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Abstract

Procedure planning, or the ability to predict a
series of steps that can achieve a given goal
conditioned on the current observation, is crit-
ical for building intelligent embodied agents
that can assist users in everyday tasks. Encour-
aged by the recent success of language models
(LMs) for zero-shot (Huang et al., 2022a; Ahn
et al., 2022) and few-shot planning (Micheli
and Fleuret, 2021), we hypothesize that LMs
may be equipped with stronger priors for plan-
ning compared to their visual counterparts. To
this end, we propose a language-first proce-
dure planning framework with modularized de-
sign: we first align the current and goal obser-
vations with corresponding steps and then use
a pre-trained LM to predict the intermediate
steps. Under this framework, we find that us-
ing an image captioning model for alignment
can already match state-of-the-art performance
and by designing a double retrieval model con-
ditioned over current and goal observations
jointly, we can achieve large improvements
(19.2% - 98.9% relatively higher success rate
than state-of-the-art) on both COIN (Tang et al.,
2019) and CrossTask (Zhukov et al., 2019)
benchmarks. Our work verifies the planning
ability of LMs and demonstrates how LMs can
serve as a powerful “reasoning engine” even
when the input is provided in another modal-
ity.1

1 Introduction

Developing autonomous agents of versatility and
flexibility requires the ability to produce plans on-
the-fly for a given task based on observations of
the current state. Procedure planning, as proposed
by (Bi et al., 2021), tests whether an agent can
predict the steps needed to bring a given initial
state into a given goal state, where both states are
specified with visual observations, as shown in Fig-
ure 1. Compared to planning in a closed-world

1Our code is available at https://github.com/
Lumos-Jiateng/LFP

with structured environments, procedure planning
with instructional videos provides an unstructured,
visually complex, and highly-detailed observation
of the world (i.e., visual observation space, pre-
sented as video instances) while asking the model
to predict high-level actions (i.e., action space,
highlighted in the green box).

To handle such a mismatch between the obser-
vation space and the action space, previous meth-
ods (Bi et al., 2021; Chang et al., 2020) have fo-
cused on learning a latent visual feature space from
visual observations that is more suitable for plan-
ning. However, learning the ideal latent space is
challenging since visual observations can differ
greatly due to changes in the background, actor,
or tools, even for the same task. For example, the
two observations in Figure 1 are highly dissimi-
lar although they are part of the same task making
salad. This makes it inherently difficult for models
to align visual observations to high-level actions,
not to mention reason and predict over multiple
steps to produce a plan.

Meanwhile, pre-trained language models (LMs)
show strong planning ability, as demonstrated by
their excellent performance for zero-shot (Huang
et al., 2022a) and few-shot text planning
tasks (Micheli and Fleuret, 2021). This inspires us
to think if planning in text feature space is a better
alternative to planning in visual feature space used
in prior work. Apart from the strong prior from lan-
guage model pretraining, the actions in procedure
planning have the dual representation of text and
labels (Zhao et al., 2022), which makes text space
more easily aligned with the action space, both of
which are more abstract than visual observations.

While the idea of converting visual input into
text and relying on language models has been ef-
fective in a series of multimodal tasks such as
image captioning and visual question answering
(VQA) (Zeng et al., 2022; Wang et al., 2022), the
case is different for procedure planning as (1) proce-
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Figure 1: Overview of our language first approach for procedural planning. Previous work performs planning in the
visual latent space, which can be difficult to learn due to the high variance of image features in the same step. We
propose to perform planning in the existing language latent space, which is more generalized and robust compared
to the visual variance.

dure planning was originally proposed as a vision-
only task instead of being inherently multi-modal;
(2) we attempt the transfer of the procedure rea-
soning and prediction ability of the LM instead of
simply extracting information from the images. As
shown in Figure 1, LM helps us predict the hardest
intermediate steps (Put the ingredients into
the bowl) which have little support from either
start or end observations.

The major challenge of employing language
models for procedure planning is how to map the
start and goal observations into text space without
losing salient information for planning. If the map-
ping is largely inaccurate, then even with the strong
reasoning ability of LMs, it might not be worth the
trouble of converting the problem into text space.

