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Abstract

Mining public opinions about vaccines from
social media has been increasingly relevant to
analyse trends in public debates and to pro-
vide quick insights to policy-makers. How-
ever, the application of existing models has
been hindered by the wide variety of users’ at-
titudes and the new aspects continuously aris-
ing in the public debate. Existing approaches,
frequently framed via well-known tasks, such
as aspect classification or text span detection,
make direct usage of the supervision infor-
mation constraining the models to predefined
aspect classes, while still not distinguishing
those aspects from users’ stances. As a re-
sult, this has significantly hindered the dynamic
integration of new aspects. We thus propose
a model, namely Disentangled Opinion Clus-
tering (DOC), for vaccination opinion mining
from social media. DOC is able to disentan-
gle users’ stances from opinions via a disen-
tangling attention mechanism and a Swapping-
Autoencoder, and is designed to process unseen
aspect categories via a clustering approach,
leveraging clustering-friendly representations
induced by out-of-the-box Sentence-BERT en-
codings and disentangling mechanisms. We
conduct a thorough experimental assessment
demonstrating the benefit of the disentangling
mechanisms and cluster-based approach on
both the quality of aspect clusters and the gen-
eralization across new aspect categories, out-
performing existing methodologies on aspect-
based opinion mining.

1 Introduction

Mining public opinions about vaccines from social
media has been hindered by the wide variety of
users’ attitudes and the continuously new aspects
arising in the public debate of vaccination (Hus-
sain et al., 2021). The most recent approaches have
adopted holistic frameworks built on morality anal-
ysis (Pacheco et al., 2022) or neural-based models
predicting users’ stances on different aspects of the

online debate (Zhu et al., 2022). So far, these frame-
works have been frequently framed via well-known
tasks, such as aspect classification or text span de-
tection, that use supervision to train text classifiers.
However, such a direct usage of the supervision
information has constrained the models to prede-
fined aspect classes and restricted their flexibility
in generalising to opinions with aspects never seen
before (e.g., new moral issues or immunity level).

To mitigate this limitation, some of the most
promising approaches have been devised as super-
vised models generating clustering-friendly rep-
resentations (Tao et al., 2021). These have re-
cently shown promising results on open-domain
tasks when combined with pre-trained language
models (PLM) thanks to their flexibility, gener-
alisation, and need for minimal tweaks (Reimers
and Gurevych, 2019; Sircar et al., 2022). How-
ever, despite the improved capabilities in captur-
ing the overall text semantics, existing models for
text clustering (Miranda et al., 2018; Meng et al.,
2019; Shen et al., 2021; Zhang et al., 2021a), still
struggles to distinguish between the mixed users’
stances and aspects on vaccination, and as a re-
sult, they often generate clusters that do not reflect
the novel aspects of interest. As an illustrating ex-
ample, consider the tweets “mRNA vaccines are
poison” and “The Pfizer vaccine is safe”, that the
majority of existing methodologies are prone to
cluster into different groups due to the opposite
stances manifested, despite the fact that both of
them are targeting safety issues.

To address the aforementioned problem, we
posit that a model should be able to (i) disen-
tangle the stance from the aspect discussed, and
simultaneously (ii) use the generated representa-
tions in a framework (e.g., clustering) that ease
the integration of aspects never seen before. We
thus propose a novel representation learning ap-
proach, called the Disentangled Opinion Clus-
tering (DOC) model, which performs disentan-

1827



gled learning (Mathieu et al., 2016) via text au-
toencoders (Bowman et al., 2016; Montero et al.,
2021), and generates clustering-friendly representa-
tions suitable for the integration of novel aspects1.
The proposed model, DOC, learns clustering-
friendly representations through a denoising au-
toencoder (Montero et al., 2021) driven by out-
of-the-box Sentence-BERT embeddings (Reimers
and Gurevych, 2019), and disentangles stance from
opinions by using the supervision signal to drive
a disentangled cross-attention mechanism and a
Swapping Autoencoder (Park et al., 2020).

We conducted an experimental assessment
on two publicly available datasets on vaccina-
tion opinion mining, the Covid-Moral-Foundation
(CMF) (Pacheco et al., 2022) and the Vaccina-
tion Attitude Detection (VAD) corpora (Zhu et al.,
2022). We first assessed the quality of the disentan-
gled representation in generating aspect-coherent
clusters. Then, we measured the generalisation of
the proposed approach via a cross-dataset evalua-
tion by performing clustering on a novel dataset
with unknown aspect categories. Finally, we
showed the benefit of this approach on the tradi-
tional stance classification task, along with a report
on the thorough ablation study highlighting the im-
pact of each model component on the clustering
quality and the degree of disentanglement of the
generated representations.
Our contributions can be summarized as follows:

• We introduce DOC, a Disentangled Opinion
Clustering model to generate clustering-friendly
representations, which distinguishes between
users’ stances and opinions in the vaccination
debate and integrates newly arising aspects via a
clustering approach.

• Unlike traditional aspect-based classification
models, we outline a framework adopting lim-
ited supervised signals provided by few stance
and aspect labels, functioning as inductive biases
to generate clustering-friendly representations.

• We conduct a thorough experimental analysis
on the two major publicly available datasets on
vaccination opinion mining from social media,
and demonstrate the benefit of the disentangling
mechanisms on the quality of aspect clusters, the
generalization across datasets with different as-

1The code and model are available at https://github.
com/somethingx1202/DOC.

pect categories, and the traditional stance classi-
fication task.

