantly updated
and/or expanded to accommodate new categories
to the model. The change of the classifier be-
tween different sessions, i.e., classifier drift, can
disturb or overwrite the classifier trained on pre-
vious classes, which consequently causes catas-
trophic forgetting (Biesialska et al., 2020). On the
other hand, in many NLP tasks such as information
extraction, the model also needs to classify nega-

2Session is defined as an incremental learning stage to learn
new classes with a model trained on the previous sessions.
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tive instances into the Other type (i.e., none-of-the-
above). The Other type adds extra difficulty to clas-
sification, and even worse, the meaning of Other
varies as the model learns new sessions (Zheng
et al., 2022). The CIL problem thus becomes even
more challenging when Other is involved. We il-
lustrate the event detection task in CIL (Yu et al.,
2021) and the classifier drift problem in Figure 1.

Despite the progress achieved in CIL (Zhao et al.,
2022; Zheng et al., 2022), there are two critical
limitations that are still remained: (1) Most previ-
ous CIL approaches heavily rely on the rehearsal-
based strategy which stores samples from previ-
ously learned sessions and keeps re-training the
model on these examples in subsequent sessions
to mitigate catastrophic forgetting, which requires
high computation and storage costs and raises con-
cerns about privacy and data leakage (Shokri and
Shmatikov, 2015); (2) Previous approaches have
mainly focused on regularizing or expanding the
overall model, especially feature extractor, to tackle
the forgetting issue (Cao et al., 2020), but they
rarely investigate whether the drift of the classifier
also leads to forgetting, especially in classification
tasks that involve the Other category. In this work,
we aim to tackle these limitations by answering
the following two research questions: RQ1: how
does classifier drift lead to forgetting in the setting
where no samples are stored from old sessions for
rehearsal?, and RQ2: how to devise an effective
strategy to alleviate classifier drift, especially when
there is an Other category involved?

In this paper, we aim to answer the two research
questions above. First, to study how classifier drift
alone affects the model, we build a baseline where
we use a pre-trained language model as a fixed fea-
ture extractor, such that only the parameters in the
classification layer will be updated. Second, to
alleviate classifier drift, we propose a simple frame-
work named Individual Classifiers with Frozen Fea-
ture Extractor (ICE). Instead of collectively tuning
the whole classification layer, we individually train
a classifier for the classes in each new session with-
out updating old classifiers and combine all learned
classifiers to classify all seen classes during infer-
ence. As individually trained classifiers may lack
the context of all learned sessions (Zhang et al.,
2021), they may not be comparable to each other.
We further devise a variant ICE-PL which takes
the logits of previous classifiers as constraints to
encourage contrastivity among all the classes when

learning a new classifier for a new session. Third,
both ICE and ICE-PL cannot be applied to detec-
tion tasks where an Other class is involved, thus
we further design two variants of them: ICE-O and
ICE-PL&O, which introduce a constant logit for
the Other class and use it to enforce each individ-
ual classifier to be bounded by a constraint shared
across different learning sessions during training.

We extensively investigate the classifier drift and
evaluate our approach on 6 essential information
extraction tasks across 4 widely used benchmark
datasets under the CIL setting. Our major findings
and contributions are: (1) By comparing the drifted
baseline and our ICE, we find that the classifier
drift alone can be a significant source of forgetting
and our approaches effectively mitigate the drift
and forgetting. Our results reveal that training the
classifier individually can be a superior solution to
training the classifier collectively in CIL. (2) We
find that the Other type can effectively improve
individually trained classifiers, and it is also help-
ful when we manually introduce negative instances
during training on the tasks that do not have Other.
(3) Experimental results demonstrate that our pro-
posed approaches, especially ICE-O, significantly
and consistently mitigate the forgetting problem
without rehearsal and outperform the previous state-
of-the-art approaches by a large margin. (4) Our
study builds a benchmark for 6 class-incremental
information extraction tasks and provides a super-
strong baseline and insights for the following stud-
ies on class-incremental information extraction.

2 Related Work

Existing approaches for CIL can be roughly cat-
egorized into three types (Chen et al., 2022).
Rehearsal-based approaches (a.k.a. experience
replay) (Lopez-Paz and Ranzato, 2017; de Mas-
son d’Autume et al., 2019; Guo et al., 2020;
Madotto et al., 2021; Qin and Joty, 2021) select
some previous examples (or generate pseudo ex-
amples) for rehearsal in subsequent tasks. While
such approaches are effective in mitigating forget-
ting, they require high computation and storage
costs and suffer from data leakage risk (Shokri and
Shmatikov, 2015; Smith et al., 2021; Wang et al.,
2022). Regularization-based approaches (Chuang
et al., 2020) aim to regularize the model’s update by
only updating a subset of parameters. Architecture-
based approaches (Lee et al., 2020; Ke et al.,
2021a,b,c; Feng et al., 2022; Zhu et al., 2022) adap-
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tively expand the model’s capacity via parameter-
efficient techniques (e.g., adapter, prompt) to ac-
commodate more data. While most existing ap-
proaches consider alleviating the forgetting of the
whole model or transferring previous knowledge to
new sessions, few of them thoroughly investigate
how the classification layer of the model is affected
as it expands to incorporate more classes into the
model. Wu et al. (2019) find that the classifica-
tion layer has a strong bias towards new classes,
but they only study this issue in image recognition
that doesn’t contain the Other class. To fill the
blank in current research, we aim to take a closer
look at how the drift in the classifier alone affects
the model under the CIL setting, especially when
Other is involved.

For class-incremental information extraction,
several studies tackle the CIL problem in relation
learning (Wu et al., 2021), and many of them apply
prototype-based approaches equipped with mem-
ory buffers to store previous samples (Han et al.,
2020; Cui et al., 2021; Zhao et al., 2022). Others
investigate how to detect named entities (Monaikul
et al., 2021; Xia et al., 2022) or event trigger (Cao
et al., 2020; Yu et al., 2021; Liu et al., 2022) in the
CIL setting. For instance, Zheng et al. (2022) pro-
pose to distillate causal effects from the Other type
in continual named entity recognition. One critical
disadvantage of existing approaches for continual
IE is they heavily rely on storing previous exam-
ples to replay, whereas our method does not require
any examplar rehearsal.

3 Problem Formulation

Class-incremental learning requires a learning sys-
tem to learn from a sequence of learning ses-
sions D = {D1, ...,DT } and each session Dk =
{(xk, yk)|yk ∈ Ck} where xk is an input instance
for the session Dk and yk ∈ Ck denotes its la-
bel. The label set Ck for session Dk is not over-
lapping with that of other sessions, i.e., ∀k, j and
k ̸= j, Ck

⋂ Cj = ∅. Given a test input x and a
model that has been trained on up to t sessions, the
model needs to predict a label ŷ from a label space
that contains all learned classes, i.e., C1

⋃
...
⋃ Ct

and optionally the Other class. Generally, the train-
ing instances in old classes are not available in
future learning sessions.

