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Abstract

State-of-the-art natural language processing
models have been shown to achieve remarkable
performance in ‘closed-world’ settings where
all the labels in the evaluation set are known
at training time. However, in real-world set-
tings, ‘novel’ instances that do not belong to
any known class are often observed. This ren-
ders the ability to deal with novelties crucial.
To initiate a systematic research in this impor-
tant area of ‘dealing with novelties’, we intro-
duce NoveltyTask, a multi-stage task to evaluate
a system’s performance on pipelined novelty
‘detection’ and ‘accommodation’ tasks. We pro-
vide mathematical formulation of NoveltyTask
and instantiate it with the authorship attribution
task that pertains to identifying the correct au-
thor of a given text. We use Amazon reviews
corpus and compile a large dataset (consisting
of 250k instances across 200 authors/labels) for
NoveltyTask. We conduct comprehensive ex-
periments and explore several baseline methods
for the task. Our results show that the methods
achieve considerably low performance making
the task challenging and leaving sufficient room
for improvement. Finally, we believe our work
will encourage research in this underexplored
area of dealing with novelties, an important
step en route to developing robust systems.

1 Introduction

Recent advancements in Natural Language Process-
ing (NLP) have led to the development of several
pre-trained large-scale language models such as
BERT (Devlin et al., 2019), RoBERTa (Liu et al.,
2020b), and ELECTRA (Clark et al., 2020). These
models have been shown to achieve remarkable
performance in closed-world settings where all the
labels in the evaluation set are known at training
time. However, in real-world settings, this assump-
tion is often violated as instances that do not be-
long to any known label (‘novel’ instances) are also
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observed. This renders the ability to deal with nov-
elties crucial in order to develop robust systems for
real-world applications.

The topic of novelty is getting increased atten-
tion in the broad AI research (Boult et al., 2020;
Li et al., 2021b; Rambhatla et al., 2021). Also, in
NLP, the ‘novelty detection’ task in which novel
instances need to be identified is being explored
(Ghosal et al., 2018; Ma et al., 2021); related prob-
lems such as anomaly detection (Chalapathy and
Chawla, 2019), out-of-domain detection, and open-
set recognition (Hendrycks and Gimpel, 2017;
Hendrycks et al., 2020; Ovadia et al., 2019) are also
being studied. In addition to the task of ‘detection’,
dealing with novelties also requires ‘accommoda-
tion’ that pertains to learning from the correctly
detected novelties. Despite having practical signifi-
cance, this aspect of dealing with novelties has re-
mained underexplored. Furthermore, dealing with
novelties is a crucial step in numerous other practi-
cal applications such as concept learning, continual
learning, and domain adaptation.

To initiate systematic research in this area of
‘dealing with novelties’, we formulate a multi-stage
task called NoveltyTask. Initially, a dataset con-
sisting of examples of a set of labels (referred to
as ‘known labels’) is provided for training and then
sequential evaluation is conducted in two stages:
Novelty Detection and Novelty Accommodation.
Both these stages include distinct unseen evalu-
ation instances belonging to both ‘known labels’
(labels present in the training dataset) and ‘novel
labels’ (labels not present in the training dataset).

In the first evaluation stage i.e. the novelty de-
tection stage, the system needs to either identify
an instance as novel or classify it to one of the ‘K’
known labels. This is the same as the (K + 1)
class classification problem (where K corresponds
to the number of known labels) used in standard
anomaly/OOD detection tasks. This evaluation
stage is followed by a feedback phase in which the
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Figure 1: Illustrating the multi-stage pipelined formulation of NoveltyTask. Initially, examples of a set of K
labels (‘known labels’) are provided for training a classification system. The first evaluation stage i.e. the ‘novelty
detection’ stage consists of evaluation instances from the K known labels and ‘N ’ novel labels. For each instance,
the system needs to either classify it to one of the K known classes or report it as novel (not from any of the K
known classes) i.e. the system is evaluated on a (K + 1) class classification problem. This stage is followed by a
Feedback phase in which the ground truth label of the novel instances that the system correctly reports as novel is
revealed. The system then needs to leverage these new examples (of the novel labels) for the second evaluation
stage (novelty accommodation) in which it is evaluated on a (K +N) class classification problem.

ground truth label of the novel instances (from the
detection stage) that get correctly reported as novel
is revealed. Essentially, in the feedback phase,
the system gets some examples of the novel la-
bels (from the evaluation instances of the detection
stage) that it correctly identified as novel.

In addition to the initially provided training ex-
amples of the K known labels, the system can
leverage these new examples of the novel labels for
the next evaluation stage, the novelty accommoda-
tion stage. This stage also has evaluation instances
from both the known and the novel labels (distinct
and mutually exclusive from the detection stage);
however, in this stage, the system needs to identify
the true label of the evaluation instances, i.e. it’s
a (K +N) class classification problem where N
corresponds to the number of novel labels. We sum-
marize this multi-stage task in Figure 1. We note
that NoveltyTask is a controlled task/framework
for evaluating a system’s ability to deal with nov-
elties and not a method to improve its ability.

It is intuitive that the ability to deal with the nov-
elties should be directly correlated with the abil-
ity to detect the novelties; our two-stage pipelined
formulation of NoveltyTask allows achieving this
desiderata as higher accuracy in correctly detecting
the novelties will result in more feedback i.e. more
examples of the novel labels that will eventually
help in achieving higher performance in the accom-
modation stage. However, in the detection stage,
the system needs to balance the trade-off between
reporting instances as novel and classifying them

to the known labels. Consider a trivial system that
simply flags all the evaluation instances of the de-
tection stage as novel in order to get the maximum
feedback; such a system will get the true ground-
truth label (novel label) of all the novel instances
present in the detection stage and will eventually
perform better in the accommodation stage but it
would have to sacrifice its classification accuracy
in the detection stage (especially on instances of
the known labels). We address several such con-
cerns in formulating the performance metrics for
NoveltyTask (Section 3).

In this work, we instantiate NoveltyTask with
authorship attribution task in which each author
represents a label and the task is to identify the
correct author of a given unseen text. However, we
note that the formulation of NoveltyTask is general
and applicable to all tasks. We leverage product re-
views from Amazon corpus (McAuley et al., 2015;
He and McAuley, 2016) for the attribution task. We
explore several baseline methods for both detection
and accommodation tasks (Section 4).

In summary, our contributions are as follows:
1. We define a unified task for ‘dealing with nov-

elties’ consisting of both novelty detection and
novelty accommodation.

2. We provide a controlled evaluation frame-
work with its mathematical formulation.

3. We instantiate NoveltyTask with the Author-
ship Attribution task.

4. We study the performance of several baseline
methods for NoveltyTask.
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2 Background and Related Work

In this section, we first discuss the related work
on novelty/OOD/anomaly detection tasks and then
detail the authorship attribution task.

2.1 Novelty/OOD/Anomaly Detection
Novelty Detection and its related tasks such as out-
of-distribution detection, selective prediction, and
anomaly detection have attracted a lot of research
attention from both computer vision (Fort et al.,
2021; Esmaeilpour et al., 2022; Sun et al., 2021a;
Lu et al., 2022; Liu et al., 2020a; Perera et al.,
2020; Whitehead et al., 2022) and language (Qin
et al., 2020; Venkataram, 2018; Yang et al., 2022;
Varshney et al., 2022b; Kamath et al., 2020; Varsh-
ney et al., 2022c) research communities. OOD
detection for text classification is an active area of
research in NLP. Qin et al. (2020) follow a pairwise
matching paradigm and calculate the probability of
a pair of samples belonging to the same class. Yang
et al. (2022) investigate how to detect open classes
efficiently under domain shift. Ai et al. (2022)
propose a contrastive learning paradigm, a tech-
nique that brings similar samples close and pushes
dissimilar samples apart in the vector representa-
tion space. Yilmaz and Toraman (2022) propose a
method for detecting out-of-scope utterances utiliz-
ing the confidence score for a given utterance.

2.2 Authorship Attribution
Authorship attribution task (AA) pertains to iden-
tifying the correct author of a given text. AA has
been studied for short texts (Aborisade and Anwar,
2018a) such as tweets as well as long texts such
as court judgments (Sari et al., 2018). Traditional
approaches for AA explore techniques based on
n-grams, word embeddings, and stylometric fea-
tures such as the use of punctuation, average word
length, sentence length, and number of upper cases
(Sari et al., 2018; Aborisade and Anwar, 2018b;
Soler-Company and Wanner, 2017). Transformer-
based models have been shown to outperform the
traditional methods on this task (Fabien et al., 2020;
Tyo et al., 2021; Custódio and Paraboni, 2019).

3 NoveltyTask

NoveltyTask is a two-stage pipelined framework to
evaluate a system’s ability to deal with novelties. In
this task, examples of a set of labels (referred to as
known labels) are made available for initial train-
ing. The system is sequentially evaluated in two

stages: novelty detection and novelty accommoda-
tion. Both these stages consist of distinct unseen
evaluation instances belonging to both ‘known’ and
‘novel’ labels. We define a label as novel if it is not
one of the known labels provided for initial train-
ing and all instances belonging to the novel labels
are referred to as novel instances. We summarize
this multi-stage task in Figure 1. In this section,
we provide a mathematical formulation of Novelty-
Task, detail its performance metrics, and describe
the baseline methods.