2 Related Work

Sentence Bottleneck Representation Sentence
representation learning typically aims to generate
a fixed-sized latent vector that encodes a sentence
into a low-dimensional space. In recent years, in
the wake of the wide application of pre-trained lan-
guage models (PLMs), several approaches have
been developed leveraging the PLMs to encode
sentence semantics. The most prevalent work is
the SBERT (Reimers and Gurevych, 2019) that
fine-tunes BERT (Devlin et al., 2019) on the SNLI
dataset (Bowman et al., 2015) through a siamese
pooling structure. The learned representations are
immediately applicable to a wide range of tasks,
such as information retrieval and clustering, signif-
icantly reducing the effort required to generate the
task-specific representations (Thakur et al., 2021).
More recently, Montero et al. (2021) presented a
sentence bottleneck autoencoder, called AutoBot,
that learns a latent code by reconstructing the per-
turbated text. Their model indicates the importance
of topic labels as reconstruction objectives.

Disentangled Latent Representation Earlier
works explored disentangled representation to fa-
cilitate domain adaptation (Bengio et al., 2013;
Kingma et al., 2014; Mathieu et al., 2016). In
recent years, John et al. (2019) generated disentan-
gled representations geared to transfer holistic style
such as tone and theme in text generation. Park
et al. (2020) proposed the Swapping autoencoder
to separate texture encoding from structure vectors
in image editing. The input images are formed in
pairs to induce the model to discern the variation
(e.g., structure) while retaining the common prop-
erty (e.g., texture). However, recent studies show
that disentanglement in the latent space is theoreti-
cally unachievable without access to some induc-
tive bias (Locatello et al., 2019). It is suggested
that local isometry between variables of interest
is sufficient to establish a connection between the
observed variable and the latent variable (Locatello
et al., 2020a; Horan et al., 2021), even with few
annotations (Locatello et al., 2020b). This is in line
with (Reimers and Gurevych, 2019; Lu et al., 2022)
where contrastive pairs are leveraged for training,
which illuminates our work to utilize labels and
reconstruction of perturbed text to induce the dis-
entanglement.
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Text Clustering The recent development in neu-
ral architectures has reshaped clustering prac-
tices (Xie et al., 2016). For example, Zhang et al.
(2021b) leveraged transformer encoders for cluster-
ing over the user intents. Several methods utilised
PLM embeddings to discover topics which were
subsequently used for clustering news articles and
product reviews (Huang et al., 2020; Meng et al.,
2022). Others exploited the neural components,
i.e., the BiLSTM-CNN (Zhang et al., 2019), the
CNN-Attention (Goswami et al., 2020) and the
Self-Attention (Zhang et al., 2021c) to offer end-
to-end clustering. Zhang et al. (2021a) devel-
oped the Supporting Clustering with Contrastive
Learning (SCCL) model by augmenting the dis-
parity between short text. A notable work is DS-
Clustering (Sircar et al., 2022), which extracts as-
pect phrases first then clusters the aspect embed-
dings. Outside of clustering methods, there is a
surging interest in clustering-friendly representa-
tions (Tao et al., 2021). Yet, few methods cluster
documents along a particular axis or provide disen-
tangled representations to cluster over a subspace.

Vaccination Opinion Mining The task of vac-
cination opinion mining is commonly carried out
on social media to detect user attitudes and pro-
vide insights to be used against the related ‘info-
demic’ (Kunneman et al., 2020; Wang et al., 2021;
Chandrasekaran et al., 2022; Zhao et al., 2023).
Recent approaches rely on semantic matching
and stance classification with extensions including
human-in-the-loop protocols and text span predic-
tion to scale to the growing amount of text (Pacheco
et al., 2022; Zhu et al., 2022).

3 Methodology

We build our approach upon two vaccination opin-
ion corpora (Pacheco et al., 2022; Zhu et al., 2022).
In both corpora, a small number of tweets are la-
belled, each of which is annotated with a stance
label (‘pro-vaccine’, ‘anti-vaccine’ and ‘neutral’)
and a text span or an argumentative pattern denot-
ing an aspect. For example, for the tweet, ‘The
Pfizer vaccine is safe.’, its stance label is ‘pro-
vaccine’ and the argumentative pattern is ‘vaccine
safety’. Since vaccination opinions explode over
time, supervised classifiers or aspect extractors
would soon become outdated and fail to handle
constantly evolving tweets. In an effort to mitigate
this issue, we address the problem of vaccination
opinion mining by learning disentangled stance and

aspect vectors of tweets in order to cluster tweets
along the aspect axis.

Our proposed model, called Disentangled Opin-
ion Clustering (DOC), is shown in Figure 1. It is
trained in two steps. In unsupervised learning
(Figure 1(a)), a tweet is fed into an autoencoder
with DeBERTa as both the encoder and the de-
coder to learn the latent sentence vector z. Here,
each tweet is mapped to two embeddings, the con-
text embedding us which encodes the stance label
information and the aspect embedding ua which
captures the aspect information. Under unsuper-
vised learning, these two embeddings are not distin-
guished. Together with the hidden representation
of the input text, H , they are mapped to the latent
sentence vector z by cross-attention. As the autoen-
coder can be trained on a large-scale unannotated
tweets relating to vaccination, it is expected that z
would capture the vaccine-related topics.

