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Abstract

Most named entity recognition (NER) systems
focus on improving model performance, ig-
noring the need to quantify model uncertainty,
which is critical to the reliability of NER sys-
tems in open environments. Evidential deep
learning (EDL) has recently been proposed as
a promising solution to explicitly model predic-
tive uncertainty for classification tasks. How-
ever, directly applying EDL to NER applica-
tions faces two challenges, i.e., the problems of
sparse entities and OOV/OOD entities in NER
tasks. To address these challenges, we pro-
pose a trustworthy NER framework named E-
NER 1 by introducing two uncertainty-guided
loss terms to the conventional EDL, along with
a series of uncertainty-guided training strate-
gies. Experiments show that E-NER can be
applied to multiple NER paradigms to obtain
accurate uncertainty estimation. Furthermore,
compared to state-of-the-art baselines, the pro-
posed method achieves a better OOV/OOD de-
tection performance and better generalization
ability on OOV entities.

1 Introduction

Named entity recognition (NER) aims to locate
and classify entities in unstructured text, such as
extracting LOCATION information "New York"
from the sentence "How far is New York from me".
Thanks to the development of deep neural network
(DNN), current NER methods have achieved re-
markable performance on a wide range of bench-
marks (Lample et al., 2016; Yamada et al., 2020;
Li et al., 2022).

Despite this progress, current NER-related re-
search typically focuses on improving the model
performance, such as recognition accuracy and
F1 scores (Yu et al., 2020; Zhu and Li, 2022).

∗Mengting Hu and Bingzhe Wu are the corresponding
authors.

† Independent researcher.
1https://github.com/Leon-bit-9527/ENER
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Figure 1: Visualization of desired uncertainty estima-
tions in the NER application.

However, seldom works focus on investigating the
model’s reliability. The critical aspect of the model
reliability is the uncertainty estimation of the pre-
dictive results, which can characterize the probabil-
ity that the model prediction will be wrong. One
natural way to construct the predictive uncertainty
is based on the maximum value of the Softmax
output (Yan et al., 2021; Li et al., 2022; Zhu and
Li, 2022) (the smaller this value, the larger the
uncertainty). However, previous empirical stud-
ies show that probabilistic predictions produced
by DNN models (e.g., transformer and CNN) are
often inaccurate (Guo et al., 2017; Lee et al., 2018;
Pinto et al., 2022). Therefore, this natural way
may over/under-estimate the predictive uncertainty,
hindering the model’s reliability.

High-quality uncertainty estimation helps to im-
prove the model’s reliability in an open environ-
ment and to find valuable samples to improve train-
ing sample efficiency, thus reducing the cost of
manual labeling. On the one hand, for the relia-
bility aspect, accurate uncertainty estimation can
equip the NER model with the ability to express
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“I do not know” to both the out-of-domain (OOD)
or out-of-vocabulary (OOV) samples (Charpentier
et al., 2020). A desired uncertainty estimation is
conceptually shown in Figure 1, wherein misclas-
sified OOV/OOD entities are assigned with sig-
nificantly higher uncertainty than the in-domain
(ID) entities. Besides, the estimated uncertainty
can be further absorbed into the training process to
improve the model robustness against OOV/OOD
samples. On the other hand, for the sample effi-
ciency aspect, prior work shows that high-quality
uncertainty estimation can also be used for select-
ing more "informative" samples and thus can re-
duce the number of labeled samples required for
training the NER model.

To attain high-quality uncertainty estimation, ev-
idential deep learning (EDL) (Sensoy et al., 2018)
provides a promising solution. EDL is superior to
existing Bayesian learning-based methods (Blun-
dell et al., 2015; Kingma et al., 2015; Graves, 2011)
in that model uncertainty can be efficiently esti-
mated in a single forward pass that avoids inex-
act posterior approximation (Kopetzki et al., 2021)
or time/storage-consuming Monte Carlo sampling
(Gal and Ghahramani, 2016). However, directly ap-
plying conventional EDL to NER applications still
faces two critical challenges: (1) sparse entities:
In text corpus, entities only take a minority. For
example, only 16.8% of the words in the commonly
used CoNLL2003 dataset belong to entities. The
remaining non-entity types are labeled into the "oth-
ers" (O) class. The imbalance between entity and
non-entity words can cause over-fitting and poor
performance on the entity types. (2) OOV/OOD en-
tity discrimination: In the open environment, NER
training/test data typically comes with OOV/OOD
entities. However, the optimization objective of
current EDL methods lacks explicit modeling of
such types of information.

To address these two issues, we present a trust-
worthy NER framework named E-NER with a
series of uncertainty-guided training strategies. For
the issue of sparse entities, we propose to use an
uncertainty-guided importance weighted (IW) loss,
wherein samples with higher predictive uncertain-
ties are assigned larger weights. This loss helps the
model training to pay more attention to entities of
interest (e.g., person and location). To solve the
issue of unknown entities, we present an additional
regularization term to penalize the case where la-
bels are more prone to errors by assigning higher

uncertainties to corresponding samples. We empiri-
cally show these two uncertainty-guided loss terms
can improve both the quality of estimated confi-
dence and the robustness against OOV samples.

Our contributions are summarized as follows:

• To the best of our knowledge, E-NER is the
first work to explore how to leverage eviden-
tial deep learning to improve the reliability of
current NER models. This work has success-
fully shown the potential of EDL to provide
high-quality uncertainty estimation in NER
applications. The estimated uncertainty can
be further used for detecting OOD/OOV sam-
ples in the test phase.