We consider a learning system consisting of a
feature extractor and a classifier. Specifically, we
use a linear layer G1:t ∈ Rc×h as the classification

layer, where c is the number of classes that the
model has learned up to session t and h is the
hidden dimension size of features. We denote the
number of classes in a learning session k as nk,
i.e., nk = |Ck|. The classification layer G1:t can be
viewed as a concatenation of the classifiers in all
learned sessions, i.e., G1:t = [W1; ...;Wt], where
each of the classifier Wk ∈ Rnk×h is in charge
of the classes in Ck. The linear layer outputs the
logits o1:t ∈ Rc for learned classes, where ok refers
to the logits for the classes in Ck. The term logit
we use in this paper refers to the raw scores before
applying the Softmax normalization.

In this work, we focus on studying the class-
incremental problem in information (entity, rela-
tion, and event) extraction tasks.We consider two
settings for each task: the detection task that re-
quires the model to identify and classify the can-
didate mentions or mention pairs into one of the
target classes or Other, and the classification task
that directly takes the identified mentions or men-
tion pairs as input and classifies them into the target
classes without considering Other.

4 Approach

4.1 RQ1: How does Classifier Drift Lead to
Forgetting?

We first design a DRIFTED-BERT baseline to in-
vestigate how classifier drift alone leads to forget-
ting, and then provide an insightful analysis of how
classifier drift happens, especially in the setting of
class-incremental continual learning.

DRIFTED-BERT Baseline In the current domi-
nant continual learning frameworks, both the fea-
ture extractor and classifier are continually updated,
which results in drift in both components towards
the model’s predictions on old classes. To measure
how the classifier drift along leads to forgetting,
we build a simple baseline that consists of a pre-
trained BERT (Devlin et al., 2019) as the feature
extractor and a linear classification layer (shown in
Figure 2 (a)). The model first encodes a given input
text x into the contextual representation. For event
trigger and entity recognition, the model feeds the
representation of a candidate span h into the linear
layer to predict the logits for learned classes, i.e.,
o1:t = G1:t(h). For relation learning, we instead
use the concatenation of head and tail representa-
tions as the feature, i.e., h = [hhead;htail]. For de-
tection tasks, since each session contains an Other
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Figure 2: Illustration of the training process in a new learning session for DRIFTED-BERT as well as ICE and its
variants. “FE” stands for feature extractor. “O” stands for the Other type. Each circle in the classifier represents a
category. The models have learned a classifier (W1) with 3 classes in Session 1 (S1) and they are learning a new
classifier (W2) with 2 classes in Session 2 (S2). ICE and ICE-PL can only handle classification tasks without Other,
whereas ICE-O and ICE-PL&O are devised for detection tasks involving Other where we use a fixed value as the
logit of Other class since it has distinct meanings in different sessions. Note that DRIFTED-BERT is applied to both
classification (w/o the Other classifier) and detection (w/ the Other classifier) tasks.

class which has different meanings from other ses-
sions, we follow (Yu et al., 2021) to set the logit
for Other to a constant value δ, i.e., o0 = δ. We
combine o0 and o1:t and pick the label with the
maximum logit as the prediction. That is, we pre-
dict a sample as Other if and only if max(o1:t) < δ.
We freeze the parameters in the feature extractor so
that the encoded features of a given sample remain
unchanged in different learning sessions. In this
way, the updates in the classification layer become
the only source of forgetting. Note that we do not
apply any continual learning techniques (e.g., ex-
perience replay) to DRIFTED-BERT. We denote
p(xt) as the predicted probability to compute the
loss in training, where p(xt) = Softmax(o0:t). At
the learning session t, the model is trained on Dt

with the Cross Entropy (CE) loss:

LCE = −
∑

(xt,yt)∈Dt

log p(xt). (1)

A Closer Look at Classifier Drift When the
model has learned t sessions and needs to extend
to the (t + 1)-th session, the classification layer
G1:t needs to introduce new parameters to accom-
modate the new classes in Ct+1, i.e., G1:t+1 =
[W1; ...;Wt;Wt+1]. As we assume that all pre-
vious training instances in D1:t are not accessi-
ble anymore, solely training the model on Dt+1

would lead to an extreme class-imbalance prob-
lem (Cao et al., 2020), which consequently causes
catastrophic forgetting. However, most existing
works rarely discuss how the drift in the classifier
alone leads to forgetting, especially when the Other
class is involved.

We first define the classifier drift between two
consecutive learning sessions Dt and Dt+1 as the
change from G1:t to G1:t+1 that makes the model

lose (part of) its acquired capability on the seen
classes in C1:t. Intuitively, the CE loss aims to max-
imize the probability of the correct label while min-
imizing the probabilities of all other labels. Thus,
there are two possible causes of classifier drift: (1)
new logit explosion: the new classifier Wt+1 tends
to predict logits ot+1 that are higher than those of
all previous classes o1:t so that the model can triv-
ially discriminate new classes, which causes the
old classes being overshadowed by new classes. (2)
diminishing old logit: as the old instances are not
accessible in future learning sessions, the parame-
ters in previous classifiers will be updated from the
previous local optimum to a drifted sub-optimum,
such that the classifier outputs low logits for old
classes and cannot predict correctly. We empiri-
cally analyze the DRIFTED-BERT baseline to inves-
tigate the classifier drift in Section 5.2 and discuss
the drifting patterns in different classification and
detection tasks in Section 5.4.

4.2 RQ2: How to Alleviate Classifier Drift?

To alleviate the classifier drift, we introduce two
solutions ICE and its variant ICE-PL for the classifi-
cation tasks without Other, and further design two
additional variants ICE-O and ICE-PL&O for de-
tection tasks where Other is involved. We illustrate
the training process in a new learning session for
ICE and its variants in Figure 2. Note that we only
focus on the setting of continual learning without
experience replay, i.e., the model does not have
access to the data of old sessions.

ICE: Individual Classifiers with Frozen Feature
Extractor We revisit the idea of classifier en-
semble (Dietterich, 2000) and separated output lay-
ers in multi-task learning (Zhang and Yang, 2018)
where task-specific parameters for one task do not
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affect those for other tasks. Inspired by this, we pro-
pose to individually train a classifier for each ses-
sion without updating or using previously learned
classifiers G1:t (shown in Figure 2 (b)). In this way,
previous classifiers can avoid being drifted to the
sub-optimum, and the new classifier is less prone
to output larger logits to overshadow old classes.
Specifically, for an incoming session t + 1, we
initialize a set of new weights and train the new
classifier Wt+1 on Dt+1. We only use the logits
for the classes in the new session ot+1 to com-
pute the Cross-Entropy loss in optimization, i.e.,
p(xt+1) = Softmax(ot+1). During inference, as
we need to classify all seen classes without know-
ing the session identity of each instance, we com-
bine the logits from all classifiers W1, ...,Wt+1

together to get the prediction for all learned classes,
i.e., o1:t+1 = [o1; ...; ot+1], where each classifier
yields the logits via ok = Wk ·h given the encoded
feature h for each mention.