Then in the second step of supervised learning
(Figure 1(b)), the DeBERTa-based autoencoder is
fine-tuned to learn the latent stance vector zs and
the latent aspect vector za using the tweet-level
annotated stance label and aspect text span (or the
argumentative pattern ‘vaccine safety’ in Figure
1(b)) as the inductive bias. Here, the latent stance
vector zs is derived from us. It is expected that zs
can be used to predict the stance label. On the other
hand, the latent aspect vector za is derived from
ua only and it can be used to generate the SBERT-
encoded aspect text span. Both zs and za, together
with the hidden representation of the input text H ,
are used to reconstruct the original text through
the DeBERTa decoder. The training instances are
organized in pairs since we use the idea of swapped
autoencoder (shown in Figure 1(c)) to swap the
aspect embedding of one tweet with that of another
if both discuss the same aspect. The resulting latent
vector can still be used to reconstruct the original
tweet. In what follows, we describe the two steps,
unsupervised and supervised learning, in detail.

Unsupervised Learning of Sentence Representa-
tion Due to the versatility of PLMs, sentence rep-
resentations are usually derived directly from con-
textualised representations generated by the PLMs.
However, as has been previously discussed in Mon-
tero et al. (2021), sentence representations derived
in this way cannot guarantee reliable reconstruc-
tion of the input text. Partly inspired by the use of
autoencoder for sentence representation learning as
in (Montero et al., 2021), we adopt the autoencoder
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(a) Unsupervised Learning (b) Supervised Learning (c) Swapped AutoEncoder

Figure 1: Disentangled Opinion Clustering (DOC) Model. (a) Unsupervised learning. A tweet is fed into an
autoencoder with DeBERTa as both the encoder and decoder to learn the latent sentence vector z; (b) Supervised
learning. The DeBERTa-based autoencoder is fine-tuned to learn the latent stance vector zs and the latent aspect
vector za using the tweet-level annotated stance label and aspect text span (or the argumentative pattern ‘vaccine
safety’ for the input tweet) as the inductive bias; (c) Swapping autoencoder. To enable a better disentanglement
of zs and za, for the two tweets discussing the same aspect but with different stance labels, tweet B’s aspect
embedding uB

a is replaced by the tweet A’s aspect embedding uA
a . As the two tweets discuss the same aspect, their

aspect embeddings are expected to be similar. As such, we can still reconstruct tweet B using the latent content
vector zB

c derived from the swapped aspect embedding. Note that (b) and (c) are learned simultaneously.

architecture to initially guide the sentence repre-
sentation learning by fine-tuning it on vaccination
tweets. Rather than RoBERTa (Liu et al., 2019), we
adopt DeBERTa, a variant of BERT in which each
word is represented using two vectors encoding its
content and position. The attention weight of a
word pair is computed as a sum of four attention
scores calculated from different directions based
on their content/position vectors, i.e., content-to-
content, content-to-position, position-to-content,
and position-to-position. Instead of representing
each word by a content vector and a position vec-
tor, we modify DeBERTa by representing an input
sentence using two vectors, a context embedding
us encoding its stance label information and an as-
pect embedding ua encoding its aspect information.
We will discuss later in this section how to perform
disentangled representation learning with us and
ua. During the unsupervised learning stage, we do
not distinguish between us and ua and simply use
u = [us,ua] to denote them.

More specifically, we train the autoencoder on an
unannotated Twitter corpus with the masked token
prediction as the training objective. The encoder
applies the multi-head attention to clamp the hidden
representations of the top layer of the pre-trained
transformer. If we use H to denote the hidden
representations, the multi-head attention can be
expressed as:

headi = softmax

(
uWQ(HWK)⊤√

dH

)
HWV , (1)

z = [head1, head2, . . . , headh]WO, (2)

where H ∈ Rn×dH , WQ ∈ R2dH×dK ,WK ∈
RdH×dK , WV ∈ RdH×dV , headi ∈ RdV and
WO ∈ RhdV ×dz . u ∈ R2dH is generated from a
fully-connected layer over the hidden vectors. The
bottleneck representation z is supposed to encode
the semantics of the whole sentence.

The transformer decoder comprises n layers of
cross-attention such that the output of the previous
layer is processed by a gating mechanism (Hochre-
iter and Schmidhuber, 1997). The recurrence is
repeated n times to reconstruct the input, where n
denotes the token length of the input text.

Injecting Inductive Biases by Disentangled At-
tention Recent work on disentanglement learn-
ing suggested unsupervised disentanglement is im-
possible without inductive bias (Locatello et al.,
2020b). In the datasets used in our experiments,
there are a small number of labelled tweets. We
can use the tweet-level stance labels and the an-
notated aspect text spans as inductive bias. Here,
the disentangled attention of DeBERTa is utilized
to mingle different factors. Assuming each sen-
tence is mapped to two vectors, the context vector
us encoding its stance label information and the
aspect vector ua encoding its aspect information,
we can then map us to a latent stance vector zs
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which can be used to predict the stance label, and
map ua to a latent aspect vector za which can be
used to reconstruct the aspect text span. We use the
cross-attention between us and ua to reconstruct
the original input sentence.
Stance Classification Let hCLS denote the hidden
representation of the [CLS] token, the stance bias is
injected by classification over the stance categories:

zs = softmax

(
usWq,s(hCLSWk,CLS)

⊤
√
dH

)
hCLSWv,CLS, (3)

ŷs = softmax(zsW ), Ls = −y(i)
s log ŷ(i)

s . (4)

Essentially, we use us as query and hCLS as key
and value to derive zs, which is subsequently fed
to a softmax layer to predict a stance label ŷs. The
objective function is a cross-entropy loss between
the true and the predicted labels.
Aspect Text Span Reconstruction We assume
ua encoding the sentence-level aspect information
and use self-attention to derive the latent aspect
representation za. To reconstruct the aspect text
span from za, we use the embedding generated
by SBERT (Reimers and Gurevych, 2019) as the
targeted aspect span, since SBERT has been empir-
ically shown achieving the state-of-the-art on Se-
mantic Textual Similarity tasks. Those clustering-
friendly representations, if they encode the argu-
mentative patterns or aspect spans alone, are strong
inductive biases in the axis of aspects.