3.1 Formulation
3.1.1 Initial Training (DT )
Consider a dataset DT of (x, y) pairs where x de-
notes the input instance and y ∈ {1, 2, ...,K} de-
notes the class label. We refer to this label set of K
classes as ‘known labels.’ In NoveltyTask, the clas-
sification dataset DT is provided for initial training.
Then, the trained system is evaluated in the novelty
detection stage as described in the next subsection.

3.1.2 Novelty Detection (EvalDet)
The evaluation dataset of this stage (EvalDet) con-
sists of unseen instances of both known and novel
labels, i.e., EvalDet includes instances from K∪N
labels where N corresponds to the number of novel
labels not seen in the initial training dataset DT .
Here, the system needs to do a (K+1) class classi-
fication, i.e., for each instance, it can either output
one of the K known classes or report it as novel
(not belonging to any known class) by outputting
the (0)th class. This is followed by the feedback
phase described in 3.1.3.

3.1.3 Feedback Phase (DF )
For each instance of the EvalDet dataset, we use
an indicator function ‘f ’ whose value is 1 if the
instance is novel ( i.e. not from the K known labels)
and 0 otherwise:

f(x) = 1[x ̸∈ {1, 2, ...,K}]

In the feedback phase, we reveal the ground truth
label of those novel instances (from EvalDet) that
the system correctly reports as novel, i.e., feedback
results in a dataset (DF ) which is a subset of the
novel instances of EvalDet where f(x) is 1 and
the system’s prediction on x is the (0)th class.

DF =





∈ EvalDet

(x, y), f(x) = 1

pred(x) = (0)thclass
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Essentially, DF is a dataset that consists of exam-
ples of the novel labels. The system can incorporate
the feedback by leveraging DF in addition to the
initial training dataset DT (refer to Section 3.4 for
novelty accommodation methods) to adapt itself
for the next evaluation stage, which is the novelty
accommodation stage.

3.1.4 Novelty Accommodation (EvalAcc)
The system incorporates the feedback and is eval-
uated in the novelty accommodation stage on
the EvalAcc dataset. Like the detection stage
dataset, EvalAcc also includes instances of both
K known and N novel labels (mutually exclusive
from EvalDet i.e. EvalDet∩EvalAcc = ∅). How-
ever, in this stage, the system needs to identify the
true label of all the evaluation instances (including
those belonging to the novel labels) i.e. the task for
the system is to do a (K +N) class classification
instead of a (K + 1) class classification. Here, N
corresponds to the number of novel labels. Essen-
tially, in the feedback phase, the system gets some
examples of the novel labels, and it needs to lever-
age them along with DT to classify the evaluation
instances correctly.

Note that the feedback data DF may or may
not contain examples of all the N novel classes
as it totally depends on the system’s ability to cor-
rectly detect novelties in the detection stage. The
inability to detect instances of all the novel classes
will accordingly impact the system’s performance
in the accommodation stage. Next, we describe the
performance metrics for both the stages.

3.2 Performance Evaluation
Novelty Detection: For the novelty detection
stage, we use F1 score over all classes to evaluate
the performance of the system. We also calculate
the F1 score for the known classes (F1Known) and
for the novel instances (F1Novel) to evaluate the
fine-grained performances.

Let {C1, · · · , CK} be the set of known classes
and C0 be the class corresponding to the novel
instances, we calculate the micro F1 score using:

F1 = 2× P × R
P + R

,

where P and R are precision and recall values.
Similarly, the F1 scores over known classes

(F1known) and novel class (F1Novel) are computed.
Note that all the above measures are threshold de-

pendent i.e. the system needs to select a confidence

threshold (based on which it classifies instances on
which it fails to surpass that threshold as novel) and
its performance measures depend on that. This is
not a fair performance metric as its performance
heavily depends on the number of novelties present
in the evaluation dataset (EvalDet). To compre-
hensively evaluate a system, we use a threshold-
independent performance metric in which we com-
pute these precision, recall, and F1 values for a
range of reported novelties. To achieve this, we
order the evaluation instances of EvalDet based on
the system’s prediction score (calculated using var-
ious techniques described in the next subsection)
and take the least confident instances as reported
novelties (for each number in the range of reported
novelties). Then, we plot a curve for these perfor-
mance measures and aggregate the values (AUC)
to calculate the overall performance of the method
(refer to Figure 2). This evaluation methodology
(similar to the OOD detection method) makes the
performance measurement comprehensive and also
accounts for the number of novelties present in the
evaluation dataset.

Novelty Accommodation: In this stage, the task
for the system is to do (K+N) class classification
instead of (K + 1) class classification. The system
leverages the feedback (DF ) (which is contingent
on the number of reported novelties) to adapt it
for the task, and its performance also depends on
that. Following the methodology described for the
detection stage, we evaluate the system’s perfor-
mance over a range of reported novelties and hence
over a range of feedback. Specifically, we find
the feedback dataset DF for a range of reported
novelties and for each individual feedback, we in-
corporate it into the system and then evaluate its
prediction performance on the (K +N) classifica-
tion task. Similar to the detection stage, we plot a
curve (across a range of reported novelties) and cal-
culate its area under the curve value to quantify the
overall performance of novelty accommodation.

3.3 Methods for Novelty Detection

As described in the previous subsection, we cal-
culate the system’s performance on a range of re-
ported novelties. To achieve this, we order the eval-
uation instances of EvalDet based on the system’s
prediction confidence score (calculated using var-
ious techniques described in this subsection) and
take the least confident instances as reported novel-
ties (for each number in the range of reported nov-
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elties). This implies that the performance depends
on the system’s method of computing this predic-
tion score. We explore the following methods of
computing this score for the evaluation instances:

Maximum Softmax Probability (MaxProb):
Usually, the last layer of models has a softmax
activation function that gives the probability dis-
tribution P (y) over all possible answer candidates
Y . For the classification tasks, Y corresponds to
the set of labels. Hendrycks and Gimpel (2017)
introduced a simple method that uses the maxi-
mum softmax probability across all answer candi-
dates as the confidence estimator i.e. the prediction
confidence score corresponds to maxy∈Y P (y). In
this method, we order the evaluation instances of
EvalDet based on this confidence measure, and for
each value in the range of reported novelties, we
report those instances as novel on which the model
is least confident. For the remaining instances, we
output the label (out of K classes) having the max-
imum softmax probability.

Euclidean Distance (EuclidDist) : In this ap-
proach, we consider each sample as a point in K-
dimensional space. For each sample, the proba-
bilities from the K class classifier are chosen as
coordinates in the space. We then calculate Eu-
clidean distances between each sample and the en-
tire distribution. The points furthest away from the
distribution are classified as novel instances.

The Euclidean distance is given by d =√∑K
i=1 (xi − xmu)

2 where xmu is the distribu-
tion of all the samples.

Mahalanobis Distance (MahDist): This ap-
proach is similar to the previous approach with
the only difference that Mahalanobis distance is
used to compute the distance between the sample
and the distribution.

The Mahalanobis distance (Ghorbani, 2019)
between xi and xj is given by ∆2 = (xi −
xj)⊤Σ−1(xi−xj), where Σ is a d× d covariance
matrix. ∆2 is equivalent to the squared Euclidean
distance between yi and yj , where y is a linearly
transformed version of x.

Mean (CompMean): For each sample, the mean
of K-1 classes is computed. The class with the
highest probability is left out. The mean is later
subtracted from 1. The resultant score for all the
samples is sorted in descending order. The last Y
elements are classified as Novel instances.

Learning Placeholders Algorithm (Placeholder):
Zhou et al. (2021a) propose a Placeholder algo-
rithm for increasing the separation between clus-
ters of samples in different classes. It addresses
the challenge of open-set recognition by increas-
ing the distance between class clusters and shrink-
ing the classification boundary, allowing the clas-
sifier to classify samples as novel that fall outside
these clusters. It demonstrates the effectiveness
of the Placeholders algorithm through experiments
and comparison with other state-of-the-art open-set
recognition methods.

Few Shot Open set Recognition (Few Shot OSR):
Jeong et al. (2021) presents a method for recogniz-
ing novel classes with few examples available for
each class. It uses prototypes to represent each
class and a similarity function to compare new ex-
amples to these prototypes, allowing for the ef-
fective recognition of novel classes. The paper
includes experiments on multiple datasets and com-
pares the method’s performance to other state-of-
the-art few-shot open-set recognition methods.

We further detail these methods in Appendix B.
We note that other OOD/anomaly detection meth-
ods can also be explored here. However, we study
only a limited set of methods since the focus of this
work is on formulating and exploring NoveltyTask.

3.4 Methods for Novelty Accommodation:

After the detection stage, the system gets feedback
i.e. examples of novel labels (DF ). We explore the
following methods of leveraging this feedback:

Retrain using DT and DF : DT consists of ex-
amples of known labels, and DF consists of exam-
ples of novel labels. In this approach, we train a
new model (K +N) classifier by combining data
instances of DT and DF .

Further Fine-tune using DF : In this method,
we first train a model on DT with extra dummy
labels, i.e., we train a model having more than K
logits. This allows modifying the same model to
learn to output the novel labels. To incorporate the
feedback, the model initially trained on DT with
dummy labels is further fine-tuned using DF .