As the first exploration, we validate the effective-
ness of a simple baseline model in our language-
first planning framework, i.e., using image cap-
tioning to convert visual observations into text to
prompt LMs. We find that by using image caption-
ing we can already achieve performance compa-
rable to state-of-the-art models. However, closer
examination shows that image captioning is not suf-
ficient to capture visual details across the current
and goal observation (especially those related to
movement and state change) and in turn does not
effectively leverage the planning power of LMs.

Rooted in this observation, we propose to per-
form direct alignment from observations to steps by
retrieving the most relevant step from the dataset-
wide candidate step pool. Since visual observa-
tions can be highly diverse for the same step, for

the modularized framework, we design a double
retrieval model that jointly retrieves the first and
the last steps corresponding to the start and goal
observation respectively. Using both the visual ob-
servations (such as the video input of the start step
and goal step in Figure 1) and the task name (such
as make salad), we can further constrain the search
space and identify the steps with higher accuracy.

Experiments on two benchmark datasets
COIN (Tang et al., 2019) and Crosstask (Zhukov
et al., 2019) show that our proposed language-first
framework can improve procedure planning effec-
tiveness under all settings. In particular, our best
model, which represents each observation by a
montage of multiple frames and utilizes the double
retrieve model, achieves the best results and yields
19.2% - 98.9% relatively higher success rate than
the state-of-the-art. This demonstrates the strong
planning ability of pre-trained LMs and shows the
potential of using LMs as a general “reasoning en-
gine” or “planning engine”, even in tasks where
images are provided as input.

In summary, our contributions are as follows:

1. We verify the effectiveness of planning in text
space compared to visual space by employing
language models for procedure planning.

2. We design two models for adapting language
models for procedure planning: an image cap-
tioning based baseline model performs ex-
plicit conversion to generate prompts and a
modularized framework which split the pre-
diction into two stages.
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3. On two instructional video datasets COIN and
Crosstask, we show that our proposed text
space planning approach can significantly out-
perform prior methods, in certain cases dou-
bling the plan success rate.

2 Related Work

Instructional Procedure Planning Introduced
by (Chang et al., 2020), the procedure planning
task aims at predicting the intermediate steps (ac-
tions) given a start visual observation and a goal
visual observation. The key challenge of this task
lies in its unstructured, highly diverse observations
which are unsuitable for directly planning over. To
tackle this challenge, most previous approaches
(Bi et al., 2021; Chang et al., 2020; Srinivas et al.,
2018; Sun et al., 2022) attempt to learn a latent
space from visual observations by a supervised
imitation learning objective over both the actions
and the intermediate visual observations. More
recently, P3IV(Zhao et al., 2022) observes that ac-
tions can be treated as both discrete labels and
natural language. By using a pretrained vision-
language model to encode the actions as text, P3IV
achieves higher planning success rate using only
action-level supervision. P3IV can be seen as an
attempt to map the action text into visual space to
provide more stable supervision. In comparison,
our model maps visual observations into text space.

Pre-trained Language Models for Planning
Recent work has shown the potential of language
models for text-based planning tasks. Language
models pre-trained on a large internet-scale cor-
pus encodes rich semantic knowledge about the
world and are equipped with strong low-shot rea-
soning abilities. In the effort of connecting lan-
guage models with embodied AI, pioneering work
on text-based planning (Côté et al., 2018; Shrid-
har et al., 2020; Micheli and Fleuret, 2021) shows
that learning to solve tasks using abstract language
as a starting point can be more effective and gen-
eralizable than learning directly from embodied
environments. More recently, (Ahn et al., 2022;
Huang et al., 2022b; Yao et al., 2022; Huang et al.,
2022a) further show that using large language mod-
els as out-of-the-box planners brings significant
benefits to a wide range of embodied tasks, such as
navigation and instruction following.

In this paper, we utilize language model’s plan-
ning ability to solve cross-modal planning tasks.
We finetune a pre-trained BART model (Lewis

et al., 2019) as a planning expert.

3 Method

In this section, we introduce our language-first ap-
proach to procedure planning. We first investigate
whether language models can be applied for the
task of procedure planning using text-only input
(Section 3.2). Building upon this model, we ex-
plore two different methods to map the visual ob-
servations to their corresponding steps.

In Section 3.3 we introduce our baseline model
which incorporates a pre-trained image-captioning
model and a language model to do procedure plan-
ning task. This baseline yields results comparable
to the state-of-the-art approaches, we identified its
deficiencies by giving examples.

