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Abstract

Treebanking for local languages is hampered
by the lack of existing parsers to generate
pre-annotations. However, it has been shown
that reasonably accurate parsers can be boot-
strapped with little initial training data when
use is made of the information in interlinear
glosses and translations that language documen-
tation data for such treebanks typically comes
with. In this paper, we improve upon such a
bootstrapping model by representing glosses
using a combination of morphological feature
vectors and pre-trained lemma embeddings. We
also contribute a mapping from glosses to Uni-
versal Dependencies morphological features.

1 Introduction

Treebanking (i.e., annotating large corpora of sen-
tences with syntactic structures) is an important
tool for research into the syntax of natural language.
Treebanking has long avoided starting from scratch,
but used machine-generated pre-annotations that
annotators correct (Marcus et al., 1993). For stan-
dardized languages, models generating the pre-
annotations can nowadays rely on large language
models and pre-trained parsers (e.g., Tyers et al.,
2018; Jónsdóttir and Ingason, 2020; Bladier et al.,
2022). For local languages, the situation looks
quite different: usually, no large language models
or other models are available. However, if the lan-
guage is documented, the data usually comes with
interlinear glosses and translations to a standard-
ized language such as English (Lehmann, 1982).
Evang et al. (2022) show that these annotations can
be used to obtain more accurate pre-annotations for
local-language treebanks by projecting contextual-
ized word representations from a parser for English
onto the target-language sentences, using character-
based gloss embeddings, and self-training. In this
paper, we show that the accuracy can be further im-
proved by using a more structured representation
for glosses. Our contributions are 1) a mapping

from interlinear glosses to Universal Dependencies
features that can be reused for other language doc-
umentation data, 2) based on that, a method for
embedding glossed sentences using morphologi-
cal feature vectors and lemma embeddings, and
3) an evaluation of this embedding method in the
context of cross-lingual RRG parsing for treebank
pre-annotation.

2 Related work

Low-resource RRG parsing Evang et al. (2022)
consider the task of creating pre-annotations for
treebanks for the Oceanic local languages Daakaka
and Dalkalaen. The annotation scheme is based
on that of RRGparbank (Bladier et al., 2022), fol-
lowing Role and Reference Grammar (RRG; Van
Valin and Foley, 1980; Van Valin, 2005), a frame-
work designed with diverse languages in mind. The
text data for the treebanks comes with interlin-
ear glosses and English translations, but only few
have been hand-annotated with RRG trees. Fig-
ure 1 shows an annotated example Daakaka sen-
tence. The basic pre-annotation model takes as in-
put Daakaka token embeddings based on character-
level LSTMs. It then labels each token with a
supertag and a dependency head, which together
serve as a derivation tree from which the final tree
is constructed under the grammar formalism of
Tree Wrapping Grammar (TWG; Kallmeyer et al.,
2013). It is then shown that the accuracy of the ba-
sic model can be improved by 1) concatenating the
token embeddings with similarly character-based
gloss embeddings, 2) doing multiple rounds of self-
training on unannotated data, and 3) using an En-
glish RRG parser (trained on substantially more
gold standard data) on the translations and project-
ing contextualized word representations from the
English parser to the Daakaka parser via unsuper-
vised word alignments.

46



SENTENCE

CLAUSE

CORE

NP

PRO

ko
2s

s.pron
Number=Sing
Person=2

OPtns

w-
POT-
tam-

Mood=Pot

NUC

V

esi
see
v
_

CLAUSE

CLM

ka
MOD
mod

Mood=Sub

OPtns

we
POT
v.pre

Mood=Pot

CORE

NUC

V

ko
race

v
_

NP

COREN

NUCN

N

eya
white-eye

n
_

OPnum

nyoo
3p

pron
Number=Plur
Person=3

“and you can see it chase away the white-eye”

Figure 1: RRG annotation of a Daakaka sentence, with its translation. Leaf nodes contain word form, glosses, POS
tags and UD features. Glosses: 2s-second person singular, 3p-third person plural, POT-potential mood marker,
MOD-complementizer or modal relator. ka is a polysemous morpheme with different functions. It can either be a
complementizer introducing subjunctive clauses, or a modal relator, which changes a directive speech act into an
assertion (von Prince, 2015). Both functions appear similarly glossed in the data and were grouped together as UD
feature Mood=Sub.

Morphological feature embeddings Adding
morphological features explicitly as input on NLP
tasks has mixed effects, depending on the task
and quality of features. Klemen et al. (2022)
show across several languages that the results on
(monolingual) dependency parsing and named en-
tity recognition improve on LSTM-based models
when UD feature embeddings are added as input,
while the performance on comment filtering is not
affected. Manually annotated features yield better
results than automatically added features. Com-
pared to our work, their approach assumes both a
rich data set in the target language and high quality
of UD features. An alternative method for encoding
glossed words as tensors is described by Schwartz
et al. (2022), but does not provide explicit map-
pings from glosses to feature-value pairs.