Specifically, the sentence embedding of the as-
pect expression is generated by a Gaussian MLP
decoder (Kingma and Welling, 2014):

za = softmax

(
uaWq,a(uaWk,a)

⊤
√
dH

)
uaWv,a, (5)

La = − logN (ya;MLPµ(za),MLPσ(za)I), (6)

where xa denotes the aspect text span in the
original input sentence, ya is the ground-truth
aspect text span embedding produced by ya =
SBERT(xa), whose value is used for computing the
Gaussian negative log-likelihood loss2.
Input Text Reconstruction To reconstruct the
original input text, we need to make use of both the
latent stance vector zs and the latent aspect vector
za. Here we use the cross attention of these two
vectors to derive the content vector zc.

2https://pytorch.org/docs/stable/generated/
torch.nn.GaussianNLLLoss.html

Qc = uWq,c, Kc = HWk,c, Vc = HWv,c,

Qs = usWq,s, Ks = usWk,s,

Qa = uaWq,a, Ka = uaWk,a,

aj = QcK
c⊤
j +QcK

⊤
s +Kc

j Qs +QcK
⊤
a +Kc

j Qa

headi = softmax

(
a√
5dH

)
HWv,c,

zc = [head1,head2, . . . , headh]WO, (7)

where u = [us,ua], aj is the j-th element of
a, and Kc

j represents the j-th row of Kc. The
resulting zc is the content representation for recon-
structing the original sentence.

Disentanglement of Aspect and Stance Al-
though the inductive biases, i.e., the tweet-level
stance label and the annotated aspect span, are used
to learn the latent stance vectors zs and the aspect
vectors za , there could still be possible dependen-
cies between the two latent variables. To further the
disentanglement, we propose to swap the learned
aspect embeddings of two tweets discussing the
same aspect in Siamese networks. We draw inspi-
ration from the Swapping Autoencoder (Park et al.,
2020) where a constituent vector of a Generative
Adversarial Network (GAN) is swapped with that
produced by another image. The original swapping
autoencoder was designed for image editing and re-
quired a patch discriminator with texture cropping
to the corresponding disentangled factors with the
desired properties. In our scenario, such alignment
is instead induced by tweets discussing the same
aspect.

We create pairs of tweets by permutations within
the same aspect group {xA,xB}A,B∈Gk,A ̸=B .
Here, by abuse of notation, we use k to denote the
k-th aspect group, Gk. The groups are identified
by tweets with the same aspect label, regardless of
their stances. We sketch the structure of pair-wised
training in Figure 1(c). The tweets are organized
in pairs and a bottleneck representation is obtained
for each tweet:

zA = enc(xA), zB = enc(xB). (8)

We would like zA to disentangle into latent factors,
i.e., the variation in a factor of zA is associated with
a change in xA (Locatello et al., 2020a). Unlike
the majority of works (Zhang et al., 2021d) that di-
rectly splits zA in the latent space, we assume that
the entangled vector is decomposed by a causal net-
work. We train a vector u = [us,ua] to trigger the
activation of the networks (i.e., the self-attentions
in Eq. 3-Eq. 7). The outputs of the networks are
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independent components that encode the desider-
ata. If zs and za are parameterized independent
components triggered by us and ua respectively,
the substitution of uB

a with uA
a can be regarded as

soft exchanges between zAa and zBa .
We thus substitute uB

a with uA
a to cause changes

in zBc . This substitution will also be reflected by
changes in zBa . In practice, we train on all permu-
tations with the same aspect group, regardless of
the stance. The reconstruction loss for each latent
factor (i.e., stance and aspect) is calculated once to
balance the number of training examples unless it is
content text generated from the swapped bottleneck
representation.

Formally, the swapping autoencoder presented
in Figure 1(c) can be expressed as

QB
s = uB

s Wq,s, KB
s = uB

s Wk,s,

QA
a = uA

a Wq,a, KA
a = uA

a Wk,a,

aj = QcK
c⊤
j +QcK

B⊤
s +Kc

j Q
B
s +QcK

A
a

⊤
+Kc

j Q
A
a ,

headi = softmax

(
a√
5dH

)
HWv,c,

zBc = [head1, head2, . . . , headh]WO,

zBs = softmax

(
uB
s Wq,s(KCLS)

⊤
√
dH

)
VCLS,

zBa = softmax

(
QA

a (K
A
a )⊤√

dH

)
uA
a Wv,a,

where zBc is input to the decoder for the recon-
struction of xB . Note that the above equations are
specially used in the swapping autoencoder for the
computation of zB . If there is no substitution in the
latent space, the above equations will not be cal-
culated. Given LB

c = dec(zBc ), the final objective
function is written as

L = LA
c + λsLA

s + λaLA
a + λBLB

c , (9)

where λs, λa and λB are hyper-parameters con-
trolling the importance of each desirable property.
In our experiments, we choose λs = λa = 1 and
λB = 0.5.