In Section 3.4 we introduce our modularized
framework which first utilizes a conditional double
retrieval model to retrieve the most similar step for
the start and goal visual observations jointly. Then
the retrieved steps will be plugged into the language
model to predict all the intermediate steps.

3.1 Task Formulation

As shown in Figure 1, given a current visual ob-
servation o0, and a goal visual observation oT , pro-
cedure planning requires the model to plan a se-
quence of actions {a1, · · · , aT } that can turn the
current state into the goal state, where T is the
planning horizon. Additionally, every task has an
overall goal, or task name, g such as Replace a
lightbulb.

During training, two types of supervision are
available: visual supervision and action supervi-
sion. Visual supervision refers to the visual obser-
vations at each intermediate timestep {o1, ..., oT }.
Action supervision refers to the corresponding ac-
tion labels {a1, ..., aT }. In particular, ai is the ac-
tion that transforms the observed state from oi−1

into oi. Each action can be interpreted as a dis-
crete label (Action 33) or a short piece of text
(Remove the lampshade). In this paper, we use
the terms action and step interchangeably. Follow-
ing P3IV (Zhao et al., 2022), in our work, we only
use action supervision during training.

3.2 Text-Based Planning Model

Language models are trained with the self-
supervised objective of recovering the original text
given a partial or corrupted text sequence. To adapt
language models for our use case where the out-
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Figure 2: In the left we show the architecture of our language-first baseline model, which uses image captioning to
transform images into the text space. In the right we show the example challenging cases for this approach: (a) the
generated caption may not be able to capture fine-grained details of an image; (b) the generated caption can hardly
relate to target steps/actions.

put action descriptions are of variable token length,
we employ a pretrained encoder-decoder model
BART (Lewis et al., 2019).

Assuming that we can perfectly map the input
visual observations to actions, the input x to the
BART model will be a prompt containing the task
g, the first action a1, the last action aT , and the
prediction horizon T . Here, the actions are inter-
preted as a short piece of text. The model will then
be fine-tuned to sequentially predict all of tokens
a1i , · · · , ami that comprise each of the intermediate
action descriptions ai. This factorization allows
us to train the language model using cross-entropy
loss over each token aji .

During inference, we face two challenges: (1)
restricting the language model’s output to the set
of feasible actions and (2) allowing for diversity in
the generated plans.

The first challenge is due to the fact that the lan-
guage model predicts a distribution over the entire
vocabulary at each decoding step, which makes the
output domain essentially the space of all possi-
ble text strings. We experiment with two methods,
namely projection and constrained decoding. In the
projection method, similar to (Huang et al., 2022a),
we first generate the entire action sequence using
beam search and then for each predicted action, we
project it to the most similar viable action based on
SentenceBERT (Reimers and Gurevych, 2019), em-
bedding cosine similarity between predicted steps
and all the candidate steps. In the constrained de-

coding approach, we first construct a Trie of tokens
using all of the viable actions. During decoding,
we look up the Trie to check which tokens are valid
and suppress the probability of the other tokens,
effectively reducing the possible output space.

3.3 Baseline Model
A straightforward way to use LMs for procedure
planning is to first convert the visual observations
into text. We adopted a pre-trained image caption-
ing model to do this. As shown in Figure 2, we
first conduct image captioning for both the start
and goal images. Then, the captions are converted
into a prompt to be fed into a generative language
model to predict the intermediate steps.

3.4 Modularized Framework
Our baseline model yields results comparable to
state-of-the-art models. However, large amounts
of inaccurate captions are found as shown in the
right part of Figure 2. This leads to the design
of our modularized model, where we first employ
a pretrained vision-language model to align the
visual observation to the most similar step, directly
mapping it to the text space and label space.

We formulate the first step as a retrieval prob-
lem over all possible actions in the dataset. Ini-
tially, we tried to retrieve the start and goal actions
independently conditioned on the corresponding
observations:

â1 = f(o0), âT = f(oT ) (1)
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Figure 3: The architecture of our modularized framework. The right part is a double retrieval model, whose input
includes both the start step and the end step (presented as images), as well as a textual prompt. The left side is
based on a language model finetuned on ground truth steps, which is designed to predict the intermediate steps. By
integrating these two models, we are able to perform procedure planning task.