Lemma embeddings It is standard in modern
NLP systems to represent words as vectors based
on word associations in unannotated running text.
One such model is FastText (Bojanowski et al.,
2017). Less commonly, the same kind of model is
trained on lemmatized text, e.g., in Sprugnoli et al.
(2019); Ehren et al. (2020).

3 Method

We build on Evang et al.’s (2022) parsing architec-
ture, as shown in Figure 2, with our modification
concerning the embedding layer. While they use
the same type of character-level LSTM to generate
token embeddings, part-of-speech tag embeddings,
and gloss embeddings, we seek to improve perfor-
mance by using a more structured representation.
Glosses consist of 1) translations of lemmas to
English, and 2) codes representing morphological
feature values. The gloss for one token can be seen
as a partial function from features to feature values,
so order does not matter and different values cor-
responding to the same feature are mutually exclu-
sive. For example, the gloss 2s can be represented
as {(Number ,Sing), (Person, 2)}. We exploit
this by embedding glosses as a concatenation of
feature embeddings like Klemen et al. (2022). Be-
sides improving performance, we also aim to create
a reusable compatibility layer between the glosses
and Universal Dependencies (UD; de Marneffe
et al., 2021), an annotation scheme commonly used
in many data sets and tools. We therefore create the
structured gloss embedding vectors via a mapping
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Figure 2: Architecture overview. Input on the target sys-
tem includes embeddings of words, part-of-speech tags
(pos), UD features, (feats) and English lemmas of target
words embeddings. Words and pos tag embeddings are
character-based, feats and lemmas are detailed below.

to the feature set defined by the UD annotation
scheme. For the lemma translations, we exploit the
fact that large quantities of text are available for
English, and generate rich lemma embeddings. We
now turn to the details of both contributions.

Construction of UD feature embeddings The
mapping from glosses to UD features was per-
formed with a conversion table, based on descrip-
tions in von Prince (2015) and von Prince (2017)
as well as UD guidelines. We focused on the
glosses that occur in the Daakaka and Dalkalaen
data (von Prince, 2013a,b). The feature PronType
was added for pronouns, which are not particu-
larly glossed in the data. A number of glosses
were not converted to features, such as EP for
epenthetic consonants /p/ and ATT for the mor-
pheme na, which derives attributes from lexemes
and simple phrases. Daakaka also distinguishes
between three possessive classifiers glossed as CL1,
CL2 and CL3 which show agreement with the lexical
gender of the head noun or indicate their semantic
domain (von Prince, 2015). As their function is
mainly semantic and not syntactic, they were all
represented as {(Poss,Yes)}. The gloss sets of
both languages largely overlap; two glosses with
low occurence appear only in the Dalkalaen data.
We gathered 16 distinct features, 7 of which are
unary (see Table 1 for an overview of the features).
We did not encounter any cases where glosses on
the same token mapped to conflicting values for
the same feature.

Feature name Possible values

Aspect Inch∗, Prog
Clusivity In, Ex
Degree Dim
Deixis∗ Med, Prox, Remt
Derivation∗ Nml
Mood Ind, Irr, Pot, Sub
Number Dual, Pauc, Plur, Sing
NumType Card
Person 1, 2, 3
Polarity Neg
Poss Yes
PronType Art, Dem, Int, Prs
Redup∗ Yes
Tense Fut, Past
Trans∗ Yes
VerbType∗ Aux, Cop

Table 1: Overview of UD features and possible values.
∗ indicates that the feature or value is from a language-
specific extension and not contained in the universal
feature set.

For the UD feature embeddings, we follow the
method described in Klemen et al. (2022). Each
feature is passed through an individual embedding
layer (non-present features receive a special input),
yielding 3-dimensional embeddings. The final rep-
resentation is a 48-dimensional vector, constructed
by concatenating all feature embeddings.

Construction of lemma embeddings We use the
FastText implementation of Gensim (Řehůřek and
Sojka, 2010) to compute 300-dimensional lemma
embeddings, trained on the lemma field of the
ukWaC corpus (Baroni et al., 2009). The qual-
ity of embeddings differs across the data set. For
instance, yaapu ‘big.man’ and eya ‘white-eye’ are
full translations of Daakaka lemmas, however they
do not appear in this form in the source corpus. The
same goes for a number of names, e.g. Simaron-
grong, Tamadu.

