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Abstract

An approach to improve question-answering
performance is to retrieve accompanying infor-
mation that contains factual evidence matching
the question. These retrieved documents are
then fed into a reader that generates an answer.
A commonly applied retriever is dense passage
retrieval. In this retriever, the output of a trans-
former neural network is used to query a knowl-
edge database for matching documents. In-
spired by the observation that different layers of
a transformer network provide rich representa-
tions with different levels of abstraction, we hy-
pothesize that useful queries can be generated
not only at the output layer, but at every layer of
a transformer network, and that the hidden rep-
resentations of different layers may combine
to improve the fetched documents for reader
performance. Our novel approach integrates re-
trieval into each layer of a transformer network,
exploiting the hierarchical representations of
the input question. We show that our technique
outperforms prior work on downstream tasks
such as question answering, demonstrating the
effectiveness of our approach.

1 Introduction

In open book question answering, the answer to a
given question needs to be generated from a large
pool of passages. Typically, this problem is tack-
led in two stages. Given a question, a retriever
collects a set of top-k passages from the passages
memory. Then, a reader generates the answer from
the retrieved documents. In this setting, dense pas-
sage retrieval (DPR) is a commonly used retriever
(Karpukhin et al., 2020). Therein, each passage
in a document collection is represented as a vec-
tor in a high-dimensional space. These vectors are
then used to compute similarity scores between pas-
sages. The most similar passages are then retrieved
and used as input to a machine learning model.

However, we observe that current open-book QA
systems do not adequately exploit the correlations

When did Harvard become an Ivy League school?
FetcHR: Harvard: 300, Ivy League: 109
DPR: Harvard: 341, Ivy League: 66

Who overthrew the Mongols and established the Ming Dynasty?
FetcHR:  Mongols: 108, Ming: 112
DPR: Mongols: 108, Ming: 87

When did the Soviet Union first gain control of parts of Poland 
and the Baltic Republics?
FetcHR: Soviet Union: 139, Poland: 93  , Baltic Republics: 7
DPR: Soviet Union: 133, Poland: 214, Baltic Republics: 2
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Figure 1: We present the occurrences of word features
inside the document collection as retrieved by either
DPR or FetcHR. The feature from the question with the
lowest occurrence is the critical feature for QA tasks.
Our retriever FetcHR outperforms DPR on critical word
features in the question (underlined). Our work shows
that this improved document collection increases the
reader performance by up to 1.9 EM score on Natural
Question and 2.1 EM score on WebQuestion.

between passages in the retrieved document col-
lection. Typically, questions contain several word
features that need to be represented in the retrieved
document collection, i.e. questions in Figure 1. In
order to answer such questions, the reader needs
to reason about multiple word features of the ques-
tion simultaneously. However, we found that many
questions have a critical feature that is underrepre-
sented in the retrieved documents (i.e. Ivy League,
Ming, Baltic Republic). In order to improve the
QA performance, we propose to increase the occur-
rence on these critical features.

Typically, the retrieved document collection
matches the highest abstraction level of an input
question. We hypothesize that a document collec-
tion addressing different, hierarchical abstraction
levels of an input question may improve on the
critical features. With these documents, the reader
improves the performance on question-answering
benchmarks.

We present a novel retriever architecture and
training procedure to test this hypothesis (Figure
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2). Our architecture extends BERT (Devlin et al.,
2019) with a neural retrieval network producing
queries not only at its output layer but also at inter-
mediate layers. This is inspired by the observation
that different layers provide different level of ab-
straction (Rogers et al., 2020) that can be all used
for downstream tasks (Evci et al., 2022). Under
this setup, the retrievable documents embody a
non-parametric knowledge of the transformer (Guu
et al., 2020). With a separate reader function, an
answer is inferred from the documents retrieved by
the hierarchical retrievers (see section 3 for details
of the model).

Our main contributions are:

• We introduce FetcHR, a document fetcher
based on hierarchical retrieval. We equip
transformer layers with a neural retrieval net-
work allowing hidden representations to con-
tribute to the retrieval query.

• We show that retrieval performance of all lay-
ers combined is higher than any of the in-
dividual layers, in most of our experiments.
This allows improving performance of previ-
ous models, which considered retrieval from
single layers only.

• When using a reader to generate the answer to
the input question, we show that documents
retrieved by FetcHR obtain the highest per-
formance in all experiments, and advance the
state-of-the-art on the Natural Question and
WebQuestion datasets.

• All results are obtained by training only the
retrieval networks. This avoids any modifica-
tion of the underlying language model, mak-
ing it feasible to customize a large pretrained
language model with moderate training re-
sources.