• For the technique contribution, we propose
two uncertainty-guided loss terms to mitigate
sparse entities and OOV/OOD entity discrimi-
nation issues in the NER task.

• E-NER is extensively validated in a se-
ries of experiments. In contrast to conven-
tional NER methods, the result shows that
E-NER comes with the following superiority:
(1) more accurate uncertainty estimation. (2)
better OOV/OOD detection performance. (3)
better generalization ability on OOV entities.
(4) better sample efficiency (i.e., fewer sam-
ples are required to achieve the same-level
performance).

2 Preliminary

This section introduces a commonly-used EDL im-
plementation based on the Dirichlet-based model
(DBM) (Sensoy et al., 2018). We then describe
how the DBM computes the uncertainty in a closed
form.

2.1 Dirichlet-based Model
Conventional neural network classifiers typically
employ a Softmax layer to provide a point esti-
mation of the categorical distribution. In contrast,
Dirichlet-based models (DBM) output the parame-
ters of a Dirichlet distribution and then use it to es-
timate the categorical distribution. Specifically, for
the i-th sample x(i) (e.g., the i-th word in the NER
task) in the C-class classification task, the DBM
replaces the Softmax of the neural network with
an activation function layer (e.g., Softplus) to en-
sure that the network outputs non-negative values,
which are considered as the evidence e(i) ∈ RC

+
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Figure 2: Basic architecture of E-NER with different NER paradigms.

to support the classification. The evidence is then
used for constructing a Dirichlet distribution which
models the distribution over different classes. To
this end, the parameter of a Dirichlet distribution is
obtained by: α(i) = e(i) + 1, where 1 represents
the vector of C ones. Finally, the density function
of Dirichlet distribution is given by:

Dir(p(i)|α(i)) =
1

B(α(i))

C∏

c=1

p(α
(i)
c −1)

c , (1)

where B(α(i)) is the C-dimensional multinomial
beta function.

To learn model parameters, given the sample
(x(i),y(i)), where y(i) is a one-hot C-dimensional
label for sample x(i), previous EDL methods build
the optimization objective by combining a cross-
entropy classification loss LCLS and a KL penalty
loss LKL:

L(i)EDL=L
(i)
CLS + L(i)KL

=
C∑

c=1

y(i)c

(
ψ(S(i))− ψ(α(i)

c )
)

︸ ︷︷ ︸
(a) classification loss

+λ1KL[Dir(p(i)|α̃(i))||Dir(p(i)|1)]︸ ︷︷ ︸
(b) penalty loss

,

(2)

where ψ(·) is the digamma function, and S(i) =∑C
c=1 α

(i)
c denotes the Dirichlet strength, λ1 is

the balance factor, Dir(p(i)|1) is a special case
which is equivalent to the uniform distribution,
and α̃(i) = y(i) + (1 − y(i)) ⊙ α(i) denotes the
masked parameters while⊙ refers to the Hadamard

(element-wise) product, which removes the non-
misleading evidence from predicted parameters
α(i). Intuitively, the first term in Eq. 2 measures
the classification performance while the second
term can be seen as a regularization term that pe-
nalizes misleading evidences by encouraging the
associate distribution to be close to uniform distri-
bution (see more details in Appendix §C.3).

2.2 Uncertainty Estimation of DBM

Once we obtain the Dirichlet distribution for predic-
tion, we can estimate the predictive uncertainty in
a closed form. To this end, EDL provides two prob-
abilities: belief mass and uncertainty mass. The
belief mass b represents the probability of evidence
assigned to each category and the uncertainty mass
u provides uncertainty estimation. Specifically, for
the sample x(i), the belief mass b(i)c and uncertainty
u(i) are computed as:

b(i)c =
e
(i)
c

S(i)
and u(i) =

C

S(i)
, (3)

with the restrictions that u(i)+
∑C

c=1 b
(i)
c = 1. The

belief mass b and the uncertainty mass u will be
used to guide the training process in our proposed
framework (see Section §3.3).

3 E-NER Architecture

In this section, we describe the three core modules
of E-NER and provide an overview of the system
architecture in Figure 2. Additionally, we revise
the learning strategy of EDL by incorporating im-
portance weights (IW) to address the sparse entities
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problem and uncertainty mass optimization (UNM)
to model the uncertainty of mispredicted entities.

3.1 NER Feature Extraction

Given a word sequence X = {x(1), ..., x(n)} and
a target sequence Y = {y(1), ..., y(n)}. To ob-
tain the hidden representation H of X , the words
in the sentence X are first preprocessed accord-
ing to the input form required by the correspond-
ing NER method. Then the processed input is
fed into an Encoder module (e.g., BERT (Devlin
et al., 2019)) to compute the hidden representation
H = Encoder(X), where H ∈ Rn×dh and dh de-
notes the dimension of the hidden representation.
The input format for NER models can vary depend-
ing on the paradigm used. Three NER paradigms
were considered for this study: sequence label-
ing (Figure 2(a)), span-based (Figure 2(b)), and
Seq2Seq (Figure 2(c)). The specific formats for
these paradigms are provided in the Appendix §A.
Note that in the Seq2Seq (sequence-to-sequence)
paradigm, we choose a pointer-based model (Yan
et al., 2021), so that we don’t need to learn on the
entire vocabulary.