Further Fine-tune using DT (sampled) and DF :
Here, we follow the same strategy as the previous
method, but instead of further fine-tuning only on
DF , we further fine-tuning using both DT (down-
sampled) and DF . This is done to reduce catas-
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Figure 2: Novelty Detection Performance on the base setting - Overall Precision, Recall, and F1 achieved by
various methods across the range of reported novelties on EvalDet. Specifically, each point on the curve represents
the P, R, or F1 when its corresponding method reports the specified number of novelties (x-axis value) out of all
instances in EvalDet. We note that in the base setting, EvalDet has 20k instances out of which 10k are novel.

trophic forgetting (Carpenter and Grossberg, 1988)
of the known labels.

4 Experiments and Results

4.1 Experimental Setup

Configurations: We use Amazon reviews
(McAuley et al., 2015; He and McAuley, 2016) for
the authorship attribution task. In this task, each
author corresponds to a class. We compile a dataset
consisting of 250k instances across 200 authors
and use it for NoveltyTask. We define experimental
settings using a set of configuration parameters;
for the base setting, we use the following values:
• Number of Known Classes (K): 100
• Training Data DT Class Balanced: True
• # Instances Per Known Label in DT : 500
• Number of Novel Classes (N): 100
• # Instances Per Class in EvalDet: 100
• # Instances Per Class in EvalAcc: 500

In the above setting, the total number of evalua-
tion instances in EvalDet is 20k out of which 10k
are novel. In this work, we also study other settings
by varying the values of these parameters.

Models: We run all our experiments using the
BERT-base model (Devlin et al., 2019). For clas-
sification, we add a linear layer on top of BERT
representation and train the model with a standard
learning rate ranging in {1−5}e−5. All experi-
ments are done with Nvidia V100 16GB GPUs.

4.2 Results

4.2.1 Novelty Detection

Figure 2 shows the novelty detection performance
on the base setting (EvalDet has 20k instances out
of which 10k are novel) i.e. overall Precision, Re-
call, and F1 achieved by various methods across

the range of reported novelties on EvalDet. Specif-
ically, each point on the curve represents the P, R,
or F1 when its corresponding method reports the
specified number of novelties (x-axis value) out of
all instances in EvalDet.

MaxProb achieves the best overall performance:
From the plots, it can be observed that MaxProb
achieves the highest AUC value and hence the best
overall performance. This result supports the prior
finding that complex methods fail to consistently
outperform the simiple MaxProb method (Varshney
et al., 2022b; Azizmalayeri and Rohban, 2022).

Performance Analysis of MaxProb: To further
study the performance of MaxProb in detail, we
show its P, R, and F1 curves for Known, Novel,
and Overall data in Figure 3. As expected, the
precision on Known classes tends to increase as
more novelties get reported. This is because the
system predicts the known classes only for those
instances on which it is most confident (highest
MaxProb). Similarly, the precision on novel in-
stances tends to decrease as more and more nov-
elties get reported. The overall precision on the
(K+1) classes tends to increase with the increase in
the number of reported novelties. We provide a de-
tailed performance analysis on the known classes,
novel classes, and overall data in Appendix C.

4.2.2 Novelty Accommodation
Figure 4 shows the novelty accommodation per-
formance on the base setting (EvalAcc has 100k
instances uniformly split across 200 classes - 100
known and 100 novel) i.e. Overall F1 achieved by
systems trained by leveraging the feedback (using
different accommodation methods (a, b, and c)) re-
sulting from different detection methods across the
range of reported novelties. Note that for a value
of reported novelty, each detection method results
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Figure 3: MaxProb’s Novelty Detection performance on the base setting separately on Known classes, Novel
classes, and Overall data.

(a) Retraining w/ DT + DF (b) Further finetune w/ DF (c) Further finetune w/ sampled DT +DF

Figure 4: Novelty Accommodation performance on the base setting - Overall F1 achieved by systems trained by
leveraging the feedback (using different accommodation methods (a, b, and c)) resulting from different detection
methods across the range of reported novelties.

in a different feedback dataset and hence will have
a different accommodation performance. We show
the Precision and Recall curves in the Appendix.

Retraining w/ DT + DF : We note that MaxProb
and MahDist turned out to be the best detection
methods. This implies that their corresponding
feedback dataset would contain more examples of
the novel labels. This further reflects in the novelty
accommodation performance as incorporating the
feedback of these methods results in the best overall
accommodation performance using the retraining
method.

Catastrophic Forgetting Increases in further
fine-tuning with DF : As previously mentioned,
this method leads to catastrophic forgetting of the
known classes resulting in low overall F1 perfor-
mance. We demonstrate this trend in Figure 5.
Furthermore, with the increase in the number of
novelties reported, the extent of catastrophic forget-
ting also increases.

Further fine-tuning with Sampled DT and DF

improves performance: This method not only
mitigates catastrophic forgetting but also results in
a slight improvement over the retraining method.
For sampling, we use the maximum number of cor-
rectly detected instances of a class in DF as the

Figure 5: Demonstrating catastrophic forgetting on
Known classes on further fine-tuning with DF only.

threshold for sampling instances of known labels
from DT . Furthermore, this method is more train-
ing efficient than the retraining method as the num-
ber of training instances is significantly lower in
this method and yet it achieves better performance.

4.3 Analysis

Distribution of Instances over classes in the
Feedback dataset: We show the distribution of
instances over all the classes (novel) in the feedback
dataset DF when the number of reported novelties
is 10k in Figure 6. It can be observed from the his-
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Figure 6: Distribution of instances over novel classes
in DF when the number of reported novelties (by Max-
Prob) is 10k in the base setting.

Figure 7: Scatter plot showing F1 performance achieved
by each novel class in the accommodation stage vs the
number of its instances in the feedback dataset. The
plot is for the MaxProb detection method when 10k
novelties are detected for Retrain using DT and DF

accommodation method.

togram that for all the novel classes, novel instances
between 55 and 95 are correctly detected. For ma-
jority of the classes, 76-85 instances are detected.
This further shows that the detection method is not
biased towards or against any set of novel classes
in identifying novel instances.

Trend of class level performance in the accom-
modation stage vs the number of instances in the
feedback dataset: In Figure 7, we show a scatter
plot of accommodation F1 performance achieved
by each class vs the number of its instances in the
feedback dataset. The plot is for the MaxProb de-
tection method when 10k novelties are detected and
retrain with DT , and DF accommodation method
is used. From the trend, it can be inferred that
with the increase in the number of instances, the
performance generally tends to increase.

Comparing Performance of Known and Novel
Classes in the Accommodation Stage: In Figure
8, we compare the performance of the system (in

Figure 8: Comparing Performance on the system on
Known and Novel classes in the accommodation stage.

the accommodation stage) on Known and Novel
classes. It clearly shows that the system finds it
challenging to adapt itself to the novel classes. This
can be partly attributed to the availability of limited
number of training examples of novel classes. This
also provides opportunities for developing better
accommodation techniques that can overcome this
limitation.

4.4 Other Configuration Settings

In this work, we also study NoveltyTask for dif-
ferent settings (different configuration parameters
defined in 4.1). We observe findings and trends
similar to the base setting. We provide detailed
results and discussion in the Appendix.

5 Conclusion and Discussion

To initiate a systematic research in the important
yet underexplored area of ‘dealing with novelties’,
we introduce NoveltyTask, a multi-stage task to
evaluate a system’s performance on pipelined nov-
elty ‘detection’ and ‘accommodation’ tasks. We
provided mathematical formulation of Novelty-
Task and instantiated it with the authorship at-
tribution task. To this end, we also compiled a
large dataset (consisting of 250k instances across
200 authors/labels) from Amazon reviews corpus.
We conducted comprehensive experiments and ex-
plored several baseline methods for both detection
and accommodation tasks.

Looking forward, we believe that our work opens
up several avenues for interesting research avenues
in this space, such as improving performance of
detecting the novel instances and leveraging the
feedback in a way that helps the system adapt with
just a few examples of the novel labels.
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Limitations

Though the formulation of the task allows explor-
ing several different settings (by varying the config-
uration parameters), in this work, we investigated
only the label-balanced setting. Exploring the label-
imbalanced setting is another very interesting re-
search direction, and we leave that for future work.
Another limitation was the limited exploration of
novelty detection methods, as a number of methods
have been proposed in the recent times. However,
we study only a limited set of methods since the
focus of this work is on formulating and explor-
ing NoveltyTask. Lastly, we note that Novelty-
Task is a controlled task/framework for evaluating
a system’s ability to deal with novelties and not a
method to improve its ability.
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Appendix

A Other Related Work

A.1 Novelty/OOD/Anomaly Detection

A.1.1 Vision
Novelty/OOD/Anomaly detection is an active area
of research in computer vision (Fort et al., 2021;
Esmaeilpour et al., 2022; Sun et al., 2021a; Lu
et al., 2022; Liu et al., 2020a; Sun et al., 2020;
Perera et al., 2020). Datasets such as CIFAR 10
and 100 (Krizhevsky, 2009) are typically used to
evaluate the efficacy of various detection methods.