ICE+Previous Logits (ICE-PL) One limitation
of ICE is the classifier individually trained in one
session may not be comparable to others. To pro-
vide contrastivity to classifiers, we first explore
a variant named ICE-PL where we preserve the
previous classifiers and only freeze their parame-
ters, such that the new classifier is aware of previ-
ous classes during training (shown in Figure 2 (c)).
That is, the model uses the logits from all classi-
fiers o1:t+1 to compute the Cross-Entropy loss, i.e.,
p(xt+1) = Softmax(o1:t+1), while only the param-
eters in the new classifier are trainable. ICE-PL

uses the same inference process as ICE.

ICE+Other (ICE-O) Both ICE-O and ICE-PL

can only be applied to classification tasks and han-
dling the Other category for detection tasks is chal-
lenging as each session Dt only contains the anno-
tated mentions for the classes Ct, while the men-
tions from all the other classes such as C1:t−1 are
labeled as Other, making the meaning of Other
varies in different sessions. To tackle this problem,
we purpose the ICE-O variant (shown in Figure 2
(d)) where we assign a constant value δ as the logit
of the Other category. Specifically, for each pre-
diction, we combine the logit of Other with the
logits from the new session ot+1 to obtain the out-
put probability, i.e., p(xt+1) = Softmax([δ; ot+1]),
and then compute the Cross-Entropy loss to train
the classifier to make predictions for both pos-
itive classes and Other. During the inference,

we combine the Other’s logit δ with the logits
from all trained classifiers o1:t+1, i.e., o0:t+1 =
[δ; o1; ...; ot+1] to predict for all learned positive
types and Other. We select the label with the high-
est logit among o0:t+1 as the prediction, and a can-
didate will be predicted as Other if and only if
max(o1:t+1) < δ.

While the Other class introduces additional dif-
ficulties to CIL, we argue that it can also be a good
remedy to classifier drift. In particular, in each
learning session k, while the classifier Wk is inde-
pendently trained on Dk, the output logits ok also
need to satisfy the constraint that max(ok) < δ
when the classifier is trained on negative instances.
Although the logits from any two distinct classi-
fiers Wk and Wj (k ̸= j) do not have explicit
contrastivity, both classifiers are trained under the
constraint that max(ok) < δ and max(oj) < δ,
which provides a weak contrastivity between them.

ICE+Previous Logits and Other (ICE-PL&O)
To explore the effect of preserving the previous log-
its when Other is involved, we devise a ICE-PL&O
variant that uses both the Other’s logit δ and previ-
ous logits o1:t during training (shown in Figure 2
(e)). That is, ICE-PL&O uses the combined logits
o0:t+1 = [δ; o1; ...; ot+1] to compute the loss, i.e.,
p(xt+1) = Softmax(o0:t+1). ICE-PL&O adopts
the same inference process as ICE-O.

While ICE-O and ICE-PL&O are naturally ap-
plied to detection tasks, for classification tasks with-
out the Other class, we can also manually create
negative instances based on the tokens or entity
pairs without positive labels. Section 5.1 provides
more details regarding how to apply ICE-O and
ICE-PL&O to classification tasks.

5 Experiments and Discussions

5.1 Datasets and Experiment Setup

We use Few-NERD (Ding et al., 2021) for class-
incremental named entity recognition and split all
the 66 fine-grained types into 8 learning sessions
by following Yu et al. (2021) which apply a greedy
algorithm to split the types into sessions and ensure
each session contains the roughly same number of
training instances. We use two benchmark datasets
MAVEN (Wang et al., 2020) and ACE-05 (Dod-
dington et al., 2004) for class-incremental event
trigger extraction and following the same setting
as (Yu et al., 2021) to split them into 5 learning ses-
sions, respectively. For class-incremental relation
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extraction, we use TACRED (Zhang et al., 2017)
and follow the same setting as Zhao et al. (2022) to
split the 42 relations into 10 learning sessions.

For each dataset, we construct two settings: (1)
detection where the model classifies each token (or
a candidate entity pair in relation extraction task)
in a sentence into a particular class or Other; and
(2) classification where the model directly takes
in a positive candidate (i.e., an entity, trigger, or
a pair of entities) and classify it into one of the
classes. For the classification setting, as there are
no negative candidates that are labeled as Other, we
automatically create negative candidates and intro-
duce the Other category so that we can investigate
the effect of Other using ICE-O and ICE-PL&O.
Specifically, we assign the Other label to the to-
kens if they are not labeled with any classes for
entity and event trigger classification, and assign
the Other label to the pairs of entity mentions if
they are not labeled with any relations for relation
classification. When we apply ICE-O and ICE-
PL&O to classification tasks, during inference, we
do not consider the logit of the Other class.

Evaluation We use the same evaluation proto-
col as previous studies (Yu et al., 2021; Liu et al.,
2022). Every time the model finishes the training
on Session t, we evaluate the model on all test sam-
ples from Session 1 to Session t for classification
tasks. For detection tasks, we evaluate the model
on the entire test set where we take the mentions or
mention pairs of unlearned classes as Other. Fol-
lowing Yu et al. (2021), we randomly sample 5
permutations of the orders of learning sessions and
report the average performance.

Baselines We compare our approaches with the
DRIFTED-BERT baseline and several state-of-
the-art methods for class-incremental information
extraction, including ER (Wang et al., 2019),
KCN (Cao et al., 2020), KT (Yu et al., 2021),
EMP (Liu et al., 2022), CRL (Zhao et al., 2022).
All these methods adopt experience replay to allevi-
ate catastrophic forgetting. We also design two ap-
proaches to show their performance in the conven-
tional supervised learning setting where the model
is trained with the annotated data from all the ses-
sions, as the approximate upperbound of the contin-
ual learning approaches: (i) BERT-FFE consists
of a pre-trained BERT as the feature extractor and
a classifier, where, during training, we fix the fea-
ture extraction and only tune the classifier; and (ii)

MAVEN (Detection) Type S1 S2 S3 S4 S5

DRIFTED-BERT

New 50.9 57.8 52.8 52.7 49.1
Acc-Old - 0 0 0 0
Prev-Old - 0 0 0 0

ICE-O (Ours)
New 50.9 56.0 53.2 49.9 49.3

Acc-Old - 50.6 53.8 53.6 52.4
Prev-Old - 51.4 56.2 53.1 50.0

ICE-O&PL (Ours)
New 50.9 57.4 53.2 50.2 47.7

Acc-Old - 50.3 53.0 52.7 50.7
Prev-Old - 51.0 55.8 52.5 49.6

MAVEN (Classification) Type S1 S2 S3 S4 S5

DRIFTED-BERT

New 86.9 63.1 54.7 47.6 34.0
Acc-Old - 36.9 21.8 15.9 10.0
Prev-Old - 36.4 33.4 29.4 29.1

ICE (Ours)
New 86.9 79.8 72.8 68.0 59.2

Acc-Old - 77.2 72.0 66.3 62.5
Prev-Old - 77.5 72.1 65.7 62.6

ICE-PL (Ours)
New 86.9 67.5 57.2 49.2 34.9

Acc-Old - 51.3 29.7 16.8 13.1
Prev-Old - 51.1 49.5 37.2 38.5

ICE-O (Ours)
New 86.5 79.8 76.9 73.3 63.8

Acc-Old - 80.6 76.5 71.2 68.3
Prev-Old - 81.0 76.1 69.1 69.4

ICE-PL&O (Ours)
New 86.5 80.3 76.9 71.3 62.0

Acc-Old - 80.7 76.3 70.2 64.9
Prev-Old - 81.1 77.0 67.9 66.2

Table 1: Analysis of the performance (Macro-F1 %)
on new and old classes on the class-incremental event
detection and classification tasks on MAVEN. The
best performance of accumulated old classes from all
previous sessions (Acc-Old) is highlighted in bold, and
the best performance of the old classes in the previous
session (Prev-Old) is highlighted with underline.