3.2 Dirichlet-based Prediction Layer

Once we obtain the hidden representation, we in-
troduce a Dirichlet-based layer to produce the final
predictive distribution. Precisely, for the ith sam-
ple, the hidden representation h is fed to the fully
connected layer to output logits, and then we can
transform the logits into Dirichlet parameters α
as described in Section §2.1. Finally, as shown
in Figure 2, only one forward step using Eq. 3 is
sufficient to calculate the uncertainty u(i), while
the probability distribution p(i) and prediction y(i)

are calculated as follows:

p(i)=
α(i)

S(i)
, y(i)=argmax

c∈C

[
p(i)c

]
. (4)

3.3 E-NER Model Learning

Overview. The objective function of EDL training
is to minimize the sum of losses over all words.
Due to the sparse entities and OOV/OOD entities
issues, directly applying EDL to NER leads subop-
timal uncertainty estimates. We improve conven-
tional EDL methods by incorporating belief mass
and uncertainty into the network training process.
Specifically, two key modifications are introduced:
(1) We compute importance weights for each sam-
ple based on the belief mass to reweight the original

b �|� u �|� ={y1,y2,y3}|

uC

y1

y2

y3

b ={0.001,0.968,0.001}|u=0.03

b ={0.397,0.402,0.001}|u=0.20 b ={0.001,0.001,0.001}|u=0.99

(a) Overview description (b) Confident prediction

(c) Dubious prediction (d) High uncertainty prediction

Figure 3: (a) Overview of uncertainty estimation for
Dirichlet distributions. (b-d) Typical patterns of Dirich-
let distribution for an example 3-class classification task.

classification loss in Eq. 2(a). (2) We introduce an
additional term to increase the uncertainty of mis-
predicted instances, which explicitly improves the
quality of uncertainty estimation and helps OOD
entity detection.
Importance Weight. Due to the inherent imbal-
ance between entities and non-entities in NER
datasets, conventional EDL methods tend to overfit
non-entities and assign high uncertainty estimates
to entities. To make the training focus more on the
entities and increase the evidence corresponding to
the ground-truth category, we use the belief mass of
the ground-truth category to compute the category-
level uncertainty for each instance to adjust the loss.
Specifically, for the ith sample, we use (1− b(i))
as the category-level uncertainty which serves as
the importance weights of entity categories during
training. To this end, we replace the ground truth
y(i) of one-hot representation with an importance
weight (IW) w(i) = (1 − b(i)) ⊙ y(i), and lastly,
the Eq. 2(a) is adjusted to:

L(i)IW =
C∑

c=1

w(i)
c

(
ψ(S(i))− ψ(α(i)

c )
)
. (5)

As illustrated in Figure 3(b), the belief mass
of the ground-truth category is high, indicating a
high level of certainty in the prediction. In this
case, the importance weight (IW) assigned will be
small. Conversely, Figure 3(c) presents a small
belief mass, indicating an uncertain prediction. IW
will be assigned a large value. In this manner, the
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training process can focus more on sparse but valu-
able entities.
Uncertainty Mass Optimization. Assigning high
uncertainty to OOV/OOD entities (see Figure 3(d)
as an example) facilitates OOV/OOD entity detec-
tion. However, ground-truth OOV/OOD samples
are not available during training. One solution is
to synthesize such data on the boundary of the in-
domain region via a generative model (Lee et al.,
2018). In this paper, we propose a more conve-
nient way to treat hard samples as OOV/OOD sam-
ples which are often outliers and are mispredicted
even after adequate model training. In this way,
we enable the model to detect OOV/OOD data.
Specifically, uncertainty mass optimization (UNM)
assigns higher uncertainty to more error-prone sam-
ples for the model to express a lack of evidence, by
adding an uncertainty mass penalty term LUNM to
the wrongly predicted samples:

LUNM =−λ2
∑

i∈{ŷ(i) ̸=y(i)}
log(u(i)). (6)

The coefficient λ2 = λ0 exp{−(lnλ0/T )t}, where
λ2 ∈ [λ0, 1], λ0 ≪ 1 is a small positive constant,
t is the current training epoch, and T is the total
number of training epochs. As the training epoch
t increases towards T , the factor λ2 will increase
monotonically from λ0 to 1.0. This allows the net-
work to initially focus on optimizing classification
and gradually shift its emphasis towards optimizing
UNM as the training progresses.
Overall Loss. The overall loss function combines
three components: the importance weighted classi-
fication loss LIW , the KL divergence penalty loss
LKL, and the uncertainty mass loss LUNM for mis-
predicted entities. Each element contributes to the
overall loss and is defined as follows:

Loverall =
N∑

i=1

(L(i)IW + L(i)KL) + LUNM . (7)

4 Experiments

4.1 Research Questions

In this section, we design extensive experiments
to validate whether the proposed method obtains
high-quality uncertainty estimation. Concretely,
the following four research questions will be inves-
tigated.

RQ1: Whether E-NER improves the quality of
confidence estimation in contrast to prior work?

Dataset Sentences Types Domain

CoNLL2003 22,137 4 Newswire
OntoNotes 5.0 76,714 18 General
WikiGold 1,696 4 General

Table 1: Statistics of the NER dataset.

Dataset Sentences Entities OOV Rate

TwitterNER 3257 3990 0.62
CoNLL2003-Typos 2676 4130 0.71
CoNLL2003-OOV 3685 5648 0.96

Table 2: Statistics of OOV entities in the test set.