4 Experiments

Datasets We conduct our experimental evalu-
ation on two publicly available Twitter datasets
about the Covid-19 vaccination: the Covid-Moral-
Foundation (CMF) (Pacheco et al., 2022) and the
Vaccination Attitude Detection (VAD) corpus (Zhu
et al., 2022). CMF is a tweet dataset focused on
the Covid-19 vaccine debates, where each tweet is
assigned an argumentative pattern. VAD consists
of 8 aspect categories further refined by vaccine

Aspect Group Pro-Vax Anti-Vax Neutral

CMF

Care/Harm 70 11 2
Fairness/Cheating 25 18 13
Loyalty/Betrayal 25 0 5
Authority/Subversion 20 46 13
Purity/Degradation 2 15 0
Liberty/Oppression 6 62 5
Non-moral 167 47 41

VAD

Health Institution 400 84 36
Personal Experience 381 16 3
Vaccines Save Lives 12 1 0
(Adverse) Side Effects 179 256 63
Immunity Level 433 113 52
Economic Effects 23 12 5
Personal Freedom 5 18 7
Moral Attitudes 5 43 2

Table 1: Dataset statistics of CMF and VAD. We list the
number of pro-vaccine, anti-vaccine and neutral tweets
in each group.

bands. Similar to the argumentative pattern in the
CMF dataset, each tweet is characterised by a text
span indicating its aspect. The dataset statistics
are reported in Table 1, with examples shown in
A.1. The train/test split follows 4 : 1. For the
unsupervised pre-training of sentence bottleneck
representations, we combine the unlabelled Covid-
19 datasets from both CMF3 and VAD4 repositories.
The final dataset consists of 4.37 million tweets.

Baselines We employ 5 baseline approaches:
SBERT5, AutoBot6, DS-Clustering, VADet, and
SCCL7, of which SBERT and AutoBot are out-of-
the-box sentence embedding generators. VADet is
specialised to learn disentangled representations.
However, it is noteworthy that even though it em-
ploys DEC (Xie et al., 2016), the resulting represen-
tations are unsuitable for distance-based clustering.
SCCL performs joint representation learning and
document clustering. DS-Clustering is a pipeline
approach that predicts a text span and employs
SBERT to generate an aspect embedding. For
clustering-friendly representation learning meth-
ods, we examine their performance using k-means
and k-medoids (Leonard and Peter, 1990), and

3https://gitlab.com/mlpacheco/
covid-moral-foundations

4https://github.com/somethingx1202/VADet
5https://github.com/UKPLab/

sentence-transformers
6https://github.com/ivanmontero/autobot
7https://github.com/amazon-research/sccl

1832

https://gitlab.com/mlpacheco/covid-moral-foundations
https://gitlab.com/mlpacheco/covid-moral-foundations
https://github.com/somethingx1202/VADet
https://github.com/UKPLab/sentence-transformers
https://github.com/UKPLab/sentence-transformers
https://github.com/ivanmontero/autobot
https://github.com/amazon-research/sccl


the Agglomerative Hierarchical Clustering (AHC).
The comparison involves three tasks: tweet clus-
tering based on aspect categories (intra- and cross-
datasets), and tweet-level stance classification. For
stance classification, we employ RoBERTa and De-
BERTa, and use their averaged embeddings for
clustering.

Evaluation Metrics First, we use Clustering Ac-
curacy (CA) and Normalized Mutual Information
(NMI) to evaluate the quality of clusters in line
with (Shaham et al., 2018; Tao et al., 2021). NMI
is defined as NMI =

(
2×I(y; ŷ)

)
/
(
H(y)+H(ŷ)

)
,

where I(y; ŷ) denotes the mutual information be-
tween the ground-truth labels and the predicted
labels, H(·) denotes their entropy. Then we employ
BERTScore (Zhang et al., 2020) to evaluate the
performance of models in clustering in the absence
of ground-truth cluster labels. BERTScore is a suc-
cessor of Cosine Similarity (John et al., 2019) that
measures the sentence distance by calculating the
cross distance between their corresponding word
embeddings. We follow Bilal et al. (2021) to com-
pute the averaged BERTScore as

AvgBS =
1

K

K∑

k=1

1(|Gk|
2

)
∑

i,j∈Gk
i<j

BS(tweeti, tweetj), (10)

where |Gk| is the size of the k-th group or clus-
ter. We report the average performance for all the
models. As a quantitative evaluation metric for
disentanglement, we use the Mean Correlation Co-
efficient (MCC). We refer the readers to A.3 for
qualitative results.

Clustering-Friendly Representation We first
show the advantages of disentangled representa-
tions in clustering. With the representations ob-
tained from SBERT and AutoBot, we employ k-
means to perform clustering. Since the similarity
between sentences in SBERT is measured by co-
sine similarity which is less favorable for k-means
algorithm, we also use k-medoids to ensure a fair
comparison. The other baseline approaches are run
with their default settings. We assign the aspect
labels to the predicted clusters with the optimal per-
mutation such that the permutation of {1, . . . ,K}
yields the highest accuracy score, where K denotes
the total number of clusters. For the CMF dataset,
we set K = 7, and on VAD K = 8.