BERT-FT which shares the same architecture as
BERT-FFE but both the feature extractor and clas-
sifier are tuned during training. More details about
the datasets, baselines, and model implementation
can be found in Appendix A.

5.2 RQ1: How does Classifier Drift Lead to
Forgetting?

We conduct an empirical analysis on event detec-
tion and classification tasks on MAVEN to answer
RQ1 and gain more insight into the classifier drift.

Analysis of Old and New Classes Performance
Our first goal is to analyze the classifier drift during
the incremental learning process. In Table 1, we
analyze how the performance of previously learned
classes changes after the model has been trained on
a new session for the DRIFTED-BERT baseline and
the variants of ICE. After learning in each session
k, we compute the (1) F-score on the new classes
(Ck) learned in the current session, (2) accumulated
F-score on the old classes (C1:k−1) from all pre-
vious sessions, and (3) F-score on the old classes
(Ck−1) from the previous session, respectively. By
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MAVEN (Detection) ACE05 (Detection) MAVEN (Classification)

Session 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

ER† (Wang et al., 2019) 62.0 48.6 43.1 35.5 32.5 59.6 46.2 41.7 33.2 34.4 88.9 70.4 64.1 55.0 53.1
KCN† (Cao et al., 2020) 63.5 51.1 46.8 38.7 38.5 58.3 54.7 52.8 44.9 41.1 88.8 68.7 59.2 48.1 42.1
KT† (Yu et al., 2021) 63.5 52.3 47.2 39.5 39.3 58.3 55.4 53.9 45.0 42.6 88.8 69.0 58.7 47.6 42.0
EMP† (Liu et al., 2022) 67.8 60.2 58.6 54.8 50.1 59.6 53.1 55.2 45.6 43.2 91.5 54.2 36.7 27.0 24.8
CRL† (Zhao et al., 2022) - - - - - - - - - - 89.2 73.2 70.0 63.7 62.9

DRIFTED-BERT 60.5 41.0 33.8 22.5 20.8 53.7 50.6 51.8 20.1 17.2 90.1 52.3 39.7 28.0 22.3
ICE (Ours) - - - - - - - - - - 89.4 79.0 75.8 71.4 68.5
ICE-PL (Ours) - - - - - - - - - - 89.4 59.4 44.4 32.8 26.8
ICE-O (Ours) 60.5 59.9 61.3 60.8 61.4 53.7 55.4 60.7 59.6 61.5 88.8 82.8 81.0 77.7 75.5
ICE-PL&O (Ours) 60.5 59.5 60.7 59.9 60.2 53.7 55.8 61.4 60.5 62.4 88.8 82.1 79.8 75.2 71.6
ICE-O+TFE&ER†(Ours) 61.5 40.7 41.3 44.5 49.7 54.3 39.0 43.2 44.1 41.7 92.2 83.8 82.8 79.9 78.1

Upperbound (BERT-FFE) - - - - 63.0 - - - - 64.0 - - - - 76.0
Upperbound (BERT-FT) - - - - 67.3 - - - - 66.6 - - - - 81.0

Table 2: Results (Micro-F1 score, %) on event detection and classification on 5 learning sessions. We highlight the
best scores in bold and the second best with underline. † indicates approaches with experience replay.

Few-NERD (Detection) Few-NERD (Classification)

Session 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

ER† (Wang et al., 2019) 57.7 45.7 45.5 39.7 34.1 28.3 23.7 23.5 93.7 60.6 49.9 42.4 38.4 32.3 30.0 26.0
KCN† (Cao et al., 2020) 58.1 46.2 39.0 41.4 31.0 27.0 23.9 18.8 92.0 62.4 48.0 38.0 29.6 23.4 27.1 20.6
KT† (Yu et al., 2021) 57.7 46.8 44.0 42.5 35.9 26.0 24.9 23.3 93.3 58.7 51.2 41.1 34.3 25.6 20.9 20.2
EMP† (Liu et al., 2022) 58.9 47.0 45.9 42.0 36.0 31.8 29.8 24.2 94.0 52.0 39.7 32.0 26.3 22.0 24.6 17.6
CRL† (Zhao et al., 2022) - - - - - - - - 93.4 80.2 77.0 72.3 68.1 62.4 59.7 58.4

DRIFTED-BERT 56.2 40.9 36.5 30.7 25.6 21.6 19.8 15.5 93.7 48.4 34.4 28.8 22.3 17.5 15.2 12.5
ICE (Ours) - - - - - - - - 93.7 82.5 77.0 72.0 69.5 67.3 65.2 61.7
ICE-PL (Ours) - - - - - - - - 93.7 51.6 37.6 31.0 25.0 21.4 19.1 17.6
ICE-O (Ours) 56.2 57.8 61.7 64.2 65.6 67.3 68.9 68.9 93.5 86.6 83.8 80.4 78.1 76.5 75.4 71.9
ICE-PL&O (Ours) 56.2 54.9 57.1 58.2 58.9 59.7 60.6 58.7 93.5 84.6 80.3 75.1 71.9 68.7 66.0 60.3
ICE-O+TFE&ER†(Ours) 50.7 42.2 45.0 45.4 46.2 48.7 47.5 47.1 94.2 87.7 86.5 83.9 82.0 81.7 80.2 76.1

Upperbound (BERT-FFE) - - - - - - - 72.3 - - - - - - - 73.5
Upperbound (BERT-FT) - - - - - - - 78.8 - - - - - - - 80.0

Table 3: Results (Micro-F1 score, %) on named entity recognition and classification on 8 learning sessions. We
highlight the best scores in bold and the second best with underline. † indicates approaches with experience replay.

comparing the performance change on the same
set of classes in two continuous sessions, e.g., the
F-score on the new classes (Ck) learned in session
k and the F-score on the classes (Ck) from the pre-
vious session after learning in session k+1, we can
quantify how much the classifier is drifted. From
Table 1, the performance of DRIFTED-BERT on old
classes after learning on a new session is always de-
creased dramatically, verifying that classifier drift
does occur in class-incremental learning and leads
to severe forgetting. On the other side, our solu-
tions, especially ICE-O, consistently retain similar
performance on the old classes from the previous
session after learning on a new session, demonstrat-
ing that it effectively alleviates the classifier drift
and the forgetting issue. Besides, we find that the
ICE-PL variant suffers from a considerable perfor-
mance drop on both new and old classes, which
indicates freezing previous classifiers’ parameters
while preserving the logits of previously learned
classes cannot address the classifier drift and forget-
ting problems. Note that although we only showed
the results on event classification and detection on
MAVEN, the conclusions are very consistent for

other tasks and datasets as shown in Appendix B.1.