Fort et al. (2021) demonstrated that pre-training
of transformer-based models using large datasets is
fairly robust in detecting near-OOD instances using
few examples. Esmaeilpour et al. (2022) proposed
to detect OOD instances using pairwise similarity
score. They generate synthetic unseen examples
and use their closed-set classifier to compute pair-
wise similarity. Wei et al. (2021) use open-set sam-
ples with dynamic, noisy labels and assign random
labels to open-set examples, and use them for de-
veloping a system for OOD detection. Sun et al.
(2021b) analyze activation functions of the penul-
timate layer of pretrained models and rectify the
activations to an upper limit for OOD detection.

A.1.2 Language

Zhou et al. (2021b) propose to add an additional
classifier in addition to a closed domain classifier
for getting a class-specific threshold of known and
unknown classes. They generate data placeholders
to mimic open set categories. Venkataram (2018)
use an ensemble-based approach and replace the
softmax layer with an OpenMAX layer. The hy-
pothesis is that the closest (most similar) class
to any known class is an unknown one. This al-
lows the classifier to be trained, enforcing the most
probable class to be the ground truth class and the
runner-up class to be the background class for all
source data.

Zhou et al. (2021c) employ a contrastive learn-
ing framework for unsupervised OOD detection,
which is composed of a contrastive loss and an
OOD scoring function. The contrastive loss in-
creases the discrepancy of the representations of
instances from different classes in the task, while
the OOD scoring function maps the representations
of instances to OOD detection scores.

Xu et al. (2019) propose Learning to Accept
Classes (L2AC) method based on meta-learning
and does not require re-training the model when
new classes are added. L2AC works by maintaining
a set of seen classes and comparing new data points
to the nearest example from each seen class.

Detection approaches are also used in selective
prediction (Varshney et al., 2022b; Kamath et al.,
2020; Xin et al., 2021; Varshney and Baral, 2023)
and cascading techniques (Varshney and Baral,
2022; Varshney et al., 2022a; Li et al., 2021a)
where under-confident predictions are detected to
avoid incorrect predictions.

A.2 Authorship Attribution

BERT (and its different variants like BertAA,
RoBERTa) based, Siamese-based, and ensemble-
based approaches have been used for authorship
attribution. Tyo et al. (2021) propose an approach
that uses a pretrained BERT model in a siamese
configuration for audio-visual classification. They
experiment with using triplet loss, contrastive loss,
and a modified version of contrastive loss and com-
pare the results. Bagdon (2021) combine the results
of a n-gram-based logistic regression classifier with
a transformer model based on RoBERTa (Liu et al.,
2020b) via a SVM meta-classifier. Altakrori et al.
(2021) explore a new evaluation setting topic con-
fusion task. The topic distribution is controlled
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by making it dependent on the author, switching
the topic-author pairs between training and test-
ing. This setup allows for measuring the degree to
which certain features are influenced by the topic,
as opposed to the author’s identity. Other works
include (Barlas and Stamatatos, 2020; Fabien et al.,
2020; Wang and Iwaihara, 2021). N-grams, word
embeddings, and other stylometric features have
been used as input feature vectors for the task (Ca-
ballero et al., 2021; Boenninghoff et al., 2019; Li
et al., 2022; Lagutina et al., 2021, 2020; Lagutina
and Lagutina, 2021).

B Novelty Detection Algorithms

Learning placeholders: The Placeholders algo-
rithm consists of two main components: "Learn-
ing Classifier Placeholders" and "Learning Data
Placeholders". "Learning Classifier Placeholders"
involves adding a set of weights called classifier
placeholders to the linear classifier layer at the end
of the network. This modified classifier function
denoted as f(x) = [WT (x), wT (x)], where w rep-
resents the weights of the additional k+1 class, is
trained using a modified loss function that encour-
ages the classifier to predict the k+1 class as the
second most likely class for every sample. This
loss function helps the classifier learn an embed-
ding function such that the k+1 class is always
the closest class to each class cluster boundary.
In addition to the k+1 class, the Placeholders al-
gorithm includes a tunable number (C) of addi-
tional classifiers to make decisions’ boundaries
smoother. The final classifier function is, there-
fore, f(x) = [WT (x),maxk = 1, ..., CwkT (x)],
meaning that the closest open-set region in the em-
bedding space is taken into consideration. "Learn-
ing Data Placeholders" involves tightening the de-
cision boundaries around the known-class clusters
in the embedding space through a process called
manifold mixup. This involves creating "unknown"
class data from known class data and using an ad-
ditional loss function to penalize classifying this
new data as any of the known classes. Manifold
mixup works by interpolating the embeddings of
two samples from closed-set classes to create an
embedding for a new sample, which is considered
to belong to an unknown class. After training the
model using both classifier and data placeholders,
the Placeholders algorithm includes a final calibra-
tion step in which an additional bias is added to
the open-set logits. This bias is tuned using a vali-

dation set of closed-set samples such that 95% of
all closed-set samples are classified as known. The
combination of these two components and final cal-
ibration allows the Placeholders algorithm to train
a classifier to identify novel samples even when
only trained on closed-set data.

Few Shot Open set Recognition using Meta-
Learning : In the paper "Few-Shot Open-Set
Recognition using Meta-Learning", the authors pro-
pose a method for few-shot open-set recognition
using meta-learning. The main idea is to train a
meta-learner that can recognize new classes given
a few examples of each class.

The meta-learner consists of a feature extrac-
tor network and a linear classifier. The feature
extractor network is responsible for learning an em-
bedding function that maps samples from different
classes into a common embedding space. The goal
is to learn an embedding function that clusters sam-
ples from the same class together while separating
samples from different classes by a large margin.

To train the meta-learner, the authors use a meta-
learning loss function that encourages the embed-
ding function to learn a "smooth" embedding space.
This loss function consists of two terms: a classifi-
cation loss and a separation loss.

During training, the meta-learner is presented
with a small number of examples from each new
class and is required to classify these examples cor-
rectly. The meta-learner is trained to optimize the
meta-learning loss function, which encourages the
embedding function to learn a smooth embedding
space where samples from different classes are well
separated.

After training, the meta-learner can be used to
classify new samples by first projecting them into
the embedding space using the feature extractor net-
work, and then using the linear classifier to assign
them to the appropriate class. The final classifier
is able to generalize to new classes not seen during
training, as it has learned to recognize the underly-
ing structure of the embedding space.

C Results

Hyperparameters of the model: Hidden layer
dropout probability of 0.15, input Sequence length
of 512 tokens, batch size of 32, and standard learn-
ing rate ranging in {1−5}e−5.
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C.1 Other Dataset definitions:
We define two other datasets by varying the follow-
ing parameters:

Detection_200 setting (Dataset 2) is defined as:

• Number of Known Classes (K): 100
• Training Data DT Class Balanced: True
• # Instances Per Known Label in DT : 500
• Number of Novel Classes (N): 100
• # Instances Per Class in EvalDet: 200
• # Instances Per Class in EvalAcc: 500

Detection_500 setting (Dataset 3) is defined as:

• Number of Known Classes (K): 100
• Training Data DT Class Balanced: True
• # Instances Per Known Label in DT : 500
• Number of Novel Classes (N): 100
• # Instances Per Class in EvalDet: 500
• # Instances Per Class in EvalAcc: 500

C.2 Novelty Accommodation Stage
Table 1, 2, and 3 show the results of all six novelty
detection methods across all three accommodation
settings on the first dataset whose results are de-
scribed in details in the main paper.

Similar results are obtained for Detection_200
setting and Detection_500 setting as well. Novelty
Accommodation results for Detection_200 setting
are present in table 4, 5, and 6 and in table 7, 8, and
9 for Detection_500 setting.
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# of
Novelties

Known
Class
precision

Known
class
recall

Known
Class
F1

Novel
Class
Precision

Novel
Class
Recall

Novel
Class
F1

Overall
Precision

Overall
Recall

Overall
F1

1000 51.62 90.10 65.64 15.62 2.23 3.90 33.62 46.17 38.91
2000 54.17 90.62 67.81 30.21 8.51 13.28 42.19 49.56 45.58
3000 55.25 89.92 68.44 50.29 12.69 20.27 52.77 51.31 52.03
4000 58.64 89.61 70.89 67.22 23.97 35.34 62.93 56.79 59.70
5000 60.77 90.16 72.60 74.02 30.99 43.69 67.40 60.58 63.81
6000 62.60 89.59 73.70 76.85 36.23 49.24 69.73 62.91 66.14
7000 64.90 89.62 75.28 80.26 42.21 55.32 72.58 65.92 69.09
8000 67.03 89.61 76.69 82.63 48.16 60.85 74.83 68.89 71.74
9000 67.90 89.35 77.16 82.83 50.46 62.71 75.37 69.91 72.54
10000 69.91 89.67 78.57 83.81 54.10 65.75 76.86 71.89 74.29

Compute Mean
1000 55.57 89.67 68.62 6.41 7.71 7.00 30.99 48.69 37.87
2000 55.86 90.10 68.96 9.09 10.98 9.95 32.48 50.54 39.55
3000 57.29 89.92 69.99 13.54 15.52 14.46 35.42 52.72 42.37
4000 58.63 89.40 70.82 15.88 18.07 16.90 37.26 53.74 44.01
5000 59.39 89.72 71.47 19.00 20.82 19.87 39.19 55.27 45.86
6000 61.03 89.34 72.52 23.67 25.77 24.68 42.35 57.56 48.80
7000 61.67 89.63 73.07 27.36 28.05 27.70 44.51 58.84 50.68
8000 63.27 89.30 74.06 31.58 32.01 31.79 47.42 60.66 53.23
9000 64.12 89.15 74.59 35.75 34.22 34.97 49.93 61.69 55.19
10000 65.70 89.18 75.66 40.30 38.12 39.18 53.00 63.65 57.84