Table 2 lists the performance of baseline meth-
ods on all the tasks and datasets. We see consistent

Models
CMF VAD

CA NMI
Avg
BS

CA NMI
Avg
BS

SBERT-k-means 49.2 47.6 18.2 60.5 58.3 19.2
SBERT-k-medoids 50.8 48.1 18.5 62.1 60.1 19.5
SBERT-AHC 51.7 48.5 18.9 64.4 61.2 20.9
AutoBot-k-means 49.2 47.4 18.5 62.8 60.4 20.1
AutoBot-k-medoids 52.5 49.5 19.5 65.6 62.5 20.7
AutoBot-AHC 52.5 48.5 18.9 63.5 60.8 20.5
DS-C-k-means 50.0 47.7 18.5 63.5 60.5 20.7
DS-C-k-medoids 52.5 48.3 18.8 64.7 61.9 21.3
DS-C-k-AHC 50.8 47.8 18.6 64.4 61.5 21.7
VADet 51.7 47.9 18.0 65.4 61.4 20.7
SCCL 48.3 46.9 18.2 63.2 60.8 19.9
RoBERTa-k-means 35.0 35.2 15.0 45.8 46.6 15.7
DeBERTa-k-means 35.8 37.1 15.2 47.7 47.4 16.2
DOC-k-means 51.7 47.8 18.5 64.2 60.7 20.3
DOC-k-medoids 54.2 51.0 20.7 66.7 63.1 21.4
DOC-AHC 52.5 49.1 19.1 66.7 63.6 22.8

Table 2: Clustering results. Representation learning
models are listed with the affiliated clustering methods.

improvements across all the evaluation metrics us-
ing our proposed DOC. When compared with end-
to-end methods (i.e., VADet and SCCL) whose
intermediate representations cannot be used to cal-
culate a distance, the disparity depends on DOC’s
clustering approaches employed. On CMF, VADet
outperforms SCCL. But DOC gives superior per-
formance overall regardless of the clustering ap-
proaches used, showing the flexibility of the DOC
representations. In comparisons against representa-
tion learning methods, DOC takes the lead as long
as it is attached with competent clustering algo-
rithms. This shows the benefit of clustering with
disentangled representations since the clustering al-
gorithm will no longer obfuscate the stance polari-
ties and the aspect categories. DOC achieves higher
scores on the VAD dataset compared to CMF, with
more prominent improvement over the baselines,
which may be credited to the increased size of the
dataset. When DOC is evaluated with different
clustering algorithms, k-medoids excels on CMF,
while AHC outperforms the others on VAD, show-
ing that cosine similarity is more appropriate for
distance calculation since the k-means algorithm
relies on Euclidean distance.

Cross-Dataset Evaluation In this context, the
most interesting property of clustering-friendly rep-
resentations is their ability to perform clustering
in novel datasets whose categories are unknown in
advance. To assess this, we use the models trained
on CMF to perform clustering on VAD, and repeat
the process vice versa. We specify the number of
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Models
VAD → CMF CMF → VAD

CA NMI
Avg
BS

CA NMI
Avg
BS

SBERT-AHC 51.6 49.8 19.3 52.4 50.5 17.9
AutoBot-k-medoids 53.1 50.6 20.1 53.7 51.0 18.1
DS-C-k-medoids 54.1 51.2 20.2 54.9 52.4 19.0
VADet 53.5 50.1 19.6 55.2 52.8 19.3
SCCL 48.6 47.0 18.5 53.6 51.6 18.5
DOC-k-medoids 55.3 51.9 21.7 56.2 53.8 19.5
DOC-AHC 53.5 50.4 19.8 55.8 53.7 19.2

Table 3: Cross-dataset evaluation results. Each represen-
tation learning model is listed with the most performant
clustering method.

Models CMF VAD
Micro F1 Macro F1 Micro F1 Macro F1

RoBERTa 72.3±.5 71.2±.4 76.7±.1 75.9±.1
DeBERTa 74.0±.6 73.5±.6 77.8±.2 76.8±.2
DOC-AHC 73.5±.6 72.7±.6 78.0±.2 76.8±.2

Table 4: Stance classification results.

clusters as 7 and 8, respectively. The alignment be-
tween the clustered groups and gold labels is solved
by the Hungarian algorithm. Note that direct aspect
classification across datasets would not be possible
since an accurate mapping between the two sets
of classes cannot be established. Table 3 reports
the performance of cross-dataset clustering. Our
metrics of interest are still CA, NMI and averaged
BERTScore. All the methods show a performance
drop on VAD overall, while the performance on
CMF turns out to be a bit higher. DOC-k-medoids
achieved competitive results across the datasets,
demonstrating that clustering-friendly representa-
tions disentangle the opinions and, as a result, can
integrate unknown aspects.

Stance Classification We report in Table 4 the re-
sults of DOC, RoBERTa and DeBERTa. For DOC,
we only report DOC-AHC since stance labels are
by-products of clustering-friendly representations.
We see the DOC performance on CMF close to that
of DeBERTa, and that the improvement on VAD
is marginal. This may be attributed to the absence
of the swapping operation on zs, and therefore the
stance latent vector may contain other semantics
or noise. Nevertheless, DOC is still preferred over
DeBERTa considering its significant performance
gain over DeBERTa on aspect clustering.