RQ2: Can uncertainty provided by E-NER
achieve better OOV/OOD detection performance?

RQ3: Can E-NER improve the model general-
ization ability on OOV samples?

RQ4: Can E-NER help to find valuable in-
stances to improve the sample efficiency of NER
model training?

Following these four research questions, we pro-
vide further discussions on our method including
ablation studies and limitations.

4.2 Datasets and Metrics

Datasets from Different Domains. To answer the
above research questions, we choose three widely-
used datasets, including CoNLL2003 (Tjong
Kim Sang and De Meulder, 2003), OntoNotes 5.0
(Weischedel et al., 2013)2 and WikiGold (Bala-
suriya et al., 2009). The statistics are displayed in
Table 1.
OOV Datasets. We further choose three public
OOV datasets, including TwitterNER (Zhang et al.,
2018), CoNLL2003-Typos (Wang et al., 2021), and
CoNLL2003-OOV (Wang et al., 2021). The statis-
tics are displayed in Table 2.
Metrics. We evaluate the results using three met-
rics: F1, Expected Calibration Error (ECE), and
Area Under the ROC Curve (AUC). F1 is a com-
monly used performance indicator in NER. ECE is
a metric that measures the confidence calibration
of a model, with a low score indicating a well-
calibrated model. AUC is a commonly used metric
for evaluating the performance of binary classifiers,
and we use it to evaluate the OOV/OOD detection
performance. Their detailed computations are de-
scribed in the Appendix §C.2.

2https://catalog.ldc.upenn.edu/LDC2013T19
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Setting Typos OOV OOD
Con Unc Con Unc Con Unc

BERT-Tagger (Devlin et al., 2019) 0.812 0.812 0.689 0.751 0.674 0.756
-EDL 0.805 0.808 0.699 0.759 0.693 0.767
-E-NER(ours) 0.820 0.817 0.700 0.760 0.769 0.799

SpanNER(Fu et al., 2021) 0.717 0.783 0.614 0.773 0.623 0.799
-EDL 0.701 0.759 0.607 0.760 0.620 0.792
-E-NER(ours) 0.741 0.792 0.640 0.796 0.676 0.824

Seq2Seq (Yan et al., 2021) 0.825 0.833 0.724 0.794 0.797 0.820
-EDL 0.829 0.830 0.729 0.787 0.793 0.818
-E-NER(ours) 0.824 0.841 0.743 0.803 0.822 0.847

Table 3: Evaluation results of OOV/OOD detection in terms of AUC. The three binary detection tasks can use either
confidence (Con) or uncertainty (Unc) for classification.

Setting CoNLL2003 OntoNotes 5.0
F1(↑) ECE(↓) F1(↑) ECE(↓)

BERT-Tagger 91.32 0.0845 88.20 0.1053
-EDL 91.36 0.0755 88.09 0.0838
-E-NER(ours) 91.55 0.0739 88.74 0.0603

SpanNER 91.94 0.0673 87.82 0.0609
-EDL 91.97 0.0481 87.39 0.0474
-E-NER(ours) 92.06 0.0414 88.44 0.0434

Seq2Seq 93.05 0.0324 89.89 0.0375
-EDL 92.84 0.0322 90.22 0.0329
-E-NER(ours) 93.15 0.0225 90.64 0.0328

Table 4: Evaluation results in various NER systems, in
terms of F1 (%) and ECE for evaluating performance
and confidence quality, respectively.

4.3 Experiment Setting

We conduct experiments on three popular NER
paradigms: sequence labeling, span-based, and
Seq2Seq. The following three models are chosen
for evaluating each paradigm.

BERT-Tagger (Devlin et al., 2019). It follows
the classical paradigm, recognizing entities via se-
quence labeling.

SpanNER3 (Fu et al., 2021). It enumerates all
spans and detects entities from them. For simplic-
ity, we use the original span-based method, without
any constraints or data processing.

Seq2Seq4 (Yan et al., 2021). It is a generative
model based on BART, which does not require ad-
ditional labeling strategies and entity enumeration.

In the experiments, all the reported results are
the average of five runs. The experiment details are
introduced in Appendix §C.

3https://github.com/neulab/spanner
4https://github.com/yhcc/BARTNER

Figure 4: Model calibration curve. The basic encoder is
SpanNER. This figure is depicted by evaluating subsets
separately, where each subset has the same range of
confidence.

4.4 Research Question Discussions

4.4.1 Confidence Estimation Quality

To answer the first research question, an important
concept should be clarified, i.e., what is qualified
confidence? This concept should have a positive
correlation with performance, meaning that higher
confidence should indicate better performance and
vice versa, as depicted by the dashed line in Fig-
ure 4. Our findings reveal that on both datasets,
Softmax is far below the perfectly calibrated line,
indicating that confidence does not reflect perfor-
mance well, and it is an example of over-confidence.
However, E-NER is found to approach the perfect
calibrated line. This suggests that E-NER can pro-
duce well-qualified confidence.