4 Evaluation

We evaluate our UD feature+lemma embedding
method by comparing against Evang et al.’s (2022)
character-based method. We mirror their experi-
mental setups, performing experiments across dif-
ferent scenarios (how much annotated seed training
data is available), different amounts of self-training
(adding 500 parses to the training data in each
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rounds 0 1 2 3 4 5

mono, chars 67.9 69.5 70.1 70.7 70.9 70.5
mono, struct 67.9 68.5 69.5 69.5 70.2 71.2
mono, struct+lem 69.2∗ 70.1† 70.8∗† 70.6† 71.0† 71.4∗†
cross, chars 70.2 70.7 71.7 72.2 72.4 72.2
cross, struct 70.5 71.5∗ 71.7 72.1 72.2 72.5
cross, struct+lem 70.6 71.2∗ 71.8 72.3 72.4 72.3†

Table 2: Daakaka test f-scores in the very low-resource
scenario (500 training sentences) for different models
(monolingual vs. cross-lingual) and different types of
gloss embeddings (character-based vs. structured vs.
structured + lemma embeddings. The rounds of self-
training increase from left to right. The scores are av-
eraged over five runs, except for scores marked with
† where only four successful runs were available. Re-
sults with character-based embeddings are from Evang
et al. (2022). Asterisks denote significant improvement
(p ≤ .05, permutation test) over the corresponding
character-based model.

rounds 0 1 2 3 4 5

mono, chars 71.9 71.5 72.4 72.9 73.4 73.3
mono, struct 71.6 71.8 72.8 73.1 72.8 73.7
mono, struct+lem 72.2 73.0∗ 73.7∗ 73.3 73.2 73.3

cross, chars 73.1 73.7 74.3 74.2 74.5 74.7
cross, struct 73.3 74.2 74.3 74.6 74.6 75.0∗†
cross, struct+lem 73.5 73.9 74.0 74.5 74.4 75.1∗

Table 3: Daakaka test f-scores in the low-resource sce-
nario (1 000 training sentences).

round), and using the monolingual vs. the cross-
lingual model. We compute the overall EVALB
f-score (Collins, 1997) of each model on the same
test set of 196 trees (Daakaka) resp. 101 trees (Dal-
kalaen).

In the “very low resource scenario” (500 anno-
tated training sentences; Table 2), we find that struc-
tured embeddings tend to improve over character-
based embeddings slightly, most significantly in
the early stages of self-training. We take this
as an indication that structured embeddings pro-
vide the information from the start that character-
based ones have to learn over mutliple rounds of
self-training. We also observe that the structured
models seem more stable under self-training than
character-based ones: between self-training rounds
4 and 5, the two character-based models lose accu-
racy whereas three out of four structured models
still gain accuracy. Adding lemma embeddings
tends to improve over using just morphological
feature embeddings.

In the “low resource scenario” (1 000 annotated
training sentences; Table 3), the structured models

rounds 0 1 2 3 4 5

cross, chars 69.0 71.8 72.4 73.0 73.6 73.2
cross, struct+lem 68.9 72.1 72.6† 73.0† 72.6† 73.1†

Table 4: Dalkalaen test f-scores in the zero-shot sce-
nario (no in-language training sentences, but trained on
1 840 Daakaka sentences).

are also better than the corresponding character-
based ones in most cases. In the monolingual
model, only the model with lemmas gives signifi-
cant improvement, and only in the early rounds of
self-training. In the cross-lingual model, no signif-
icant improvement is seen until the fifth round of
self-training. The gain from lemma embeddings
also fades. We take this as an indication that with
1 000 training trees, the cross-lingual model is al-
ready relatively strong, and it gets harder for the
structured embeddings to contribute more gains.
We still take this as a positive result for the struc-
tured models, as they may be able to contribute
when few data or no translations are available, or
self-training is impossible or impractical.

In the “zero shot” scenario (parser trained on
1 840 Daakaka trees, tested on Dalkalaen; Table 4),
the structured model with lemmas is mostly on
par with the character-based one, but achieves no
significant improvements. We find this surprising
as one would think the zero-shot model relies more
strongly on feature embeddings, which are more
comparable than words between both languages,
and would profit more from them being structured.
Further research is needed to explain this.

5 Conclusions and Future Work

We have presented an alternative way to embed
data from language documentation datasets, based
on structured gloss embeddings and translation
lemma embeddings. We have shown that (op-
tionally in combination with cross-linguistically
projected vectors), in the context of low-resource
pre-parsing for RRG treebanking, these structured
embeddings can sometimes improve over character-
based embeddings, or decrease the model’s reliance
on self-training.

Perhaps more importantly, by creating structured
gloss embeddings via translation rules from inter-
linear glosses into UD features, we have created
the first part of a compatibility layer between both
types of morphosyntactic annotation, and opened
the way towards morphosyntactically informed
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model transfer, parameter sharing, etc., between
models for documented local languages and mod-
els based on existing UD treebanks. We plan to
explore this option in future work. We would also
like to explore sharing encoders for glossed text
between more diverse sets of languages, and study
the effect of the translation language on the quality
of the cross-lingual word representations.
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