However, the retrieval performance using an off-
the-shelf vision-language model is far from satis-
factory even after fine-tuning on our target dataset.
This is due to the high visual variance within the
same action class (same action can happen in differ-
ent backgrounds and involving visually dissimilar
objects) and relatively low visual variance within
the same observation trajectory (frames of the same
actor in the same environment).

Thus we propose to make the retrieval problem
less ambiguous and more constrained by retrieving
the start and goal actions jointly, namely the double
retrieval model.

â1, âT = f(o0, oT ) (2)

An illustration of the model is shown in Figure
3.

Double retrieval input The input to the model
is a pair of visual observations (o0, oT ) and a text
prompt specifying the task name d and the planning
horizon T : The task is g and there are T −2
steps in between.

Vision-Language cross-attention model We use
pre-trained BLIP (Li et al., 2022) as the basis for
our retrieval model. The input observations and
prompt are first encoded by the image encoder and

text encoder respectively and then passed through
a cross-attention module to model their interaction.
Then, the fused representation for the start obser-
vation and the goal observation will be passed to
a merging layer to combine the information from
both images. This merging layer is implemented
as a single linear projection which maps the con-
catenated features into 768 dimensions.For each of
the observations, we use a classification head and a
language embedding head to output the predicted
action as a probability over a candidate set p(a),
and as a text embedding ĥ, respectively. The loss
function is a combination of the cross-entropy ac-
tion classification loss Laand the text embedding
contrastive loss Ll.

La = −
N∑

i=0

ai log p(ai) (3)

Ll = − log
exp(li · ĥ)∑N

j=0,j ̸=i exp(lj · ĥ)
(4)

where N is the number of the valid actions in
the dataset, li is the text embedding of the ground
truth label for this instance and lj are the text em-
beddings of all the other labels, which serve as
negative examples.
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4 Experiments

4.1 Experiment Setup

Datasets We evaluate on two mainstream
datasets of instructional videos including
COIN(Tang et al., 2019) and CrossTask(Zhukov
et al., 2019). COIN is a dataset containing
11827 videos with 180 different tasks and 46354
annotated video segments. Following previous
attempts (Zhao et al., 2022; Chang et al., 2020),
we adopt the 70%/30% split to create our training
and testing set. We use 20% of training data for
validation.

We followed the data preprocessing steps of the
procedure planning task(Chang et al., 2020) to se-
lect the start and goal visual observations, while
at the same time, we also adopt a multi-frame
dataset curation approach to boost our model’s abil-
ity. Apart from the original approach of getting the
start image and the goal image of the video seg-
ment directly, we also use a uniform sampling of
nine frames across the video and concatenate them
into one single image to represent the visual obser-
vation. We use this method to see whether a more
comprehensive visual feature would help in our
approach. Details about our data pre-processing
and parameter setting can be found in Appendix A
We report the results of both methods in our main
result table which is in Section 4.2.

Metrics Previous efforts regard the step predic-
tion for procedure planning tasks as a classifica-
tion task. Instead, we focus on generating each
step with a language model. It is certainly possi-
ble for the language model to generate steps that
have same meaning as the ground-truth steps but
of different textual descriptions. For example, the
language model may produce an output as “put all
the bed boxes together" while the correct prediction
is “put all bed boxes together". However, we only
consider predictions that are identical to ground
truth as successful. As a result of this evaluation
protocol, we are able to use similar metrics as pre-
vious work to ensure our results to be comparable.
Generally, our model will generate a sequence con-
taining several steps. The sequence is separated by
a separator “.” to distinguish different steps. We
use the first K steps as our final output for predic-
tions that have more steps than we want. In the
case of predictions with fewer steps than we would
like, we regard the last few predictions as empty
strings. The metrics that we adopt include:

• Success Rate (SR) considers a plan successful
only if it exactly matches the ground truth.

• Mean accuracy (mAcc) treats each step pre-
diction independently, so the order of the pre-
dicted steps matters.

• Mean Intersection over Union (mIoU). In this
evaluation, if one step is successfully pre-
dicted at anywhere in the procedure, this step
will be considered as correct.

Baselines We adopt state-of-the-art models as
baselines, including DDN (Chang et al., 2020),
PlaTe (Sun et al., 2022), Ext-GAIL (Bi et al., 2021)
and P3IV (Zhao et al., 2022).