5.3 RQ2: How to Alleviate Classifier Drift
and Forgetting?

To answer RQ2, we evaluate the effectiveness of
our proposed approaches to mitigating classifier
drift and catastrophic forgetting.

Quantitative Comparison We conduct an exten-
sive quantitative comparison of the baselines and
our approaches on the 6 class-incremental IE tasks.
From Table 2, 3 and 4, we can see that: (1) our
approaches, especially ICE-O, without adopting
experience replay, significantly and consistently al-
leviate the forgetting issue and show a remarkable
improvement (i.e., ranging from 4.6% - 44.7% ab-
solute F-score gain) over the previous state-of-the-
art methods that are all based on experience replay.
Notably, ICE-O achieves performance that is even
close to the supervised BERT-FFE upperbound on
most of the classification and detection tasks. (2)
Among the four approaches, ICE-O consistently
outperforms other variants on all the classification
and detection tasks, demonstrating that introduc-
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TACRED (Detection) TACRED (Classification)

Session 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

ER† (Wang et al., 2019) 29.8 39.3 34.1 31.8 32.9 29.1 31.7 28.1 25.3 26.0 87.8 78.2 74.4 66.2 62.8 56.3 59.7 55.7 50.6 49.1
KCN† (Cao et al., 2020) 29.8 38.0 29.9 27.7 23.7 20.4 22.3 16.4 14.1 15.7 87.8 78.2 72.5 61.9 59.7 51.5 54.8 46.1 39.0 36.0
KT† (Yu et al., 2021) 29.8 38.9 28.9 27.8 24.7 19.4 22.0 17.2 13.7 16.0 87.8 78.4 74.6 62.1 57.0 49.5 51.2 43.1 36.3 34.0
EMP† (Liu et al., 2022) 26.5 39.1 31.8 30.3 30.1 23.8 31.3 23.8 21.3 21.1 88.0 54.2 44.5 37.4 32.4 29.9 35.6 33.8 21.1 27.5
CRL† (Zhao et al., 2022) - - - - - - - - - - 88.7 82.2 79.8 74.7 73.3 71.5 69.0 66.2 64.0 62.8

DRIFTED-BERT 28.9 36.7 27.7 26.5 21.8 17.4 21.2 17.6 13.7 14.3 88.8 51.0 30.9 27.0 17.2 17.8 19.0 14.7 10.8 14.3
ICE (Ours) - - - - - - - - - - 88.8 77.8 73.4 67.5 60.7 55.6 56.8 52.6 51.1 49.2
ICE-PL (Ours) - - - - - - - - - - 88.8 52.8 36.9 32.2 27.2 24.4 28.6 26.0 22.9 22.7
ICE-O (Ours) 28.9 35.8 35.4 37.5 37.2 38.2 40.6 40.2 39.8 40.1 87.5 85.7 83.1 81.4 78.1 75.8 76.1 72.0 70.0 67.4
ICE-PL&O (Ours) 28.9 34.5 32.4 33.0 30.3 30.0 32.0 30.9 29.5 29.1 87.5 83.2 76.7 71.2 64.6 57.0 58.3 54.2 47.2 44.9
ICE-O+TFE&ER†(Ours) 33.4 13.2 12.6 14.8 16.4 18.8 22.4 24.5 26.1 27.7 95.2 92.1 91.2 90.8 88.6 86.1 86.3 83.6 82.7 81.4

Upperbound (BERT-FFE) - - - - - - - - - 51.2 - - - - - - - - - 73.3
Upperbound (BERT-FT) - - - - - - - - - 61.0 - - - - - - - - - 86.9

Table 4: Results (Micro-F1 score, %) on relation detection and classification on 10 learning sessions. We highlight
the best scores in bold and the second best with underline. † indicates approaches with experience replay.

ing negative instances during training can constrain
the updates in the classifier, and consequently miti-
gate classifier drift and forgetting. (3) Persevering
the logits of previous classes without updating the
previous classifiers hurts the performance on most
tasks, by comparing ICE-PL with ICE and com-
paring ICE-PL&O with ICE-O. This observation
is consistent with our findings in Section 5.2. (4)
Previous methods generally perform worse than
our solutions even with experience replay. The
possible reasons include overfitting to the stored
examples in the small memory buffer or the regu-
larization from replay may not be effective enough
to mitigate the forgetting.

Comparison with CRL (Zhao et al., 2022) Note
that, among all the baselines, CRL consistently out-
performs others on the classification tasks. CRL is
based on a prototypical network where each class is
represented with a prototype computed from an em-
bedding space and performs the classification with
the nearest class mean (NCM) classifier. Compared
with other Softmax-based classification approaches,
CRL can accommodate new classes more flexibly
without any change to the architecture. However,
it still suffers from the semantic drift (Yu et al.,
2020) problem as the embedding network must be
continually updated to learn new classes, and it is
non-trivial to adapt it to detection tasks where an
Other class is involved under the class-incremental
learning setting and the meanings of Other in dif-
ferent learning sessions are also different.

Comparison with Trainable Feature Extractor
We also investigate if our proposed approaches can
be further improved by tuning the BERT-based fea-
ture extractor. However, it naturally leads to forget-
ting as demonstrated by previous studies (Wang
et al., 2019; Cao et al., 2020; Yu et al., 2021).

Thus, following these studies, we adopt experi-
ence replay and design a new variant named ICE-
O with Tunable Feature Extractor and Experience
Replay (abbreviated as ICE-O+TFE&ER), which
tunes the BERT-based feature extractor and adopts
the same replay strategy as ER that preserves 20
samples for each class. From Table 2, 3 and 4, ICE-
O+TFE&ER significantly improves over ICE-O
and achieves comparable performance to the super-
vised BERT-FT upperbound on all the classifica-
tion tasks. However, ICE-O+TFE&ER performs
much worse than ICE-O on all the detection tasks.
We hypothesize that this is due to the meaning shift
of the Other class when incrementally training it
on a sequence of learning sessions. Experience
replay may not be enough to constrain the feature
extractor to handle the Other class properly.