Compute Euclid Distance
1000 54.84 90.10 68.18 30.39 11.45 16.63 42.61 50.78 46.34
2000 59.14 90.22 71.45 56.80 21.40 31.09 57.97 55.81 56.87
3000 62.09 90.02 73.49 73.87 31.43 44.10 67.98 60.72 64.15
4000 64.82 89.66 75.24 78.40 39.37 52.42 71.61 64.51 67.87
5000 67.45 89.29 76.85 80.12 47.33 59.51 73.78 68.31 70.94
6000 69.63 89.93 78.49 83.73 54.05 65.69 76.68 71.99 74.26
7000 71.18 89.45 79.28 83.37 57.08 67.76 77.27 73.26 75.21
8000 71.48 89.20 79.36 83.93 58.09 68.66 77.71 73.64 75.62
9000 72.10 89.09 79.70 84.41 60.30 70.35 78.26 74.69 76.43
10000 73.45 88.92 80.45 85.03 62.08 71.76 79.24 75.50 77.32

Compute Mahalanobis Distance
1000 54.72 89.65 67.96 29.72 9.65 14.57 42.22 49.65 45.63
2000 59.75 90.12 71.86 55.68 22.54 32.09 57.72 56.33 57.02
3000 61.80 89.69 73.18 66.02 31.36 42.52 63.91 60.53 62.17
4000 64.73 90.20 75.37 75.62 39.72 52.08 70.17 64.96 67.46
5000 67.11 89.53 76.72 80.63 46.47 58.96 73.87 68.00 70.81
6000 69.20 89.61 78.09 82.91 51.50 63.53 76.06 70.56 73.21
7000 70.90 89.39 79.08 83.39 55.98 66.99 77.14 72.68 74.84
8000 71.13 89.20 79.15 84.92 58.64 69.37 78.03 73.92 75.92
9000 73.21 89.59 80.58 85.68 61.90 71.87 79.44 75.75 77.55
10000 73.92 89.11 80.81 86.08 64.00 73.42 80.00 76.55 78.24

Compute Max Probability
1000 53.87 89.72 67.32 17.00 7.15 10.07 35.44 48.43 40.93
2000 56.30 90.26 69.35 33.36 16.72 22.28 44.83 53.49 48.78
3000 59.59 89.59 71.57 56.36 24.13 33.79 57.97 56.86 57.41
4000 62.23 89.46 73.40 69.30 34.70 46.24 65.77 62.08 63.87
5000 66.08 89.81 76.14 76.18 44.24 55.97 71.13 67.03 69.02
6000 68.11 89.66 77.41 84.26 50.07 62.81 76.18 69.86 72.88
7000 69.64 89.52 78.34 83.82 54.43 66.00 76.73 71.97 74.27
8000 72.31 89.36 79.94 85.28 59.61 70.17 78.80 74.48 76.58
9000 73.03 89.30 80.35 85.77 62.45 72.28 79.40 75.87 77.59
10000 74.69 88.94 81.19 85.24 65.03 73.78 79.96 76.98 78.44

Placeholders Algorithm
1000 54.45 90.31 67.94 29.47 10.84 15.85 41.96 50.57 45.86
2000 57.17 90.10 69.95 44.44 18.82 26.44 50.80 54.46 52.57
3000 61.10 89.96 72.77 55.81 29.59 38.67 58.45 59.77 59.10
4000 62.74 89.85 73.89 73.03 36.60 48.76 67.88 63.23 65.47
5000 65.90 89.69 75.98 79.94 43.86 56.64 72.92 66.77 69.71
6000 67.59 89.34 76.96 83.69 49.98 62.58 75.64 69.66 72.53
7000 70.52 89.73 78.97 84.42 56.92 67.99 77.47 73.33 75.34
8000 71.90 89.64 79.80 85.32 59.24 69.93 78.61 74.44 76.47
9000 72.34 89.04 79.83 83.72 58.95 69.18 78.03 73.99 75.96
10000 73.41 89.71 80.75 85.84 61.92 71.94 79.63 75.81 77.67

Few shot Open set Recognition

Table 1: Novelty Accommodation Stage: Dataset 1: Retrain using DT and DF
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# of
Novelties

Known
Class
precision

Known
class
recall

Known
Class
F1

Novel
Class
Precision

Novel
Class
Recall

Novel
Class
F1

Overall
Precision

Overall
Recall

Overall
F1

1000 74.55 26.02 38.58 3.43 4.92 4.04 38.99 15.47 22.15
2000 61.86 18.28 28.22 11.74 15.12 13.22 36.80 16.70 22.97
3000 75.14 23.99 36.37 27.67 25.67 26.63 51.41 24.83 33.49
4000 73.70 20.93 32.60 34.57 38.53 36.44 54.14 29.73 38.38
5000 77.08 19.84 31.56 40.72 48.88 44.43 58.90 34.36 43.40
6000 72.90 19.24 30.44 43.49 57.53 49.53 58.19 38.38 46.25
7000 61.77 8.98 15.68 44.02 61.30 51.24 52.90 35.14 42.23
8000 58.13 8.69 15.12 47.92 66.64 55.75 53.03 37.66 44.04
9000 53.48 6.53 11.64 48.35 69.98 57.19 50.91 38.25 43.68
10000 38.57 6.35 10.90 48.24 71.15 57.50 43.41 38.75 40.95

Compute Mean
1000 39.95 6.68 11.45 1.03 9.21 1.85 20.49 7.95 11.46
2000 16.75 1.06 1.99 2.01 13.72 3.51 9.38 7.39 8.27
3000 27.00 3.90 6.82 3.91 18.67 6.47 15.45 11.29 13.05
4000 23.00 1.59 2.97 4.62 21.82 7.63 13.81 11.71 12.67
5000 19.92 1.56 2.89 5.25 24.94 8.67 12.59 13.25 12.91
6000 11.00 0.87 1.61 8.57 30.25 13.36 9.79 15.56 12.02
7000 20.67 3.02 5.27 11.31 33.58 16.92 15.99 18.30 17.07
8000 11.00 0.75 1.40 12.96 37.76 19.30 11.98 19.26 14.77
9000 11.00 0.11 0.22 15.43 41.53 22.50 13.22 20.82 16.17
10000 12.00 0.32 0.62 18.28 45.52 26.08 15.14 22.92 18.23

Compute Euclid Distance
1000 79.11 40.70 53.75 17.10 16.37 16.73 48.10 28.54 35.82
2000 85.75 35.22 49.93 35.85 31.74 33.67 60.80 33.48 43.18
3000 76.62 17.90 29.02 46.81 44.39 45.57 61.72 31.14 41.39
4000 72.88 13.35 22.57 47.42 56.88 51.72 60.15 35.11 44.34
5000 59.96 11.48 19.27 49.27 67.04 56.80 54.62 39.26 45.68
6000 43.27 6.98 12.02 49.74 70.48 58.32 46.50 38.73 42.26
7000 33.50 3.19 5.83 48.67 73.52 58.57 41.09 38.35 39.67
8000 35.45 4.49 7.97 49.63 75.66 59.94 42.54 40.08 41.27
9000 26.33 2.93 5.27 50.30 78.02 61.17 38.32 40.47 39.37
10000 17.00 3.14 5.30 51.87 79.31 62.72 34.43 41.23 37.52

Compute Mahalanobis Distance
1000 77.64 31.72 45.04 11.59 15.90 13.41 44.61 23.81 31.05
2000 79.25 22.94 35.58 27.57 32.88 29.99 53.41 27.91 36.66
3000 88.60 23.51 37.16 35.89 42.37 38.86 62.25 32.94 43.08
4000 78.20 10.35 18.28 42.53 56.15 48.40 60.37 33.25 42.88
5000 50.86 7.91 13.69 45.89 60.54 52.21 48.38 34.23 40.09
6000 50.45 6.47 11.47 47.37 70.73 56.74 48.91 38.60 43.15
7000 27.26 2.83 5.13 47.90 74.23 58.23 37.58 38.53 38.05
8000 21.00 2.65 4.71 49.53 77.02 60.29 35.27 39.83 37.41
9000 22.00 3.56 6.13 50.31 78.15 61.21 36.15 40.85 38.36
10000 17.97 1.25 2.34 51.21 80.49 62.60 34.59 40.87 37.47

Compute Max Probability
1000 64.52 20.06 30.60 3.20 6.38 4.26 33.86 13.22 19.02
2000 84.61 25.01 38.61 18.63 22.15 20.24 51.62 23.58 32.37
3000 57.24 11.32 18.90 24.95 35.16 29.19 41.10 23.24 29.69
4000 63.88 11.03 18.81 36.70 47.23 41.30 50.29 29.13 36.89
5000 56.02 6.07 10.95 42.32 58.27 49.03 49.17 32.17 38.89
6000 43.84 5.29 9.44 45.00 65.42 53.32 44.42 35.35 39.37
7000 37.02 5.00 8.81 47.77 71.41 57.25 42.39 38.21 40.19
8000 28.85 4.55 7.86 48.98 75.65 59.46 38.91 40.10 39.50
9000 16.00 1.86 3.33 49.15 78.29 60.39 32.58 40.07 35.94
10000 19.90 2.05 3.72 51.34 79.65 62.44 35.62 40.85 38.06