We further evaluate all paradigms and present the
results in Table 4. It can be observed that E-NER
consistently performs the best across all paradigms.
This demonstrates that E-NER can be effectively
applied in various frameworks. When comparing
EDL to the original models, it is observed that
while EDL improves confidence estimation, it also
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Methods TwitterNER
CoNLL2003
Typos OOV

VaniIB (Alemi et al., 2017) 71.19 83.49 70.12
DataAug (Dai and Adel, 2020) 73.69 81.73 69.60
SpanNER (BERT large) 71.57 81.83 64.43
SpanNER (RoBERTa large) 71.70 82.85 64.70
SpanNER (AlBERT large) 70.33 82.49 64.12
EDL-SpanNER (BERT large) 74.14 82.89 68.40
E-SpanNER (BERT base) 74.94 83.31 67.99
E-SpanNER (BERT large) 75.64 83.64 69.71
∆ E-NER-NER vs. SpanNER 4.07↑ 1.81↑ 5.28↑

Table 5: Evaluation results of generalization on OOV
samples in terms of F1 (%). To compare fairly, we also
choose SpanNER as the basic encoder.

results in a decline in performance. For example,
on OntoNotes 5.0 dataset, EDL performs worse
than BERT-Tagger and SpanNER in terms of the F1
metric. This highlights the limitations of directly
applying the EDL approach. In contrast, E-NER
performs the best on both metrics, demonstrating
that it can provide better-qualified confidence with-
out negatively impacting performance, and even
achieving slight improvements in all settings. A
typical reliability diagram is also included in Ap-
pendix §B.1 for a more detailed representation.

4.4.2 OOV/OOD Detection

The typical usage of uncertainty is to detect
whether an instance is OOV/OOD or not, as large
uncertainty tends to reveal unnatural instances,
such as OOV and OOD. To evaluate uncertainty
from this usage (RQ2), we choose three binary de-
tection tasks, including typos, OOV, and OOD. The
results are shown in Table 3.

Firstly, it can be observed that, when compared
to the original model of each paradigm, EDL does
not improve the performances in most experiments
of the three paradigms. This verifies that EDL is
not effective in addressing the OOV/OOD entity dis-
crimination challenge of NER. Then we found that
E-NER significantly outperforms the original mod-
els and EDL in various paradigms. In particular,
in span-based OOD detection, E-NER outperforms
SpanNER by +5.3% and EDL by +5.6% on AUC
when using confidence for detection. This demon-
strates the effectiveness of E-NER in distinguishing
whether an entity is OOV/OOD or not. Note that
using uncertainty is better than using confidence
for OOV/OOD detection in most cases.

Setting
CoNLL2003 OntoNotes 5.0

Ratio F1(↑) Ratio F1(↑)

Random 5.5% 85.39 3.0% 79.47
Entropy 5.5% 88.29 3.0% 84.80
MC dropout 5.5% 88.67 3.0% 86.06
EDL 5.5% 90.51 3.0% 86.25
E-NER 5.5% 90.88 3.0% 86.68

Table 6: Evluation results of in-domain data selection
in terms of F1 (%). Ratio indicates the proportion of
selected samples out of the whole training set.

Setting
WikiGold←CoNLL. CoNLL2003←Onto.

Ratio F1(↑) Ratio F1(↑)

Random 4.8% 53.67 4.7% 84.23
Entropy 4.8% 80.63 4.7% 88.81
MC dropout 4.8% 82.87 4.7% 90.32
EDL 4.8% 83.32 4.7% 90.12
E-NER 4.8% 84.08 4.7% 90.52

Table 7: Evaluation results of cross-domain data selec-
tion in terms of F1 (%). The left side of the arrow←
is the target domain, and the right side is the source
domain.

4.4.3 Generalization on OOV Samples
Another benefit of well-qualified confidence is the
robustness to noise, since the model is properly
calibrated without over or under-confidence. Thus,
we further investigate E-NER’s generalizing ability
on OOV samples (RQ3). The results on three OOV
datasets are reported in Table 5.

It is first observed that E-NER (BERT large)
achieves the best performances on TwitterNER
and CoNLL2003-Typos datasets, and competi-
tive performance on CoNLL2003-OOV. Compared
with a strong baseline SpanNER (BERT large), E-
NER (BERT large) significantly outperforms it by
+4.07%, +1.81% and +5.28% on three datasets,
respectively. This validates the generalizing abil-
ity of our approach. Secondly, by comparing
EDL (BERT large) and E-NER s(BERT large), our
method also achieves consistently better perfor-
mances. This further validates that our proposed
two uncertainty-guided loss terms effectively pro-
mote the robustness against OOV samples.

4.4.4 Sample Efficiency
In active learning, a sample’s uncertainty can be uti-
lized for data selection. Then whether the selected
samples are valuable also suggests the quality of
uncertainty. To evaluate E-NER from this perspec-
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Setting
CoNLL2003 OntoNotes 5.0
F1 ECE F1 ECE

E-NER 92.06 0.041 88.44 0.043
-UNM 92.10 0.058 88.21 0.051
-IW 91.95 0.045 87.77 0.042

Table 8: Evaluation results of ablation study in terms of
F1 (%) and ECE.

tive (RQ4), we design in-domain and cross-domain
sample selection experiments. The results are dis-
played in Table 6 and Table 7, respectively.

It is found that using the same scale of samples,
E-NER achieves consistently the best performances
in both the in-domain and cross-domain settings.
This verifies that uncertainty predicted by E-NER
has better quality. Concretely, MC dropout at-
tains uncertainty with multiple runs of sub-models,
which costs time and memory. Though outper-
forming naive random selection and entropy of
softmax, MC dropout is still less performed than
EDL and E-NER, which both directly compute the
uncertainty in one forward pass. Then we see that
EDL does not always outperform MC dropout, as
the cross-domain experiment CoNLL2003←Onto

shown. Yet E-NER, concentrating on two issues of
NER task, is universally effective, and can better
handle the challenges of an open environment.