5.4 Analysis of Drifting Patterns

To take a closer look into how the classifier drift
leads to forgetting and verify the two hypothetical
drifting patterns we discuss in Section 4.1, we ana-
lyze the output logits (i.e., the scores before Soft-
max) from the old and new classifiers for DRIFTED-
BERT and our ICE, ICE-PL, and ICE-O. Specifi-
cally, we take the test samples whose ground truth
labels are learned in Session 1 (denoted as X 1

test),
for analysis. Every time the classifier is trained on
a new session, we evaluate the classifier on X 1

test,
and then take (1) the logit of the gold class (Gold),
and (2) the maximum logit from the new classifier
(NCP), i.e., New Classifier’s Prediction, for analy-
sis. For each type of logit, we report the average of
the logits on all the samples in X 1

test.
We have the following findings: (1) By exam-

ining the Gold logits and the logits from the new
classifier (NCP) of DRIFTED-BERT, we observe
that every time a new classifier is added and trained
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Figure 3: Analysis of output logits on the event trigger
classification task on MAVEN. Gold refers to the gold
logit and NCP refers to the maximum logit from the
new classifier. We keep track of how these two types of
logits change throughout 5 learning sessions.

on the new session, the new classifier incrementally
outputs higher logits than those in the previous ses-
sion on X 1

test (blue solid line), whereas the Gold
logits first decline a bit and stay at a certain level
in the remaining sessions (blue dashed line). This
observation confirms that two possible drifting pat-
terns (i.e., new logit explosion and diminishing old
logit) exist, and they can happen simultaneously
and cause the new classifier overshadows the previ-
ously learned classifiers, which consequently leads
to forgetting. (2) We find that while the old classi-
fiers are not updated in ICE-PL, the new logit explo-
sion issue gets even more severe (orange solid line),
which explains why ICE-PL performs worse than
ICE and ICE-O. We hypothesize that the presence
of previous logits may encourage the new classi-
fier to predict larger logits. (3) When the classifier
in each session is trained individually instead of
collectively (i.e., in ICE and ICE-O), the Gold log-
its from the old classifiers stay at a constant level
(red dashed lines), whereas the logits from the new
classifier are at a relatively lower level (green and
red solid line). As such, the new classifier’s logits
do not have much impact on those of old classes,
which mitigates the drift and forgetting.

5.5 The Effect of the Logit for Other Class

Throughout all the experiments, we set the logit for
Other class δ as 0 constantly. In this section, we
further discuss the effect of the value of δ, and the
effect of tuning the Other classifier. We show the
results of event detection on MAVEN based on dif-
ferent fixed values or a tunable value of δ in Table 5.
We found that the value of Other class’s logit does

δ 0 1 5 10 -1 -5 -10 Tune

F1 61.6 61.5 61.6 61.0 61.4 60.8 60.2 56.5

Table 5: Results (Micro-F1 score, %) on the effect of
the Other class’s logit on the event detection task on
MAVEN. We show the performance of the models that
have learned all 5 sessions. “Tune” means we used a
tunable logit for Other class instead of a fixed value.

not affect the model’s performance much as long
as it is fixed. However, we noticed a significant
performance decrease if we continually tuned it
with a classifier, demonstrating that it is necessary
to fix the Other class’s logit during the continual
learning process in our approach.

5.6 Comparison with Recent LLMs

More recently, very large language models (LLMs)
such as ChatGPT (OpenAI, 2022) demonstrate
strong in-context learning ability without the need
of gradient update. Thus, class-incremental learn-
ing may also be tackled as a sequence of in-context
learning. However, several recent studies (Gao
et al., 2023; Qin et al., 2023) have benchmarked
several LLMs with in-context few-shot learning
on various IE tasks and show worse performance
than our approach. Our approach can efficiently
achieve a good performance that is close to the su-
pervised performance by only finetuning the last
linear layer using a much smaller frozen BERT
backbone. More critically, the knowledge LLMs
are often bounded by the training data, whereas the
goal of our continual learning approach focuses on
incorporating up-to-date information into models.

6 Conclusion

In this paper, we investigate the answers and the
solutions to the research questions that how the
classifier drift alone affects a model in the class-
incremental learning setting, and how to alleviate
the drift without retraining the model on previous
examples. We, therefore, propose to train a classi-
fier individually for each task and combine them
together during inference, such that we can max-
imally avoid the drift in the classifier. Extensive
experiments show that our proposed approaches
significantly outperform all the considered base-
lines on both class-incremental classification and
detection benchmarks and provide super-strong
baselines. We hope this work can shed light on
future research on continual learning in broader
research communities.
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Limitations

Our approaches mainly leverage a fixed fea-
ture extractor together with a set of individually
trained classifiers to mitigate catastrophic forget-
ting whereas a tunable feature extractor may also
be helpful and complement the individually trained
classifiers, so a future direction is to design ad-
vanced strategies to efficiently tune the feature ex-
tractor in combination with our proposed ICE based
classifiers. In addition, we mainly investigate the
classifier drift and demonstrate the effectiveness
of our solutions under the class-incremental con-
tinual learning setting. Another future direction
is to explore similar ideas under other continual
learning settings, e.g., task-incremental learning,
online learning, or the setting where new sessions
also contain annotations for old classes.
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A More Details on Experiment Setup

A.1 Details of the Datasets
Named Entity We use Few-NERD (Ding et al.,
2021), a large-scale named entity recognition
(NER) dataset to evaluate class-incremental named
entity recognition and classification. Compared
with the datasets used in previous continual NER
works (Zheng et al., 2022), Few-NERD has a more
diverse range of entity types and finer granularity,
containing 8 coarse-grained and 66 fine-grained
entity types. Thus, it is a better benchmark to study
continual NER. We construct two settings for the
NER task: (1) a detection task where the model
is required to examine every token in the text and
classify each of them into a learned positive en-
tity type or Other, and; (2) a classification task
where the positive candidate entity mentions have
been provided and the model only needs to assign
a learned entity type to the given candidate. Fol-
lowing Yu et al. (2021), we split the dataset into 8
learning sessions with the greedy algorithm such
that each session contains the roughly same number
of training instances.

Relation We use TACRED (Zhang et al., 2017)
to evaluate relation detection and classification
tasks. TACRED is a large-scale relation extraction
dataset that contains 42 relations. In the previous
continual relation classification setting (Cui et al.,
2021), they ignore the long-tail distribution and
assume each relation contains the same number of
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instances. We instead use the original train/dev/test
split in TACRED where relations are imbalanced.
We build two settings for the relation task: (1) a
detection task where the model needs to assign an
ordered entity mentions with a seen positive rela-
tion type or Other, and; (2) a classification task
that assumes the given entity pair must belong to
one of learned relation, and the model is only re-
quired to predict a label it has learned. We follow
the previous setting (Zhao et al., 2022) to split the
dataset into 10 learning sessions, where we drop
the relation with the fewest instances such that each
session contains 4 positive relation types.

Event Trigger We adopt the following two
event detection datasets for evaluation: (1)
MAVEN (Wang et al., 2020): MAVEN is a large-
scale event detection dataset with 169 event types
(including Other) in the general domain, and; (2)
ACE-05 (Doddington et al., 2004): ACE 2005
English dataset contains 34 event types (includ-
ing Other). For both datasets, we follow Yu et al.
(2021) to use the same train/dev/test split and use
the same ontology partition to create 5 incremen-
tal learning sessions for each dataset, where each
session contains approximately the same number
of training instances. We create two settings for
event trigger: (1) two event detection tasks, where
the model is required to evaluate each token in the
sentence and assign it with a learned event type
or Other, and; (2) a classification task where the
model only needs to classify a positive trigger men-
tion into a learned event type without considering
Other. We did not construct the classification task
for the ACE dataset as the majority of instances
only contain the Other type and removing such
instances will result in a very small dataset.