Ablations Study We study the effects by tak-
ing away components of different functionality in
disentanglement, and experiment with different

Model CMF VAD
CA AvgBS CA AvgBS

Component

DOC-k-means 51.7 18.5 64.2 20.3
w/o pre-trained LM 43.3 16.2 48.4 16.7
w/o inductive bias 50.0 18.0 62.3 19.2
w/o swapped codes 50.8 17.8 62.8 19.0

Choice of Context Vectors

MLP 51.7 18.5 64.2 20.3
CLS 50.0 17.6 63.2 19.5
MEAN 48.3 17.4 60.7 18.7

Table 5: Ablation study on removal of components and
choices of context vectors.

choices of context vectors, i.e., us and ua. The
results are shown in Table 5. We see a significant
performance drop without loading the pre-trained
weights for the language model. The removal of
inductive biases and the swapped autoencoder both
hamper the clustering of the model across the met-
rics. The performance gap is more obvious without
the inductive bias, which we attribute to the weaker
supervision induced by swapping the latent codes.
Ablating choices of context vectors show the su-
periority of the MLP strategy. In contrast, the per-
formance of the context vector generated by mean
pooling is rather poor. It shows that the context vec-
tor produced by mean-pooling can hardly trigger
the disentanglement of the hidden semantics.

DOC
DS-C

AutoBot
SBERT

DeBERTa

RoBERTa
0

0.2

0.4

0.6

0.8

1

M
C

C

 CMF

DOC
DS-C

AutoBot
SBERT

DeBERTa

RoBERTa
0

0.2

0.4

0.6

0.8

1
 VAD

Figure 2: Boxplots of MCC for all representation learn-
ing models, over the 5 runs. The representations are
used for k-means clustering in the Euclidean space. A
high MCC score indicates the strong correlation be-
tween dist(za, z̄

k
a) and za ∈ Gk.

Evaluation of Disentangled Representations
As with the nonlinear ICA community (Khe-
makhem et al., 2020), we use Mean Correlation
Coefficient (MCC) to quantify the extent to which
DOC managed to learn disentangled representa-
tions. Here, the Point-Biserial Correlation Coef-
ficient between dist(za, z̄

k
a) (i.e., the distance be-
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tween the aspect vector and the centroid of cluster
k) and Y (i.e., the dichotomous variable indicat-
ing whether it belongs to or not belongs to group
k in groundtruth) is chosen to measure the isome-
try between za and k. Notice that we specify dist
as Euclidean Distance here. However, isometry
does not hinge on the Euclidean Distance, and it
could be easily substituted with Cosine Similarity,
in which case the mean is no longer the best esti-
mation for the cluster center and would be replaced
by the medoid of cluster k. The clustering method
would be k-medoids accordingly.

For each cluster k ∈ {1, 2, . . . ,K}, we calcu-
late the correlation coefficient between dist(za, z̄

k
a)

and Y . We then obtain MCC by averaging the cor-
relation coefficients. A high MCC indicates that the
group identity of a data point is closely associated
with the geometric position of its za in the latent
space, which means that za captures the group in-
formation. The results are shown in Figure 2. We
observe consistent improvement over the sentence
representation models. DS-Clustering is able to
encode tweets into aspect embeddings. Neverthe-
less, its distance between aspect latent vectors is a
weaker indicator for group partition compared with
that of DOC, suggesting that za discovered by DOC
better captures the difference between aspects.

5 Conclusion

In this work, we introduced DOC, a Disentangled
Opinion Clustering model for vaccination opinion
mining from social media. DOC is able to disen-
tangle users’ stances from opinions via a disentan-
gling attention mechanism and a swap-autoencoder.
It was designed to process unseen aspect cate-
gories thanks to the clustering approach, leveraging
clustering-friendly representations induced by out-
of-the-box Sentence-BERT encodings and the dis-
entangling mechanisms. A thorough experimental
assessment demonstrated the benefit of the disen-
tangling mechanism on the quality of aspect-based
clusters and the generalization capability across
datasets with different aspect categories outper-
forming existing approaches in terms of generalisa-
tion and coherence of the generated clusters.

6 Limitations

There are a few limitations we would like to ad-
dress. First of all, the number of clusters needs
manual configuration. This is a limitation of the
clustering algorithms (Xie et al., 2016) since we

need to set a threshold for convergence, which con-
sequentially pinpoints k. An expedient alternative
is to analyse the dataset for the realistic settings
or probe into k for the optimal setup, which is,
however, beyond the scope of this paper. Another
limitation is the pre-requisite for millions of unan-
notated data. The autoencoder needs enormous
data to learn bottleneck representations. Its perfor-
mance would be hindered without access to abun-
dant corpora. Lastly, the performance of the ac-
quired clustering-friendly representations depends
on the similarity metric chosen. Efforts need to be
made to find the best option, whether it is Euclidean
distance or cosine similarity etc.
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A Appendix

A.1 Dataset Details

In this section, we provide a detailed analysis of
the dataset instances.

In the Covid-Moral-Foundation (CMF) dataset,
each tweet is associated with a pre-defined and

manually annotated argumentative pattern. The
annotated tweets are categorized by moral foun-
dations that can be regarded as coarse aspects dis-
tilled from argumentative patterns. Each moral
foundation is associated with two polarities (e.g.,
care/harm), and is treated as the group label of a
cluster of tweets. The polarity is given by the vac-
cination stance label. In the example in Table A1,

‘The vaccine is safe’ is the argumentative pattern,
while ‘Care/Harm’ is the categorical label denoting
the aspect group. An exhaustive list to the argumen-
tative patterns can be found in the original paper
of Pacheco et al. (2022).