4.5 Further Analysis

Ablation Study. To explore the effects of individ-
ual loss terms, the ablation study is presented in
Table 8. It is observed that removing each loss term
would cause performance declines in most evalua-
tion metrics. Concretely, removing IW causes the
F1 score to decrease more than removing UNM. On
the contrary, removing UNM makes a significant
degradation in ECE. Overall, this study indicates
that the proposed uncertainty-guided terms are both
effective.
Why E-NER Works. We incorporate two
uncertainty-guided loss terms into EDL. Firstly,
IW is designed for sparse entities which leads to an
imbalance problem. Using uncertainties as weights
helps the model training to pay more attention to
entities of interest. As reported in Table 8, IW
is effective in improving the F1 score. Secondly,
UNM is proposed to deal with OOV/OOD entities.
Such entities should have larger uncertainties com-
pared to normal ones, however, naive EDL does not
model this explicitly. E-NER increases the uncer-

tainty of mispredictions which are relatively close
to OOV/OOD entities. As shown in Table 8, UNM
helps to improve the quality of uncertainty esti-
mation. These two uncertainty-guided loss terms
target different NER issues, and using uncertainty
(IW) and learning uncertainty (UNM) interactively
allows E-NER to perform well in various experi-
mental settings. Furthermore, we showcase actual
predictions in Appendix §B.2.

5 Related Work

NER Paradigm. NER is a fundamental task in
information extraction. The mainstream methods
of NER can be divided into three categories: se-
quence labeling, span-based, and Seq2Seq. Se-
quence labeling methods assign a label to each
token in a sentence to identify flat entities, and are
better at handling longer entities with lower label
consistency (Fu et al., 2021). Span-based meth-
ods, which enumerate and classify entity sets in a
sentence according to the maximum span length,
perform better on sentences with OOV words and
entities of medium length (Alemi et al., 2017; Dai
and Adel, 2020; Fu et al., 2021). Seq2Seq methods
directly generate the entities and corresponding la-
bels in the sentence, and are capable of handling
various NER subtasks uniformly (Yan et al., 2021).
Recently, NER systems are undergoing a paradigm
shift (Akbik et al., 2018; Yan et al., 2019), using
one paradigm to handle multiple types of NER
tasks. Zhang et al. (2022) analysis the incorrect
bias in Seq2Seq from the perspective of causality,
and designed a data augmentation method based
on the theory of backdoor adjustment, making
Seq2Seq more suitable for unified NER tasks.
Uncertainty Estimation. Bayesian deep learning
uses Bayesian principles to estimate uncertainty in
DNN parameters. However, modeling uncertainty
in network parameters does not guarantee accu-
rate estimation of predictive uncertainty (Sensoy
et al., 2021). Recently, there has been a trend in
using the output of neural networks to estimate the
parameters of the Dirichlet distribution for uncer-
tainty estimation (Sensoy et al., 2018; Malinin and
Gales, 2018). The EDL (Sensoy et al., 2018) has
the advantages of generalizability and low compu-
tational cost, making it applicable to various tasks
(Han et al., 2021; Hu and Khan, 2021). However,
their uncertainty estimates have difficulty express-
ing uncertainties outside the domain (Amini et al.,
2020; Hu and Khan, 2021). In contrast, the Prior
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Networks (Malinin and Gales, 2018) require OOD
data during training to distinguish in-distribution
(ID) and OOD data. When the NER model en-
counters unseen entities (e.g., OOV and OOD),
it is easy to make unreliable predictions, which
are often considered from the perspective of data
augmentation or information theory (Fukuda et al.,
2020; Wang et al., 2022), but there is no guarantee
that these methods will achieve a balance between
performance and robustness.

6 Conclusion

In this work, we study the problem of trustworthy
NER by leveraging evidential deep learning. To
address the issues of sparse entities and OOV/OOD
entities, we propose E-NER with two uncertainty-
guided loss terms. Extensive experimental results
demonstrate that the proposed method can be effec-
tively applied to various NER paradigms. The un-
certainty estimation quality of E-NER is improved
without harming performance. Additionally, the
well-qualified uncertainties contribute to detecting
OOV/OOD, generalization, and sample selection.
These results validate the superiority of E-NER on
real-world problems.

Limitations

Our work is the first attempt to explore how evi-
dential deep learning can be used to improve the
reliability of current NER models. Despite the im-
proved performance and robustness, our work has
limitations that may guide our future work.

First, we propose a simple method to treat
hard samples (such as outliers) in the dataset as
OOV/OOD samples, enabling the model to detect
OOV/OOD data with minimal cost. However, there
is still a certain gap between these hard samples and
the real OOV/OOD data. OOV/OOD detection per-
formance can still be improved by further incorpo-
rating more real OOV/OOD samples, for example,
real OOD data from other domains, well-designed
adversarial examples, generated OOV samples by
data augmentation techniques, etc.