Placeholders Algorithm
1000 75.81 26.33 39.09 5.38 10.21 7.05 40.60 18.27 25.20
2000 83.63 24.58 37.99 18.81 27.74 22.42 51.22 26.16 34.63
3000 84.29 19.97 32.29 28.87 40.48 33.70 56.58 30.23 39.41
4000 59.16 9.35 16.15 35.60 50.84 41.88 47.38 30.09 36.81
5000 60.67 6.64 11.97 42.08 59.11 49.16 51.38 32.87 40.09
6000 50.79 5.49 9.91 48.35 69.81 57.13 49.57 37.65 42.80
7000 29.00 3.19 5.75 47.59 74.18 57.98 38.30 38.68 38.49
8000 26.99 3.25 5.80 48.55 73.98 58.63 37.77 38.62 38.19
9000 25.70 2.20 4.05 50.46 77.10 61.00 38.08 39.65 38.85
10000 19.94 1.77 3.25 49.57 78.38 60.73 34.76 40.07 37.23

Few shot Open set Recognition

Table 2: Novelty Accommodation Stage: Dataset 1: Further Fine-tune using DF .
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# of
Novelties

Known
Class
precision

Known
class
recall

Known
Class
F1

Novel
Class
Precision

Novel
Class
Recall

Novel
Class
F1

Overall
Precision

Overall
Recall

Overall
F1

1000 59.69 87.26 70.89 15.37 4.64 7.13 37.53 45.95 41.32
2000 62.66 87.70 73.09 32.20 14.14 19.65 47.43 50.92 49.11
3000 65.50 86.96 74.72 48.58 22.47 30.73 57.04 54.72 55.86
4000 68.97 87.08 76.97 62.66 34.79 44.74 65.81 60.94 63.28
5000 73.44 86.87 79.59 65.70 44.87 53.32 69.57 65.87 67.67
6000 75.33 85.70 80.18 67.43 51.22 58.22 71.38 68.46 69.89
7000 78.45 85.66 81.90 70.25 57.98 63.53 74.35 71.82 73.06
8000 80.33 85.03 82.61 72.67 62.59 67.25 76.50 73.81 75.13
9000 81.31 84.65 82.95 73.82 66.87 70.17 77.56 75.76 76.65
10000 82.88 84.44 83.65 74.13 68.83 71.38 78.50 76.64 77.56

Compute Mean
1000 57.36 88.99 69.76 3.95 8.73 5.44 30.66 48.86 37.68
2000 60.92 88.75 72.25 5.96 12.81 8.14 33.44 50.78 40.32
3000 63.45 88.03 73.75 9.74 17.96 12.63 36.60 52.99 43.30
4000 65.72 87.84 75.19 11.33 20.86 14.68 38.52 54.35 45.09
5000 65.68 87.91 75.19 13.52 23.76 17.23 39.60 55.83 46.33
6000 68.42 87.28 76.71 18.28 28.87 22.39 43.35 58.08 49.65
7000 69.71 86.83 77.33 21.18 31.86 25.44 45.44 59.34 51.47
8000 71.32 87.33 78.52 25.46 35.86 29.78 48.39 61.60 54.20
9000 73.99 86.78 79.88 28.26 39.38 32.91 51.12 63.08 56.47
10000 75.89 86.23 80.73 32.54 43.27 37.15 54.21 64.75 59.01

Compute Euclid Distance
1000 63.23 87.81 73.52 30.48 15.33 20.40 46.86 51.57 49.10
2000 68.99 87.47 77.14 52.53 28.39 36.86 60.76 57.93 59.31
3000 72.93 86.67 79.21 64.15 42.46 51.10 68.54 64.57 66.50
4000 75.98 86.22 80.78 70.70 53.82 61.12 73.34 70.02 71.64
5000 79.22 85.36 82.18 73.09 62.86 67.59 76.15 74.11 75.12
6000 81.70 85.02 83.33 74.91 68.35 71.48 78.31 76.69 77.49
7000 82.01 85.48 83.71 76.69 70.31 73.36 79.35 77.89 78.61
8000 82.80 85.56 84.16 77.90 72.09 74.88 80.35 78.83 79.58
9000 83.54 84.62 84.08 77.92 73.29 75.53 80.73 78.95 79.83
10000 84.50 84.31 84.40 78.39 75.05 76.68 81.45 79.68 80.56

Compute Mahalanobis Distance
1000 61.52 88.11 72.45 32.72 16.57 22.00 47.12 52.34 49.59
2000 68.34 87.25 76.65 49.43 30.10 37.42 58.89 58.67 58.78
3000 73.16 86.78 79.39 61.57 41.30 49.44 67.36 64.04 65.66
4000 76.49 86.25 81.08 67.36 51.58 58.42 71.93 68.92 70.39
5000 78.93 85.77 82.21 72.94 61.55 66.76 75.94 73.66 74.78
6000 80.99 85.69 83.27 74.78 66.77 70.55 77.88 76.23 77.05
7000 81.71 84.69 83.17 75.56 68.76 72.00 78.63 76.72 77.66
8000 83.11 85.45 84.26 77.29 72.60 74.87 80.20 79.03 79.61
9000 83.76 84.45 84.10 77.86 73.79 75.77 80.81 79.12 79.96
10000 84.55 84.18 84.36 78.58 75.10 76.80 81.57 79.64 80.59

Compute Max Probability
1000 58.20 88.66 70.27 23.09 12.71 16.40 40.65 50.69 45.12
2000 65.05 88.25 74.89 37.00 26.00 30.54 51.02 57.12 53.90
3000 68.66 87.88 77.09 57.39 35.26 43.68 63.03 61.57 62.29
4000 73.22 87.58 79.76 64.21 47.60 54.67 68.71 67.59 68.15
5000 77.43 86.70 81.80 70.83 57.74 63.62 74.13 72.22 73.16
6000 79.69 86.50 82.96 74.79 63.95 68.95 77.24 75.23 76.22
7000 81.81 85.93 83.82 76.06 69.15 72.44 78.93 77.54 78.23
8000 82.86 85.38 84.10 76.89 71.83 74.27 79.88 78.60 79.23
9000 84.09 85.00 84.54 77.74 74.36 76.01 80.91 79.68 80.29
10000 84.60 84.47 84.53 78.24 75.36 76.77 81.42 79.91 80.66

Placeholders Algorithm
1000 58.94 88.66 70.81 28.65 17.12 21.43 43.80 52.89 47.92
2000 64.40 88.71 74.63 49.10 27.78 35.48 56.75 58.25 57.49
3000 68.68 88.11 77.19 59.69 38.73 46.98 64.19 63.42 63.80
4000 72.46 87.32 79.20 68.83 46.58 55.56 70.64 66.95 68.75
5000 75.73 87.02 80.98 75.08 58.55 65.79 75.41 72.79 74.08
6000 79.48 85.99 82.61 75.94 65.82 70.52 77.71 75.91 76.80
7000 81.18 85.87 83.46 77.52 69.19 73.12 79.35 77.53 78.43
8000 83.05 85.40 84.21 78.70 73.36 75.94 80.87 79.38 80.12
9000 82.48 85.17 83.80 78.39 72.41 75.28 80.44 78.79 79.61
10000 83.14 85.43 84.27 78.92 73.88 76.32 81.03 79.65 80.33

Few shot Open set Recognition

Table 3: Novelty Accommodation Stage: Dataset 1: Further Fine-tune using Sampled DT and DF .
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# of
Novelties

Known
Class
precision

Known
class
recall

Known
Class
F1

Novel
Class
Precision

Novel
Class
Recall

Novel
Class
F1

Overall
Precision

Overall
Recall

Overall
F1

4000 57.47 89.90 70.12 57.28 20.96 30.69 57.38 55.43 56.39
8000 66.31 88.96 75.98 83.59 45.46 58.89 74.95 67.21 70.87
12000 71.26 88.93 79.12 85.16 57.43 68.60 78.21 73.18 75.61
16000 75.42 89.55 81.88 86.76 67.05 75.64 81.09 78.30 79.67
20000 77.47 89.41 83.01 88.40 71.43 79.01 82.94 80.42 81.66

Compute Mean
4000 56.84 89.63 69.56 9.09 12.39 10.49 32.96 51.01 40.05
8000 60.52 89.47 72.20 15.40 21.08 17.80 37.96 55.27 45.01
12000 62.75 89.67 73.83 23.36 28.78 25.79 43.06 59.22 49.86
16000 66.27 89.51 76.16 31.26 36.25 33.57 48.77 62.88 54.93
20000 68.62 89.19 77.56 40.37 43.76 42.00 54.49 66.47 59.89

Compute Euclid Distance
4000 65.56 89.81 75.79 73.37 39.72 51.54 69.47 64.77 67.04
8000 73.69 89.30 80.75 85.84 63.55 73.03 79.77 76.43 78.06
12000 77.47 89.19 82.92 88.01 71.65 78.99 82.74 80.42 81.56
16000 79.19 88.81 83.72 88.18 74.73 80.90 83.68 81.77 82.71
20000 80.33 88.63 84.28 89.57 77.62 83.17 84.95 83.12 84.03