2 Related Work

Retrieval Question-answering tasks are usually
tackled introducing retrieval components in order
to efficiently select a subset of relevant documents
(Voorhees et al., 1999). In the past, Q&A tasks
would be generally attempted using sparse vector
space models such as BM25 and TF-IDF (Chen
et al., 2017; Yang et al., 2019; Nie et al., 2019;
Wolfson et al., 2020; Min et al., 2019). In the
past few years, these were replaced by transformer-
based models mapping a model input to a dense

vector representation. There are mainly two ap-
proaches of neural network-based retrievers based
on single or multiple embedding vectors (Singh
et al., 2021). Dual encoders belong to the single
embedding approaches. Such retrievers use one
encoder for the documents and another one for the
query (Yih et al., 2011; Lee et al., 2019). Dense Pas-
sage Retrieval (DPR) (Karpukhin et al., 2020) uses
two BERT-style models to learn a similarity metric
between document and query. In case of multi-
vector retrievers instead, multiple embeddings are
generated for each document, such as in (Khattab
and Zaharia, 2020; Zhang et al., 2022; Luan et al.,
2021). However this approach is computationally
limiting in large-scale retrieval since it requires to
retrieve in many search spaces (up to the document
token length) leading to increased memory needs
and search time. Instead we propose to perform
retrieval in each layer of a BERT-based transformer
network limiting the retrieval runs to 12. This ap-
proach borrows ideas from early work in informa-
tion retrieval on multi-layer matching (Nie et al.,
2018a,b), however retrieval is performed based on
an aggregated score over all layers. Instead, our ap-
proach performs retrieval in each layer, while using
a more modern transformer architecture, scales to
large-scale retrieval and is evaluated on end-to-end
QA.

Training of Dual Encoders Past work has shown
(Qu et al., 2021; Guu et al., 2020; Lewis et al.,
2020; Singh et al., 2021) that the performance of
dual encoders can be improved by (i) carefully se-
lecting negative documents for the contrastive loss
and (ii) by an end-to-end training with a reader
function. Cross-batch negatives, denoised hard
negatives and data augmentation are options men-
tioned in (Qu et al., 2021) for negative documents.
End-to-end training approaches tune the retrieval
function to match the distribution of data for the
reader (Lewis et al., 2020; Guu et al., 2020; Singh
et al., 2021). These approaches are orthogonal to
our work and might be considered as an extension
for future work.

3 FetcHR Model

3.1 Retrieval Score

The purpose of a retrieval system is to choose a
selection of documents from a collection of docu-
ments (referred to as the "Document Memory") that
contains pertinent information to answer a given
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Figure 2: FetcHR is a stack of BERT layers with an additional Retrieval Network (RNet) at each layer. (a) Training:
The inner product between the encoded input question at each layer EQ,ℓ(x0) and the encoded document ED(d)
is maximised for positive documents d+ and minimized for negative documents d−, using a contrastive loss. (b)
Inference: Using nearest neighbour search, FetcHR retrieves k documents per layer from the document memory, for
a total L× k documents. The reader outputs the answer y given the hierarchy of retrieved documents combined
with the model input x0

tokenized input question x0. Our novel retrieval
system FetcHR gathers documents for different hi-
erarchical representations of the model input. For
this, we employ a multi-layer encoder architecture.
Each layer ℓ has its own encoder function EQ,ℓ,
which is used to query the document memory. This
allows us to define a retrieval score as the inner
product between the vector pairs EQ,ℓ and ED for
all layers. Given a question x0 and document d,
the retrieval score for layer ℓ can be computed via
the inner product between the vector pairs EQ,ℓ

and ED

scoreℓ = EQ,ℓ(x0;θ1:ℓ,ϕℓ) · ED(d;ω) (1)

The parameters θ1:ℓ are shared by the first ℓ layers,
while ϕℓ corresponds to the parameters specific to
layer ℓ, and ω is the parameter vector of the doc-
ument encoder. Consequently, the retrieval score
in layer ℓ depends on a layer-specific question en-
coder EQ,ℓ and a single, shared document encoder
ED for all layers.

3.2 Contrastive Training

During training, we present data points to the
model. Each one is a tuple of an input question
x0, a positive document d+ containing the correct
answer to the question and n negative (randomly
chosen) documents d−

1 , ...,d
−
n . The training goal

is to improve the retrieval score of all layers at the
same time. Following (Karpukhin et al., 2020),
we adopt the contrastive loss function which, for a

single data point {x0,d
+,d−

1 , ...,d
−
n }, is equal to

L(ϕ,θ,ω) =

1

L

L∑

ℓ=1

−log
escoreℓ(x0,d+)

escoreℓ(x0,d+) +
∑n

i=1 e
scoreℓ(x0,d

−
i )

This loss is minimized by adjusting the parameters
ϕ while holding θ and ω constant to the pre-trained
values from (Karpukhin et al., 2020). The loss is
calculated and averaged over a batch of data points
at each iteration (see Section 4.2 for details).