Second, we evaluate the versatility of E-NER
by applying it to mainstream NER paradigms.
However, there are still other paradigms, such as
Hypergraph-based methods (Lu and Roth, 2015)
and the W2NER (Li et al., 2022) approach in recent
work, that could be evaluated in the future.
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BERT-Tagger SpanNER Seq2Seq

Input X = {x(1), x(2), ..., x(n)} X = {x(1), x(2), ..., x(n)} X = {x(1), x(2), ..., x(n)}

Processing -
Enumerate all spans
S = {s(1), s(2), ..., s(m)}

Obtain start and end indexes of entities
Y = {yb

1, y
e
1, y1, ..., y

b
k, y

e
k, yk}

Hidden state
h = Encoder(X);

h ∈ Rn×d
h = Encoder(s(i));

h ∈ Rd

ht = EncoderDecoder(X,Y<t);

ht ∈ Rd

Inference Token-level classification Span-level classification Target sequence Y generation

Table 9: Explanation of the three NER paradigms.

A NER Paradigms

Here we introduce three popular NER paradigms,
shown in Table 9.

BERT-Tagger. It follows the sequence labeling
paradigm, which aims to assign a tagging label
Y = {y(1), ..., y(n)} to each word in a sequence
X = {x(1), ..., x(n)}. We use BERT-Tagger (De-
vlin et al., 2019) as the baseline method for se-
quence labeling. The labeling method adopts a BIO
tag set, which indicates the beginning and interior
of an entity, or other words. X is fed to BERT
to obtain hidden states, followed by a nonlinear
classifier to classify each word.

SpanNER. Given an input sentence X =
{x1, ..., xn}, SpanNER enumerates all spans and
obtains a set S = {s(1), ..., s(i), ..., s(m)}. Then
it assigns each span an entity label y (Fu et al.,
2021). The maximum length l of the span is ar-
tificially set. Assume a sentence’s length is n
and the maximum span length is set to 2, the
subscript of the span set can be expressed as
{(1, 1), (1, 2)...(n− 1, n− 1), (n− 1, n), (n, n)}.
Each span is fed into the encoder to obtain a vector
representation.

Seq2Seq. As presented in Table 9, given
an input sentence X = {x(1), x(2), ..., x(n)},
the target sequence is represented as Y =
{yb1, ye1, y1, ..., ybk, yek, yk}. This target sequence
indicates X describes k entities. Take the first
entity as an example, its beginning and end in-
dexes are yb1 and ye1, with entity category y1. This
method learns in a sequence-to-sequence manner
(Yan et al., 2021).

B Additional Experimental Analysis

B.1 Reliability Diagrams

We further depict the reliability diagrams to evalu-
ate the quality of uncertainty estimation. As shown

(a) CoNLL2003 Softmax (b) CoNLL2003 E-NER

(c) OntoNotes 5.0 Softmax (d) OntoNotes 5.0 E-NER

Figure 5: Reliability diagrams.

(a) OOD Softmax (b) OOD E-NER

Figure 6: Reliability diagrams of OOD entities.
CoNLL2003 is used as the training set. The testing set
of WikiGold is used for evaluating the OOD samples.

in Figure 5 and Figure 6, the confidence range
is equally divided into ten bins. Then the subset
within the same confidence range is utilized to com-
pute the accuracy.

As shown in Figure 5, the confidence of Soft-
max represents poor accuracy, indicating it is over-
confident. Then compared with Softmax, E-NER
nearly approaches the perfectly calibrated line and

1630



Case Sentence Softmax+Entropy E-NER

*
Mapping: {MIS: miscellaneous; PER: person;
ORG: organization; O: non-entity}

Entity: {Predcition; Confidence%;
Uncertainty%}

IID
A visit to the computer centre offering InternetE

1

[MIS] services

found a EuropeanE2

[MIS] official clicking away on his mouse.

E1
{O ; 99.9 ; 8.0}

E2
{MIS ; 99.9 ; 3.0}

E1
{O ; 42.0 ; 70.8}

E2
{MIS ; 92.7 ; 8.9}

IIID
LazioE

1

[ORG] have injury doubts about striker Pierluigi

CasiraghE2

[PER].

E1
{O ; 98.8 ; 7.3}

E2
{PER ; 99.9 ; 0.4}

E1
{ORG ; 88.9 ; 12.5}

E2
{PER ; 98.3 ; 2.3}

IIIOOV But the InthrnetE
1

[MIS] , a global computer network. E1
{O ; 90.5 ; 23.1} E1

{MIS ;28.1 ; 70.0}

IVOOD Redesignated 65 Fighter WingE
1

[ORG] on 24 July 1943. E1
{O ; 99.2 ; 4.6} E1

{O ; 51.3 ; 60.7}

Table 10: Case study of Softmax and E-NER under the span-based paradigm. The entities and their categories are
already denoted in four sentences. The predicted entities with confidence (%) and uncertainty (%) scores are also
presented. Incorrectly predicted entities are denoted by “Red E”, whereas “Blue E” represents correctly predicted
entities.

has a much smaller ECE score. This suggests that
E-NER can yield well-qualified confidence, show-
ing it is more trustworthy. Then the observations in
Figure 6 are similar, which demonstrates the relia-
bility of the proposed approach for OOD entities.

B.2 Case Study

As presented in Table 10, we conduct a case study
by choosing four typical cases, including ID, OOV,
and OOD samples. The uncertainty of Softmax is
computed with entropy.

The first case contains two MIS entities. Soft-
max and E-NER both wrongly predict the first en-
tity to O category, with confidence scores of 99.9%
and 42.0%, respectively. This shows that Softmax
is over-confident even for error results. Yet E-NER
can output a larger uncertainty score, suggesting un-
sure towards the prediction. Then the second case
describes two entities. Softmax wrongly predicts
the first ORG entity to O with large confidence, i.e.
98.8%. But E-NER can correctly detect the entity
category as ORG.