In the Vaccination Attitude Detection (VAD), a
training instance comprises a stance label, a cate-
gorical aspect label and an aspect text span. For
example, Table A1 shows the tweet ‘Study reports
Oxford/AstraZeneca vaccine is protective against
Brazilian P1 strain of COVID19.’ is annotated with
the text span ‘Oxford/AstraZeneca vaccine is pro-
tective against Brazilian P1 strain of COVID19’,
and its aspect belongs to the aspect category ‘Im-
munity Level’.

A.2 Training Details

We experiment with a pre-trained DeBERTa8 base
model. The hidden size is dH = 768. We set both
dV and dK = 768, and dz = 1024. The learning
rate is initialised with η = 3e− 5 and the number
of epochs is 10. We use Linear Warmup to enforce
the triangular learning rate.

We train the model with two Titan RTX graphics
cards on a station of an Intel(R) Xeon(R) W-2245
CPU. The training process takes less than 9 hours,
with the inference time under 30 minutes.

A.3 Additional Results

Clustering with Different Latent Vectors We
experiment clustering using the disentangled aspect
vectors za or the content vectors z (i.e., without the
disentanglement of aspects and stances) on both
CMF and VAD datasets, and have the detailed re-
sults reported in Table A2. It can be observed that
using the disentangled aspect vectors for clustering
gives better results compared to using the content
vectors, regardless of the clustering approaches
used. On CMF, the best results are obtained us-
ing k-medoids, while on VAD, similar results are
obtained using either k-medoids or AHC.

8https://huggingface.co/docs/transformers/
model_doc/deberta-v2
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CMF

Tweet Argumentative Aspect
Pattern Group

Vaccine decreases
your chances of
getting severe
life-threat.

The vaccine
is safe

Care/Harm

There is no way
someone can tell
me that the COVID
vaccine does not
cause harm to
pregnant women.

The covid
vaccine is harmful

for pregnant women
and kids

Care/Harm

The tyranny is not
locking down and
not using the vaccine
to appease the
crazies who think
it’s oppression.

The vaccine
mandate is not

oppression because
it will help to

end this pandemic

Liberty/
Oppression

VAD

Tweet Aspect Aspect
Span Group

Study reports
Oxford/AstraZeneca
vaccine is protective
against Brazilian P1
strain of COVID19.

Oxford/AstraZeneca
vaccine is protective
against Brazilian P1
strain of COVID19

Immunity
Level

@user @user
@user team, told
Reuters while the
government admits,
it is unknown
whether COVID19
mRNA Vaccine
BNT162b2 has an
impact on fertility.

COVID19 mRNA
Vaccine BNT162b2

has an impact on
fertility

(Adverse)
Side

Effects

Table A1: Training examples of CMF and VAD. In
CMF, Argumentative Patterns are pre-defined phrases
indicating an aspect. In VAD, aspect spans are text sub-
sequence of the annotated tweets.

Latent Vector CMF VAD
CA AvgBS CA AvgBS

DOC-k-means-za 51.7 18.5 64.2 20.3
DOC-k-means-z 48.3 17.5 60.7 18.7
DOC-k-medoids-za 54.2 20.7 66.7 21.4
DOC-k-medoids-z 50.8 18.0 61.4 18.9
DOC-AHC-za 52.5 19.1 66.7 22.8
DOC-AHC-z 49.2 17.8 61.9 19.0

Table A2: Clustering accuracy and average BERTScore
with different latent vectors.

Qualitative Results We illustrate in Figure A1
and Figure A2 the clustering results and the la-

tent space of the entangled/disentangled representa-
tion projected by the t-SNE method. Figure A1(a-
b) display the cluster assignments after permuta-
tion, whereas Figure A2(a-b) show the ground-
truth labels. The class labels are rendered by
colours whose detailed mapping is provided in
Figure A2. From Figure A1, we see clear im-
provements in terms of clustering quality on both
datasets when the model is compared against the
DeBERTa-averaged-embedding. Figure 2 shows
more separated groups thanks to the disentangled
representation, providing strong distance-based dis-
crimination for the clustering algorithms. As a
result, simple clustering methods like k-means can
achieve competitive results against deep clustering
methods (i.e., SCCL and VAD), which have access
to weak labels or data augmentations.

(a) CMF

(b) VAD

Clustering results by DOC DeBERTa-averaged-embedding

DOC space of zDOC space of za 

Figure A1: 2-D plots of the data points projected by
t-SNE.

Color Mappings in Visualisation
We illustrate in Figure A2 the color mapping

from t-SNE plots to the true aspect category labels.
It is shown that the vectors are more separated
and their grouping aligns closer to the ground-truth
labels when they are clustered on the space of za,
indicating that such latent vectors provide strong
distance-based discrimination among groups in the
Euclidean space, as has been used as a distance
metric in the t-SNE algorithm. We also experiment
with cosine-similarity metric for k-medoids and
the results have been reported in the Experiments
section.
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DOC space of zDOC space of za 

(b) VAD

DOC space of zDOC space of za 

(a) CMF

Figure A2: t-SNE plots on CMF and VAD. Each dot
is a tweet encoded using either the disentangled aspect
vector za (left subfigure) or the latent content vector
z (right subfigure). Different colors indicate the true
aspect category labels.
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