A.2 Baselines

We use the following baselines for our experiments:
(1) DRIFTED-BERT: we build a baseline with a
fixed pre-trained BERT as the feature extractor and
only train its classification layer. We do not apply
any other continual learning techniques to it. We
primarily use this baseline to study the classifier
drift discussed in this work. (2) ER (Wang et al.,
2019): experience replay is introduced to contin-
ual IE by (Wang et al., 2019). In this work, we
use the same strategy as in (Liu et al., 2022) to
select examples to store in the memory and replay
them in subsequent sessions. (3) KCN (Cao et al.,
2020): the original work proposes a prototype-

based method to sample examples to store for re-
play as well as a hierarchical knowledge distillation
(KD) to constrain the model’s update. We adapt
their hierarchical distillation along with ER as the
KCN baseline. (4) KT (Yu et al., 2021): a frame-
work that transfers knowledge between new and old
event types. (5) EMP (Liu et al., 2022): propose
a prompt-based technique to dynamically expand
the model architecture to incorporate more classes.
(6) CRL (Zhao et al., 2022) proposes consistent
representation learning to keep the embeddings of
historical relations consistent. Since CRL is de-
signed for the classification tasks without Other,
we only evaluate this baseline on the classifica-
tion tasks we build. (7) Upperbound: we train a
model jointly on all classes in the dataset as an up-
perbound in the conventional supervised learning
setting. We devise two different upperbounds: (i)
BERT-FFE is the upperbound of our ICE-O model,
where we only train the classifier and the feature
extractor is fixed. The negative instances are used
in the classification tasks without Other; and (ii)
BERT-FT is the upperbound that trains both the
whole BERT and the classifier.

A.3 Implementation Details

We use the pre-trained BERT-large-cased (Devlin
et al., 2019) as the fixed feature extractor. We use
AdamW (Loshchilov and Hutter, 2019) as the op-
timizer with the weight decay set to 1e − 2 and
a learning rate of 1e − 4 for detection tasks and
5e− 4 for classification tasks. We apply gradient
accumulation and set the step to 8. In each learning
session Dk, we establish a limit of 15 maximum
training epochs. We also adopt the early stopping
strategy with a patience of 3, where training will be
halted if there is no improvement in performance
on the development set for 3 epochs. We set the
constant value for the Other class δ to 0. We ap-
ply the experience replay strategy with the same
setting as in (Liu et al., 2022) to ER, KCN, KT,
and EMP as an assistant technique to mitigate for-
getting. We store 20 examples for each class using
the herding algorithm (Welling, 2009) and replay
one stored instance in each batch during training to
limit the computational cost brought by rehearsal.
For CRL, we use the same sample selection and
replay strategy as in the original work. For base-
lines, we adopt a frozen pre-trained BERT-large
and a trainable Multi-Layer Perceptron (MLP) as
the feature extractor.
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B More Discussions

B.1 More Analysis on Old and New Type
Performance

Table 6 and 7 show the performance of old and
new classes for each learning session of the class-
incremental named entity detection and classifica-
tion and class-incremental relation detection and
classification tasks.
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Few-NERD (Detection) Few-NERD (Classification)

Session Type 1 2 3 4 5 6 7 8 Type 1 2 3 4 5 6 7 8

ER† (Wang et al., 2019)
New 56.9 65.3 75.9 55.8 61.9 56.5 59.35 64.0 New 88.39 74.2 53.8 42.1 33.3 25.0 34.6 26.0

Acc-Old - 34.4 11.0 18.1 20.3 21.0 23.9 19.1 Acc-Old - 50.6 52.9 33.7 32.7 34.2 31.3 33.9
Prev-Old - 32.0 10.3 41.9 39.3 18.8 38.7 36.3 Prev-Old - 48.9 58.1 48.8 51.0 37.3 42.3 46.1

KCN† (Cao et al., 2020)
New 64.3 58.6 57.9 61.3 56.3 76.0 69.8 56.0 New 88.3 75.1 63.1 46.5 33.4 24.2 31.1 25.9

Acc-Old - 33.0 35.5 18.6 12.8 6.5 6.5 11.9 Acc-Old - 57.5 52.4 33.8 29.4 27.2 25.5 21.92
Prev-Old - 24.44 39.8 18.6 17.9 11.9 25.0 44.6 Prev-Old - 56.1 61.5 49.1 49.0 46.6 36.8 42.0

KT† (Yu et al., 2021)
New 64.3 60.4 57.4 62.3 56.5 75.7 69.2 58.2 New 88.3 73.1 60.6 45.4 34.7 24.1 34.0 24.8

Acc-Old - 29.6 34.1 18.9 13.7 6.4 6.4 8.6 Acc-Old - 51.2 49.6 27.6 30.4 27.6 24.4 26.7
Prev-Old - 17.3 39.8 21.9 25.0 13.8 22.0 35.0 Prev-Old - 49.3 58.8 45.8 48.8 34.7 33.1 43.6

EMP† (Liu et al., 2022)
New 61.9 56.6 53.1 58.4 55.1 74.1 64.4 53.8 New 88.1 75.4 65.7 49.1 37.2 31.7 40.4 23.1

Acc-Old - 37.2 41.0 36.9 32.3 18.7 25.0 26.5 Acc-Old - 49.6 56.5 46.3 44.6 44.7 39.7 10.1
Prev-Old - 27.7 40.1 36.22 32.8 22.5 40.2 48.8 Prev-Old - 46.7 70.1 58.6 56.0 47.9 47.1 15.5

DRIFTED-BERT

New 55.6 67.4 75.5 58.2 60.6 56.4 59.0 59.4 New 88.1 69.2 60.5 44.3 32.0 24.4 36.8 21.2
Acc-Old - 5.5 3.0 1.2 1.8 2.0 1.4 2.4 Acc-Old - 9.0 4.4 1.8 10.7 3.6 6.4 6.3
Prev-Old - 0 0 0 0 0 0 6.34 Prev-Old - 3.8 3.7 6.2 29.9 14.1 16.5 14.0

ICE (Ours)
New - - - - - - - - New 88.1 85.4 85.5 61.2 63.7 67.4 65.4 59.5

Acc-Old - - - - - - - - Acc-Old - 79.9 76.4 72.0 65.2 63.7 60.8 59.0
Prev-Old - - - - - - - - Prev-Old - 79.1 80.4 83.4 59.3 62.0 64.8 63.0

ICE-PL (Ours)
New - - - - - - - - New 88.1 70.9 61.0 45.0 33.4 26.2 37.0 21.2

Acc-Old - - - - - - - - Acc-Old - 20.6 6.7 5.2 16.1 8.2 9.9 11.8
Prev-Old - - - - - - - - Prev-Old - 16.1 9.2 36.6 46.4 36.0 42.5 41.5

ICE-O (Ours)
New 55.6 69.0 76.3 61.0 64.2 62.7 64.0 68.8 New 87.8 89.1 89.3 71.3 74.9 74.5 72.2 70.7