We also include our image captioning base-
line with single frames as the visual representa-
tion (Captioning Baseline) and two variants of
our proposed approach. “Ours(multi-frame)” and
“Ours(single-frame)” employ our double retrieval
model and use multiple frames and single frames
as input respectively.

4.2 Main Results
The main results of our modularized framework
are shown in Table 1 and Table 2. Note that we use
neither projection nor constrained-decoding here
and we use the metrics which are talked about in
Section 4.1.

Notably, our model’s performance on COIN
greatly outperforms prior work, especially for the
success rate (SR) metric, which shows a near-2x
increase. According to our quantitative evaluation
results on COIN and CrossTask, we have the fol-
lowing observations:

1. The language first approach brings significant
accuracy improvement to procedure planning
tasks, especially for step number T =3.

2. Our modularized framework outperforms the
base model which considers vision-to-text
transformation and text planning indepen-
dently. It demonstrates that the two sub-
modules are complimentary and mutually ben-
eficial.

3. LMs demonstrate strong ability in planning
while the mapping from visual observations
to the text space remains a challenge. Also,
the performance of BART drops with an in-
creasing planning horizon due to variable exe-
cutable plans.
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T = 3 T = 4

Model SR mAcc mIoU SR mAcc mIoU

Random <0.01 0.94 1.66 <0.01 1.83 1.66
DDN(Chang et al., 2020) 12.18 31.29 47.48 5.97 27.10 48.46
PlaTe(Sun et al., 2022) 16.00 36.17 65.91 14.00 35.29 55.36
Ext-GAIL (Bi et al., 2021) 21.27 49.46 61.70 16.41 43.05 60.93
P3IV(Zhao et al., 2022) 23.34 49.96 73.89 13.40 44.16 70.01

Captioning Baseline 10.15 30.28 54.65 3.14 22.03 49.44
Ours(single-frame) 25.01 53.79 75.43 14.11 47.93 73.21
Ours(multi-frame) 30.55 59.59 76.86 15.97 50.70 75.30

Table 1: Procedure planning results (%) on CrossTask. The best results are shown in bold and the next best results
are underlined.

T = 3 T = 4

Model SR mAcc mIoU SR mAcc mIoU

Random <0.01 <0.01 2.47 <0.01 <0.01 2.32
DDN(Chang et al., 2020) 13.90 20.19 64.78 11.13 17.71 68.06
P3IV(Zhao et al., 2022) 15.40 21.67 76.31 11.32 18.85 70.53
Captioning Baseline 12.27 33.29 59.76 3.52 24.81 52.48
Ours(single-frame) 28.35 53.14 78.56 15.43 45.04 78.07
Ours(multi-frame) 30.64 54.72 80.64 18.52 49.31 80.32

Table 2: Procedure planning results (%) on COIN.

Dataset Horizon T SR mAcc mIoU

COIN
3 67.37 67.37 67.37
4 35.43 51.12 62.89

CrossTask
3 60.04 60.04 60.04
4 33.27 48.28 61.37

Table 3: Planning results when the start and goal step
are from the ground truth. The LM predicts the T − 2
intermediate steps.

4.3 Ablation Studies

We conduct detailed ablation studies to highlight
three points that support our overall design for this
framework: (1) on the pure text planning side, the
fine-tuned language model is stable when doing
generation in the text space with remarkable per-
formance. (2) our double retrieval approach excels
in different settings on the vision-to-text transfor-
mations. (3) similar to previous works, our model
has the ability of probabilistic modeling.

Step prediction with LMs The overall result of
directly planning in the text space is shown in Ta-
ble 3. We report the result of obtaining the inter-

mediate steps with the start and goal steps using
a fine-tuned language model. This result is rather
satisfying.

To verify the stability and quality of this genera-
tion, we further experiment with different decoding
strategies as discussed in Section 3.2.

The result of using projection and constrained-
decoding is shown in Table 4. We witness only
marginal increase in the overall accuracy when
adding constrained decoding, which proves that
LMs adapt well to the new data domain.