Compute Mahalanobis Distance
4000 65.24 89.96 75.63 75.98 38.95 51.50 70.61 64.46 67.39
8000 73.35 89.48 80.62 85.56 61.38 71.48 79.45 75.43 77.39
12000 76.74 89.29 82.54 87.99 70.02 77.98 82.37 79.66 80.99
16000 80.08 89.05 84.33 89.10 76.62 82.39 84.59 82.83 83.70
20000 80.83 89.01 84.72 90.47 78.57 84.10 85.65 83.79 84.71

Compute Max Probability
4000 61.55 90.02 73.11 58.92 28.77 38.66 60.24 59.40 59.82
8000 70.28 89.56 78.76 82.11 53.64 64.89 76.19 71.60 73.82
12000 76.39 88.87 82.16 87.62 68.74 77.04 82.00 78.80 80.37
16000 80.09 89.08 84.35 88.95 76.14 82.05 84.52 82.61 83.55
20000 81.25 88.80 84.86 89.25 78.42 83.49 85.25 83.61 84.42

Placeholders Algorithm
4000 61.32 89.86 72.90 57.04 30.12 39.42 59.18 59.99 59.58
8000 69.68 89.87 78.50 85.11 52.89 65.24 77.39 71.38 74.26
12000 74.92 89.04 81.37 87.46 65.95 75.20 81.19 77.50 79.30
16000 78.69 88.63 83.36 88.87 74.19 80.87 83.78 81.41 82.58
20000 80.82 88.82 84.63 90.20 78.17 83.76 85.51 83.49 84.49

Few shot Open set Recognition

Table 4: Novelty Accommodation Stage: Dataset 2: Retrain using DT and DF
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# of
Novelties

Known
Class
precision

Known
class
recall

Known
Class
F1

Novel
Class
Precision

Novel
Class
Recall

Novel
Class
F1

Overall
Precision

Overall
Recall

Overall
F1

4000 83.55 28.67 42.69 33.25 32.69 32.97 58.40 30.68 40.23
8000 48.80 7.04 12.30 45.59 61.05 52.20 47.20 34.05 39.56
12000 36.71 4.56 8.11 49.62 75.64 59.93 43.17 40.10 41.58
16000 18.00 2.26 4.02 53.16 80.24 63.95 35.58 41.25 38.21
20000 10.00 3.27 4.93 55.63 84.25 67.01 32.81 43.76 37.50

Compute Mean
4000 12.89 0.76 1.44 1.90 14.41 3.36 7.39 7.58 7.48
8000 6.00 1.75 2.71 4.59 22.88 7.65 5.29 12.32 7.40
12000 13.98 2.31 3.96 8.50 31.69 13.40 11.24 17.00 13.53
16000 7.76 0.22 0.43 13.20 39.82 19.83 10.48 20.02 13.76
20000 10.00 0.13 0.26 19.13 48.70 27.47 14.57 24.42 18.25

Compute Euclid Distance
4000 79.08 15.55 25.99 45.61 54.41 49.62 62.34 34.98 44.81
8000 30.00 3.81 6.76 51.96 79.00 62.69 40.98 41.41 41.19
12000 15.00 1.50 2.73 54.29 84.03 65.96 34.65 42.76 38.28
16000 10.00 0.75 1.40 55.82 86.85 67.96 32.91 43.80 37.58
20000 4.00 0.42 0.76 55.57 87.67 68.02 29.78 44.04 35.53

Compute Mahalanobis Distance
4000 64.78 14.62 23.86 43.47 52.66 47.63 54.12 33.64 41.49
8000 27.95 2.69 4.91 53.26 77.48 63.13 40.61 40.09 40.35
12000 9.33 0.47 0.89 53.85 83.92 65.60 31.59 42.20 36.13
16000 11.00 1.31 2.34 55.60 86.41 67.66 33.30 43.86 37.86
20000 6.00 0.04 0.08 56.65 87.98 68.92 31.33 44.01 36.60

Compute Max Probability
4000 70.51 20.17 31.37 36.49 39.94 38.14 53.50 30.05 38.48
8000 25.66 1.86 3.47 46.68 69.62 55.89 36.17 35.74 35.95
12000 8.00 1.15 2.01 53.00 82.74 64.61 30.50 41.94 35.32
16000 8.00 0.55 1.03 55.56 86.32 67.61 31.78 43.43 36.70
20000 7.00 0.24 0.46 57.11 87.49 69.11 32.05 43.87 37.04

Placeholders Algorithm
4000 67.19 13.68 22.73 30.37 40.68 34.78 48.78 27.18 34.91
8000 31.93 2.62 4.84 47.52 69.70 56.51 39.72 36.16 37.86
12000 9.00 1.53 2.62 53.00 82.51 64.54 31.00 42.02 35.68
16000 7.00 0.63 1.16 55.64 86.24 67.64 31.32 43.43 36.39
20000 7.00 0.43 0.81 56.06 87.89 68.46 31.53 44.16 36.79

Few shot Open set Recognition

Table 5: Novelty Accommodation Stage: Dataset 2: Further Fine-tune using DF .
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# of
Novelties

Known
Class
precision

Known
class
recall

Known
Class
F1

Novel
Class
Precision

Novel
Class
Recall

Novel
Class
F1

Overall
Precision

Overall
Recall

Overall
F1

4000 67.78 87.40 76.35 53.65 28.48 37.21 60.71 57.94 59.29
8000 78.41 85.86 81.97 73.39 59.38 65.65 75.90 72.62 74.22
12000 83.72 84.33 84.02 77.60 72.56 75.00 80.66 78.45 79.54
16000 86.11 84.61 85.35 80.39 78.25 79.31 83.25 81.43 82.33
20000 86.59 84.91 85.74 82.77 81.47 82.11 84.68 83.19 83.93

Compute Mean
4000 59.33 89.27 71.28 7.03 13.27 9.19 33.18 51.27 40.29
8000 64.66 88.79 74.83 12.25 21.84 15.70 38.46 55.31 45.37
12000 67.24 88.77 76.52 19.30 29.96 23.48 43.27 59.37 50.06
16000 71.70 88.24 79.11 26.76 37.66 31.29 49.23 62.95 55.25
20000 75.77 88.14 81.49 35.22 46.40 40.04 55.49 67.27 60.81

Compute Euclid Distance
4000 74.92 87.17 80.58 71.98 53.51 61.39 73.45 70.34 71.86
8000 83.65 86.13 84.87 81.38 75.63 78.40 82.52 80.88 81.69
12000 85.43 85.89 85.66 84.03 80.79 82.38 84.73 83.34 84.03
16000 86.43 86.35 86.39 85.35 82.88 84.10 85.89 84.61 85.25
20000 87.02 86.11 86.56 85.92 84.20 85.05 86.47 85.15 85.80

Compute Mahalanobis Distance
4000 75.00 87.16 80.62 69.84 52.95 60.23 72.42 70.05 71.22
8000 82.97 86.17 84.54 80.70 74.21 77.32 81.83 80.19 81.00
12000 85.56 85.86 85.71 83.39 80.00 81.66 84.48 82.93 83.70
16000 86.82 86.13 86.47 85.13 82.81 83.95 85.97 84.47 85.21
20000 87.49 86.27 86.88 85.72 84.46 85.09 86.61 85.36 85.98

Compute Max Probability
4000 69.16 88.39 77.60 61.06 39.69 48.11 65.11 64.04 64.57
8000 80.98 86.87 83.82 78.15 68.53 73.02 79.57 77.70 78.62
12000 84.78 85.84 85.31 82.84 78.16 80.43 83.81 82.00 82.90
16000 86.71 85.50 86.10 84.36 82.70 83.52 85.54 84.10 84.81
20000 87.21 85.93 86.57 85.63 84.05 84.83 86.42 84.99 85.70

Placeholders Algorithm
4000 67.89 89.14 77.08 60.03 40.77 48.56 63.96 64.95 64.45
8000 77.86 88.05 82.64 80.32 65.58 72.21 79.09 76.82 77.94
12000 83.66 87.03 85.31 84.28 78.54 81.31 83.97 82.78 83.37
16000 85.80 86.50 86.15 85.24 81.85 83.51 85.52 84.18 84.84
20000 86.72 86.51 86.61 86.32 83.99 85.14 86.52 85.25 85.88

Few shot Open set Recognition

Table 6: Novelty Accommodation Stage: Dataset 2: Further Fine-tune using Sampled DT and DF .
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# of
Novelties

Known
Class
precision

Known
class
recall

Known
Class
F1

Novel
Class
Precision

Novel
Class
Recall

Novel
Class
F1

Overall
Precision

Overall
Recall

Overall
F1

10000 70.00 90.48 78.93 86.80 54.61 67.04 78.40 72.55 75.36
20000 79.06 88.63 83.57 88.26 74.07 80.54 83.66 81.35 82.49
30000 83.41 89.02 86.12 91.10 82.49 86.58 87.25 85.75 86.49
40000 85.19 88.49 86.81 91.91 86.37 89.05 88.55 87.43 87.99
50000 86.87 88.36 87.61 92.39 88.83 90.58 89.63 88.59 89.11