Acc-Old - 58.2 62.1 62.9 63.4 64.4 64.3 63.8 Acc-Old - 82.5 82.1 78.5 74.3 72.9 70.6 67.9
Prev-Old - 57.2 69.1 76.4 61.0 64.7 65.6 64.6 Prev-Old - 81.9 86.3 87.1 69.8 73.7 71.7 69.4

ICE-PL&O (Ours)
New 55.6 65.0 73.3 50.1 57.1 49.0 51.4 56.7 New 87.8 87.9 89.1 66.5 68.9 61.3 63.2 58.9

Acc-Old - 58.2 60.2 60.6 57.4 58.2 56.4 51.5 Acc-Old - 80.4 80.1 74.0 67.4 63.8 57.2 53.2
Prev-Old - 57.4 65.4 74.2 51.0 59.5 56.3 50.3 Prev-Old - 79.7 84.9 85.0 65.1 68.1 59.2 60.2

Table 6: Analysis of the performance (Macro-F1 %) on new and old classes on the class-incremental named entity
detection and classification tasks on Few-NERD.

TACRED (Detection) TACRED (Classification)

Session Type 1 2 3 4 5 6 7 8 9 10 Type 1 2 3 4 5 6 7 8 9 10

ER† (Wang et al., 2019)
New 29.2 19.8 23.2 28.2 27.1 10.2 47.5 10.6 36.6 24.1 New 93.9 53.9 43.6 50.9 33.9 22.2 48.9 21.6 43.0 27.3

Acc-Old - 32.9 26.1 16.6 18.7 19.7 15.9 17.3 17.0 17.5 Acc-Old - 69.5 61.4 49.3 36.4 41.9 39.1 34.9 41.1 40.1
Prev-Old - 9.3 21.5 2.2 27.5 32.5 21.4 43.48 13.5 42.5 Prev-Old - 63.8 68.9 54.6 56.3 49.5 43.2 61.3 31.3 66.4

KCN† (Cao et al., 2020)
New 29.2 19.8 22.1 28.3 27.6 8.2 38.8 11.3 34.9 21.7 New 95.3 56.4 40.1 49.0 33.9 20.8 45.0 23.5 49.0 21.7

Acc-Old - 30.1 15.9 6.9 10.8 10.2 13.2 8.1 7.6 6.9 Acc-Old - 65.1 49.4 37.0 35.7 28.0 30.0 30.2 32.6 28.8
Prev-Old - 24.9 10.2 0.6 23.1 34.8 27.4 27.5 12.9 40.5 Prev-Old - 57.6 43.7 46.9 58.6 43.4 32.0 59.4 32.9 68.3

KT† (Yu et al., 2021)
New 29.2 19.6 20.6 26.0 29.5 10.1 41.2 11.1 32.5 24.5 New 95.3 60.8 48.7 50.6 33.2 16.2 42.7 18.3 33.9 22.0

Acc-Old - 30.2 11.7 10.0 10.2 9.6 9.6 6.8 7.6 7.9 Acc-Old - 58.4 54.9 47.4 31.0 24.7 26.7 27.2 28.6 21.6
Prev-Old - 25.3 9.6 12.1 23.0 34.5 26.1 24.9 14.9 41.6 Prev-Old - 58.4 54.9 47.4 31.0 24.7 26.7 27.2 28.6 21.6

EMP† (Liu et al., 2022)
New 25.5 19.3 17.4 32.3 17.5 9.5 37.4 8.4 34.6 19.3 New 90.9 45.6 35.6 38.3 29.3 8.4 40.8 9.7 17.7 26.7

Acc-Old - 27.5 19.9 16.4 11.7 17.0 17.0 15.5 12.8 16.6 Acc-Old - 44.5 22.0 19.4 11.2 15.4 18.8 8.2 10.8 18.2
Prev-Old - 22.9 21.9 5.9 22.8 31.9 21.2 34.1 7.1 45.8 Prev-Old - 34.2 25.8 20.5 11.7 32.9 3.7 16.4 5.5 31.9

DRIFTED-BERT

New 28.7 16.0 19.3 20.2 21.8 11.3 43.2 8.6 40.7 20.0 New 93.6 57.4 35.6 32.4 29.9 13.0 36.3 7.3 18.3 12.3
Acc-Old - 8.0 3.9 7.0 4.6 4.4 1.8 5.0 4.7 5.8 Acc-Old - 18.6 5.7 4.6 2.1 4.6 6.4 3.1 5.5 6.9
Prev-Old - 1.3 1.8 15.6 12.4 16.7 0.0 36.3 9.0 36.0 Prev-Old - 0.0 1.9 6.3 3.5 22.5 17.4 13.8 10.8 47.1

ICE (Ours)
New - - - - - - - - - - New 93.6 75.3 33.6 43.8 47.2 24.3 49.8 26.8 58.1 30.3

Acc-Old - - - - - - - - - - Acc-Old - 73.7 55.6 43.9 36.1 34.0 31.2 31.7 30.2 31.2
Prev-Old - - - - - - - - - - Prev-Old - 68.4 56.3 27.3 45.1 46.5 20.3 50.1 26.8 57.4

ICE-PL (Ours)
New - - - - - - - - - - New 93.6 57.4 36.7 33.3 27.7 16.2 37.0 15.9 61.8 23.8

Acc-Old - - - - - - - - - - Acc-Old - 18.6 7.2 9.3 9.1 9.5 8.2 10.7 13.2 15.9
Prev-Old - - - - - - - - - - Prev-Old - 0.0 4.9 21.1 33.3 46.9 28.9 39.0 16.8 64.9

ICE-O (Ours)
New 28.7 16.4 19.3 28.5 29.4 20.2 42.2 7.3 38.2 26.1 New 92.7 78.0 45.6 61.3 61.0 34.5 64.2 33.5 70.0 33.8

Acc-Old - 31.0 23.0 23.1 24.5 26.5 26.3 26.5 26.2 26.4 Acc-Old - 86.4 71.3 60.4 58.0 55.0 50.8 48.0 46.8 45.0
Prev-Old - 29.9 16.2 19.8 29.3 30.6 22.3 42.2 7.4 38.1 Prev-Old - 84.2 73.6 44.7 61.1 54.5 30.0 63.9 33.2 69.9

ICE-PL&O (Ours)
New 28.7 17.2 18.1 20.3 16.5 7.7 35.1 6.4 34.8 15.2 New 92.7 67.9 50.0 55.8 43.5 19.8 53.8 24.8 57.0 21.4

Acc-Old - 33.1 23.4 22.3 18.7 19.4 18.9 19.7 20.4 21.6 Acc-Old - 81.5 62.0 50.4 38.9 31.1 28.1 29.2 27.2 26.5
Prev-Old - 30.5 17.5 19.8 22.2 18.1 8.2 33.9 7.2 36.4 Prev-Old - 78.6 67.2 49.1 46.3 50.9 21.5 53.2 24.2 61.0

Table 7: Analysis of the performance (Macro-F1 %) on new and old classes on the class-incremental relation
detection and classification tasks on TACRED.
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