Double retrieval performance We present the
overall double retrieval performance of the first
step and the last step in Table 5. The success rate
of this experiment is determined by the retrieval
correctness of both the first and last steps. The
results of our double retrieval model are based on
either multi-frame input or single-frame input. Ac-
cording to Table 5, it is clear that our multi-frame
setting generally produces a better result. This
suggests that obtaining more fine-grained visual
features can further boost our model’s performance.
Furthermore, the performance drops when the step
number increases. That is mainly because the train-
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T = 3 T = 4

Decoding Method SR mAcc mIoU SR mAcc mIoU

No constraint 28.35 53.14 78.56 15.43 45.04 78.07
Sentence-BERT projection 29.11 53.45 80.07 16.95 45.82 79.92
Trie constrained 29.02 53.30 79.67 16.86 46.02 79.43

Table 4: Ablation study on how different decoding strategies influence the final planning performance. The default
decoding method is beam search.

Dataset Visual Repr. T = 3 T = 4

COIN
Multi-frame 37.83 31.03
Single-frame 35.22 30.38

CrossTask
Multi-frame 47.48 40.95
Single-frame 39.37 36.44

Table 5: Retrieval top-1 accuracy (%) for start and end
steps.

Retrieval Model Top-1 Acc

BLIP <1.00
BLIP-finetuned 21.30
Double Retrieval 37.83

w/o language loss 24.81
w/o task name 33.32

Table 6: Retrieval performance (%) of different models
on COIN using the multi-frame representation. The
result is only considered correct when both the start and
end steps are correct.

ing image-text pair set will be smaller when the step
number increases. The finetuned vision-language
model may find it hard to generalize to unseen ex-
amples with limited training instances.

To verify that our design of double retrieval is
effective in transforming visual details into lan-
guage, we compare it with the state-of-the-art
visual-language transformation approaches in Ta-
ble 6. Note that this ablation study is based on
our Multi-frame setting on Coin with step number
= 3. We observe that directly finetuning a BLIP
retrieval model does not work well. This is due to
the difficulty of predicting two steps independently
from the visual input.

We also present the ablation studies of remov-
ing language loss and task name in Table 6. The
performance drop indicates the importance of the
language loss term and the additional task name
term to the success of our double retrieval model.

Probabilistic modeling ability LMs inherently
have the ability of probabilistic modeling. As a re-
sult of experimenting with different decoding meth-
ods (greedy search, beam search, and sampling) for
LMs, we found that the overall accuracy difference
is less than 1%. We recognize, however, that the
model is capable of generating multiple reasonable
plans for a given input. For example, in Figure 4, al-
ternative planning results can be produced through
sampling. All alternative predictions are tagged as
correct in the test set. It matches the observation
that multiple alternative plans can exist given the
same start step and the same goal.

5 Conclusion and Future Work

We introduce a new language-first perspective for
the procedure planning task, and propose two mod-
els to construct a text planning space and transfer
the generalization ability of LMs to vision-based
planning. Different from previous approaches that
derive a latent space from visual features to per-
form planning, we propose that a language model
with sufficient priors can serve as a better plan-
ning space. The key challenge is enabling LMs
to capture appropriate visual details for planning
purposes. To deal with this issue, we transform
visual input into language and propose a double-
retrieval mechanism to force the model to align
salient visual details with actions. The superior
performance of our approach proves that using lan-
guage models with strong priors is a promising
and powerful paradigm to procedure planning over
visual observations.

In the future, we would like to explore the do-
main generalizability of LM-based planning mod-
els and extend our model to handle longer planning
horizons, possibly with the help of sub-goal predic-
tion.

Limitations

We reflect on the limitations of our model below:
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pour egg pour milkwhisk mixture whisk mixture

Figure 4: Probabilistic modeling results. We enable language models to generate different outputs via sampling.

1. Our experiments are based on large everyday
household datasets (i.e. COIN and Crosstask).
Our language model is pretrained with web
data, which helps it handle such household-
related procedures well. However, when ap-
plied to other more specialized domains like
medical procedures, language models might
suffer from the domain gap and impact overall
model performance.

2. The language model has excellent planning
ability given the ground truth start and goal
steps. However, it is still hard for the lan-
guage model to generate very long sequences
of steps. When the planning horizon T in-
creases, the performance of our model drops
quickly just as other methods do.