Compute Mean
10000 58.04 89.86 70.53 8.73 14.06 10.77 33.39 51.96 40.65
20000 61.41 89.43 72.82 15.30 22.70 18.28 38.35 56.06 45.54
30000 64.68 89.13 74.96 23.33 31.21 26.70 44.00 60.17 50.83
40000 68.93 89.55 77.90 30.62 39.67 34.56 49.78 64.61 56.23
50000 72.91 89.15 80.22 40.10 48.95 44.09 56.50 69.05 62.15

Compute Euclid Distance
10000 78.29 89.46 83.50 89.16 72.90 80.21 83.72 81.18 82.43
20000 84.24 88.78 86.45 92.01 84.95 88.34 88.13 86.87 87.50
30000 86.28 88.35 87.30 92.63 88.62 90.58 89.46 88.48 88.97
40000 87.84 88.96 88.40 93.47 90.92 92.18 90.66 89.94 90.30
50000 88.36 88.41 88.38 93.43 91.92 92.67 90.89 90.16 90.52

Compute Mahalanobis Distance
10000 77.53 89.67 83.16 88.91 70.52 78.65 83.22 80.10 81.63
20000 83.83 88.98 86.33 91.82 83.42 87.42 87.83 86.20 87.01
30000 86.29 88.76 87.51 92.95 88.61 90.73 89.62 88.68 89.15
40000 87.90 88.79 88.34 93.61 91.32 92.45 90.75 90.05 90.40
50000 88.45 88.49 88.47 93.58 92.15 92.86 91.02 90.32 90.67

Compute Max Probability
10000 70.30 89.58 78.78 77.38 53.36 63.16 73.84 71.47 72.64
20000 81.93 88.82 85.24 90.36 79.85 84.78 86.14 84.34 85.23
30000 86.22 88.71 87.45 92.28 87.57 89.86 89.25 88.14 88.69
40000 88.01 89.02 88.51 93.34 90.93 92.12 90.68 89.97 90.32
50000 88.47 88.88 88.67 93.77 92.06 92.91 91.12 90.47 90.79

Placeholders Algorithm
10000 69.76 89.82 78.53 79.02 52.47 63.06 74.39 71.14 72.73
20000 80.36 89.10 84.50 90.91 77.81 83.85 85.63 83.45 84.53
30000 85.01 88.88 86.90 92.68 86.46 89.46 88.84 87.67 88.25
40000 87.65 89.18 88.41 93.48 90.50 91.97 90.56 89.84 90.20
50000 88.53 88.51 88.52 93.38 91.89 92.63 90.96 90.20 90.58

Few shot Open set Recognition

Table 7: Novelty Accommodation Stage: Dataset 3: Retrain using DT and DF
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# of
Novelties

Known
Class
precision

Known
class
recall

Known
Class
F1

Novel
Class
Precision

Novel
Class
Recall

Novel
Class
F1

Overall
Precision

Overall
Recall

Overall
F1

10000 61.09 8.26 14.55 53.03 69.85 60.29 57.06 39.06 46.37
20000 11.00 1.10 2.00 56.49 86.58 68.37 33.74 43.84 38.13
30000 7.00 2.34 3.51 59.43 89.90 71.56 33.22 46.12 38.62
40000 5.00 0.02 0.04 58.84 92.42 71.90 31.92 46.22 37.76
50000 2.00 0.16 0.30 59.19 93.52 72.50 30.59 46.84 37.01

Compute Mean
10000 20.73 1.59 2.95 2.04 14.72 3.58 11.38 8.16 9.50
20000 15.00 0.93 1.75 5.22 23.50 8.54 10.11 12.22 11.07
30000 12.00 0.47 0.90 8.75 32.31 13.77 10.38 16.39 12.71
40000 6.00 0.01 0.02 14.42 40.90 21.32 10.21 20.46 13.62
50000 4.00 0.04 0.08 20.16 50.39 28.80 12.08 25.21 16.33

Compute Euclid Distance
10000 24.98 1.43 2.71 55.64 86.18 67.62 40.31 43.81 41.99
20000 8.00 0.24 0.47 57.99 91.57 71.01 32.99 45.91 38.39
30000 5.00 0.36 0.67 58.09 93.42 71.64 31.55 46.89 37.72
40000 3.00 0.02 0.04 57.68 94.68 71.69 30.34 47.35 36.98
50000 3.00 0.01 0.02 58.78 94.69 72.53 30.89 47.35 37.39

Compute Mahalanobis Distance
10000 18.00 2.07 3.71 55.95 84.56 67.34 36.98 43.31 39.90
20000 7.00 0.55 1.02 57.81 91.36 70.81 32.40 45.95 38.00
30000 4.00 0.57 1.00 58.52 93.62 72.02 31.26 47.10 37.58
40000 2.00 0.14 0.26 59.38 94.64 72.97 30.69 47.39 37.25
50000 0.00 0.00 0.00 59.54 95.01 73.20 29.77 47.51 36.60

Compute Max Probability
10000 23.87 4.33 7.33 48.60 68.95 57.01 36.23 36.64 36.43
20000 8.00 0.06 0.12 56.57 89.78 69.41 32.28 44.92 37.57
30000 3.00 0.13 0.25 58.05 92.88 71.45 30.52 46.51 36.86
40000 2.00 0.02 0.04 59.85 94.23 73.20 30.93 47.12 37.35
50000 1.00 0.00 0.00 59.12 94.99 72.88 30.06 47.50 36.82

Placeholders Algorithm
10000 38.14 3.87 7.03 42.99 69.57 53.14 40.57 36.72 38.55
20000 9.97 0.21 0.41 56.54 89.17 69.20 33.26 44.69 38.14
30000 4.00 0.06 0.12 58.77 92.85 71.98 31.38 46.46 37.46
40000 2.00 0.01 0.02 59.66 94.14 73.04 30.83 47.07 37.26
50000 1.00 0.05 0.10 59.44 94.73 73.05 30.22 47.39 36.90

Few shot Open set Recognition

Table 8: Novelty Accommodation Stage: Dataset 3: Further Fine-tune using DF .
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# of
Novelties

Known
Class
precision

Known
class
recall

Known
Class
F1

Novel
Class
Precision

Novel
Class
Recall

Novel
Class
F1

Overall
Precision

Overall
Recall

Overall
F1

10000 81.85 85.73 83.75 77.75 67.71 72.38 79.80 76.72 78.23
20000 87.54 85.57 86.54 84.59 83.74 84.16 86.06 84.65 85.35
30000 89.39 85.82 87.57 87.03 88.01 87.52 88.21 86.91 87.56
40000 90.01 86.48 88.21 88.53 89.79 89.16 89.27 88.14 88.70
50000 90.35 87.23 88.76 89.81 91.12 90.46 90.08 89.17 89.62

Compute Mean
10000 60.69 90.58 72.68 7.41 14.23 9.75 34.05 52.40 41.28
20000 65.10 90.15 75.60 13.30 22.92 16.83 39.20 56.53 46.30
30000 67.89 90.59 77.61 20.53 31.52 24.86 44.21 61.05 51.28
40000 73.00 90.40 80.77 28.22 39.92 33.07 50.61 65.16 56.97
50000 76.60 90.26 82.87 36.91 49.37 42.24 56.75 69.81 62.61

Compute Euclid Distance
10000 85.32 87.97 86.62 86.95 81.83 84.31 86.14 84.90 85.52
20000 88.53 88.27 88.40 89.91 88.44 89.17 89.22 88.35 88.78
30000 89.74 89.35 89.54 91.56 90.55 91.05 90.65 89.95 90.30
40000 90.03 89.28 89.65 92.15 91.62 91.88 91.09 90.45 90.77
50000 90.96 89.34 90.14 92.21 92.58 92.39 91.58 90.96 91.27

Compute Mahalanobis Distance
10000 84.75 87.44 86.07 85.76 79.61 82.57 85.26 83.52 84.38
20000 88.19 88.47 88.33 90.19 88.10 89.13 89.19 88.28 88.73
30000 89.59 88.70 89.14 91.41 90.69 91.05 90.50 89.70 90.10
40000 90.82 89.31 90.06 91.88 92.13 92.00 91.35 90.72 91.03
50000 91.16 89.51 90.33 92.55 93.09 92.82 91.85 91.30 91.57

Compute Max Probability
10000 78.52 89.09 83.47 80.19 64.44 71.46 79.36 76.76 78.04
20000 87.03 88.68 87.85 89.04 85.28 87.12 88.03 86.98 87.50
30000 89.45 88.28 88.86 90.24 89.79 90.01 89.84 89.03 89.43
40000 90.66 88.28 89.45 90.99 91.76 91.37 90.82 90.02 90.42
50000 91.05 89.12 90.07 91.95 92.62 92.28 91.50 90.87 91.18

Placeholders Algorithm
10000 76.23 89.90 82.50 80.92 64.15 71.57 78.57 77.03 77.79
20000 85.80 89.42 87.57 89.87 83.76 86.71 87.83 86.59 87.21
30000 89.06 89.68 89.37 91.44 89.43 90.42 90.25 89.55 89.90
40000 90.03 89.08 89.55 91.97 91.42 91.69 91.00 90.25 90.62
50000 90.96 88.93 89.93 91.83 92.40 92.11 91.39 90.66 91.02

Few shot Open set Recognition

Table 9: Novelty Accommodation Stage: Dataset 3: Further Fine-tune using Sampled DT and DF .
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