Moreover, Inthrnet in the third sentence is a
MIS entity, which is OOV due to misspelling. Soft-
max detects it as O with a confidence score of
90.5%, showing over-confident for errors. On the
contrary, E-NER assigns a large uncertainty score
for the OOV sample and correctly predicts the en-
tity category. Similarly, the last case describes an
OOD entity. It can be observed that E-NER outputs
a large uncertainty score compared with Softmax.

Based on the cases and observations, we draw
the following conclusions: 1) Softmax is over-
confident, even for error prediction, OOV and

OOD samples; 2) E-NER can recognize entities
accurately and yield well-qualified uncertainties
towards error, OOV and OOD samples. This con-
tributes to the reliability and robustness of E-NER.

C Implementation Details

C.1 Model Parameters
In this paper, we implement three NER methods,
including BERT-Tagger, SpanNER and Seq2Seq.
The testing set is evaluated by the best model cho-
sen by the development set. The implementation
details are shown as follows.

BERT-Tagger. BERT-Tagger5 adopts BERT-large-
cased as the base encoder (Devlin et al., 2019). We
set the dropout rate as 0.2, the training batch size as
16, and the weight decay as 0.02. All models in this
paradigm use the Adam optimizer (Kingma and Ba,
2015) with a learning rate of 2e-5. Sentences are
truncated to a maximum length of 256. The initial
value for λ0 is set to 1e-02.

SpanNER. Following the original SpanNER6 (Fu
et al., 2021), we adopt BERT-large-uncased as the
base encoder (Devlin et al., 2019). The dropout
rate is set to 0.2. All models in this paradigm are
trained using the AdamW optimizer (Loshchilov
and Hutter, 2019) with a learning rate of 1e-5, with
the training batch size as 10. To improve training
efficiency, sentences are truncated to a maximum
length of 128, and the maximum length of span
enumeration is set to 4. The sampling times for
MC dropout are set to 5 in the experiments. The

5https://github.com/google-research/bert
6https://github.com/neulab/spanner.
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initial value of λ0 is set to 1e-02. We use heuristic
decoding and retain the highest probability span for
flattened entity recognition in span-based methods.

Seq2Seq. Following Yan et al. (2021), we exploit
BART-Large model7. BART model is fine-tuned
with the slanted triangular learning rate warmup.
The warmup step is set to 0.01. The training batch
size is set to 16. The initial value of λ0 is set to
1e-3.

C.2 Evaluation Metrics
ECE. It denotes the expected calibration error,
which aims to evaluate the expected difference be-
tween model prediction confidence and accuracy
(Guo et al., 2017). Figure 6 depicts the difference
in a geometric manner. The concrete formulation
is as follows:

ECE =

|B|∑

i=1

Ni

N
|acc(bi)− conf(bi)|, (8)

where bi represents the i-th bin and |B| represents
the total number of bins, setting to 10 in our exper-
iment. N denotes the number of total samples. Ni

represents the number of samples in the i-th bin.
acc(bi) denotes the accuracy and conf(bi) denotes
the average of confidences in the i-th bin.

AUC. The area under the curve (AUC)8 is a com-
monly used metric for evaluating the performance
of binary classifiers. The formulation is as follows:

AUC(f) =

∑
t0∈D0

∑
t1∈D1 1[f(t0) < f(t1)]

|D0| · |D1|
(9)

where D0 is the set of negative examples, and D1

is the set of positive examples. 1[f(t0) < f(t1)]
denotes an indicator function which returns 1 if
f(t0) < f(t1) otherwise return 0.

In this paper, we evaluate the performance
of OOV/OOD detection using the AUC metric.
Specifically, we consider two settings for the AUC
score:

• Con. It uses confidence as a classifier. The
correct entity recognition is a positive exam-
ple D1, and the entity recognition error is a
negative example D0.

• Unc. It uses uncertainty as a classifier. Wrong
prediction results of OOV/OOD entities are

7https://github.com/yhcc/BARTNER
8sklearn.metrics.auc.html.

considered positive examples, denoted as
D1. Correct prediction results of in-domain
entities are considered negative examples,
recorded as D0. These metrics assess the clas-
sifier’s capability in detecting OOV/OOD en-
tities.

C.3 EDL Optimization Function
In this section, we give a detailed formulation of
the EDL optimization function. Eq. 1 introduces
the density of the Dirichlet distribution. As the
classification loss item of EDL, its cross-entropy
loss function is as follows:

L(i)CLS=

∫ [∑C
c=1−y

(i)
c log(p

(i)
c )
]

B(α(i))

C∏

c=1

pα
(i)
c −1

c dp(i)

=

C∑

c=1

y(i)c

(
ψ(S(i))− ψ(α(i)

c )
)
.

(10)
The KL divergence calculation function under

the Dirichlet distribution takes the following form
and serves as the category penalty term in EDL:

L(i)KL = KL[Dir(p(i)|α̃(i))||Dir(p(i)|1)]

= log

(
Γ(
∑C

c=1 α̃
(i)
c )

Γ(C)
∏C

c=1 Γ(α̃
(i)
c )

)

+
C∑

c=1

(α̃(i)
c − 1)


ψ(S(i))− ψ(

C∑

j=1

α̃
(i)
j )


 .

(11)
Finally, we get the loss function for overall EDL

learning:

LEDL=
N∑

i=1

(L(i)CLS + L(i)KL) (12)
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