3. In real-world applications (i.e planning task
for robots), a good model should be able to dy-
namically adjust the plan given external feed-
back. For example, when the execution of one
step fails, the model will need to re-plan as
soon as possible. Our model does not possess
such an ability so far, since our planning ap-
proach is offline. We leave this direction for
future research.
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A Appendix

Experiment Settings We trained and evaluated
our approach on a single RTX3090 GPU. For COIN
and Crosstask dataset processing, we transform the
visual observations of a video segment into images.
Under our single image setting, we followed previ-
ous works and used the first frame of the video seg-
ment for the start visual observation while using the
last frame to represent the goal visual observation.
Under our multiple-image setting, we uniformly
sampled 9 images from the videos. The image size
is 384*384 under the single image setting while
the 9 images are concatenated and then resized to
384*384 under the multiple image setting.

For the baseline model, we used the original im-
age captioning model of Blip. We used the prompt
“A picture of” for all the captioning samples. We set
the min-length and the max-length of generation
to 5 and 20 independently and set the number of
beams to 3.

For the language planning side, we employed
BART language model (Lewis et al., 2019). Dur-
ing the fine-tuning process, we set the batch size to
16 and used the Adam optimizer with lr = 10−5

and weight decay as 0.02. For the double retrieval
side, we initialize the model with a BLIP pretrained
model checkpoint. During training, we set the
batch size to 4 and used an Adam optimizer with a
learning rate of 10−5 and 0.05 weight decay.

To get our main results on the COIN dataset,
it costs about 12 hours to independently fine-tune
the language model and train the double retrieval
model.

Examples of output We give more examples of
our Modularized Framework output in this section.
In Figure 6, we provide an example where our
model makes a successful prediction. In Figure 7,
we show an example where the language model
fails. In Figure 5, we show an example where
using the multi-image input gets the right predic-
tion while using the single-image variant makes
mistakes. It shows that the alignment ability from
visual observations to step(action) space is still our
model’s bottleneck.
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whisk mixtureadd sugar

pour milkadd sugar pour egg

whisk mixture

Figure 5: The multi-image setting provides more detailed visual information which helps with the prediction. As is
shown in the figure, the multi-image setting has a right prediction(i.e. add sugar, pour egg, pour milk). Using single
images, it’s easy for us to ignore that the last step is actually pouring milk instead of whisk misture.

trigger and
take out the
needle head

insert the glue
needle

hold the gun
end and let

the gun head
aim at the tag

brand

remove the
protecting

cover of the
gun head

Figure 6: We present a perfect prediction example in this figure. We used single image as input and generate a plan
of Horizon T = 4. We get all the steps right in this example.

T = 3 T = 4

Method SR mAcc mIoU SR mAcc mIoU

Prompt1 66.03 66.03 66.03 34.87 49.95 61.63
Prompt2 65.96 65.96 65.96 34.83 49.72 61.41
Prompt3 67.37 67.37 67.37 35.43 51.12 62.89

Table 7: Evaluation (%) of different language prompts
on COIN dataset.

Impact of language model prompts We use
three types of language model prompts to obtain
the intermediate steps from the start step and the
end step.

• Prompt 1: “Taking T − 2 steps from + a1 to
aT + we need to.”

• Prompt 2: “You start from a1. Your goal is
aT . List T − 2 steps to do this.”

• Prompt 3: “For Task d , given the first step and
the last step, a1, aT . Predict the intermediate
T − 2 steps.”

Note that all the actions here are interpreted as
their textual expression. The results of predicting
the intermediate steps with the given three prompts
are shown in Table 7. Experiments show that the
design of the prompts do not have a major impact

on the language planning performance. We sup-
pose that it is because the fine-tuning process has
make the generation process more stable. How-
ever, adding in the task name will still bring a vis-
ible increase. This increase is mainly brought by
some overlapped step names. For example, the
task PractiseTripleJump contains a sequence
of steps of {“begin to run up”, “do the first two
jumps”, “do the third jump”, “begin to run up”},
while the task PractisePoleVault contains a se-
quence of steps of {“begin to run up”, “begin to
jump up”, “fall to the ground”, “begin to run up”}.
The “task name” label can help the language model
distinguish between this two samples.
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flip pancakewhisk
mixture

pour mixture
into pan

whisk
mixture

Figure 7: We present prediction example where the double retrieval model works well while the language model
fail to predict the right sequence. In this figure. We used Multiple image as input and generate a plan of Horizon
T = 4. We get one intermediate step predicted wrong in this example. The Right sequence (Ground Truth for this
input) is: "Step1 : whisk mixture", "Step2 : pour milk", "Step3 : pour mixture into pan", "Step4 : flip pancake"
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