3.3 Multi-layer encoder
FetcHR is build on top of BERT transformer lay-
ers (Devlin et al., 2019). We use a stack of these
BERT layers and define for each layer ℓ a retrieval
network RNet to generate single query vectors
qℓ = EQ,ℓ(x). Formally, the encoder function
EQ,ℓ is obtained according to

xℓ = BertLayer(xℓ−1,θℓ) for ℓ = 1, . . . , L

EQ,ℓ = RNet(xℓ;ϕℓ) (2)

where the parameters ϕℓ corresponds to the re-
trieval network and θℓ to BERT layer ℓ. Note that
the encoder function EQ,ℓ depends on the input
question x0 and the parameters θ1:ℓ of all upstream
BERT layers through xℓ.

The output of the retrieval network RNet is the
embedding at the CLS position of the output of a
stack of two transformer layers. Each layer is a
BERT transformer layer, with the skip connection
placed outside of the layer normalization:

LayerNorm(W2(σ1(W1(AttnLayer(·))))
+AttnLayer(·) (3)
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where W and σ are the weights and activation func-
tion, respectively, of a two-layer MLP as in stan-
dard self-attention. Placing the skip connection out-
side of layer normalization is advantageous when
BertLayer is initialized with pre-trained weights
such that xℓ already captures a meaningful abstrac-
tion of the input question. In all of our experiments,
we use a combination of the BertLayer and the
RNet, which we refer to as the FetcHR layer. We
use L = 12 layers in total. All of the embed-
dings are 768-dimensional, as in the original BERT
model. For the document encoder ED(d;ω), we
use a BERT model in base configuration. The pre-
trained parameters ω come from (Karpukhin et al.,
2020).

3.4 Inference

After training, retrieval on test data is implemented
by matching the FetcHR encodings of each layer
with document encodings in the document memory.
For each layer ℓ, a set Dℓ containing k documents
is retrieved by nearest neighbour search. During
this search, we do not allow single documents to be
retrieved more than once at multiple layers. More
formally, given a question x0 during testing time,
the optimal parameters ϕ⋆ obtained by training and
the query vector qℓ = EQ,ℓ(x0;θ1:ℓ,ϕ

⋆
ℓ ), the set

of retrieved documents at layer ℓ is equal to

Dℓ = NNSearch(qℓ,D1:ℓ−1, k) (4)

where NNSearch returns the k nearest neighbours
of qℓ that are not included in the document sets
D1:ℓ−1 retrieved in previous layers. We use the
Faiss-library for the implementation of NNSearch
(Johnson et al., 2019). We investigated the perfor-
mance on both exhaustive search on a flat index
and the compressed IVF index (see section 4.2 for
details).

With L layers, a total of L × k documents are
retrieved. These retrieved documents are fed to the
reader, together with the question x0, to obtain the
answer. For the reader, we implement the state-
of-the-art Fusion-in-Decoder (FiD) of (Izacard and
Grave, 2021). Compared to other reader such as
DPR-reader (Karpukhin et al., 2020) and REALM-
reader (Guu et al., 2020) the FiD reader takes the
retrieved document collection as an input simul-
taneously which allows to exploit the correlation
between documents.

In a subset of experiments (e.g. Figure 3), we iso-
late retrieval in individual layers. In this case, each

experiment retrieves from a single layer, without
excluding any document.

4 Results

In the following, we evaluate how FetcHR in-
fluences the performance of modern readers and
present isolated retrieval results of FetcHR.

4.1 Datasets
We test FetcHR on two commonly used open-
domain question answering datasets:

• WebQuestions (Berant et al., 2013): This
dataset includes questions collected using the
Google Suggest API, with answers being enti-
ties from Freebase annotated by Mechanical
Turk. Since only pairs of questions and an-
swers are provided and no positive document,
we follow (Karpukhin et al., 2020) by using
the highest-ranked document from BM25 con-
taining the answer span as positive document
d+.

• Natural Question (Kwiatkowski et al., 2019):
This dataset contains questions asked by users
of Google-Search, with answers given as
spans of text within Wikipedia articles. For
each question, the positive document is the
Wikipedia article containing the span with the
answer.

The pre-processed English Wikipedia dump from
December 2018 is used as the document mem-
ory as provided by (Karpukhin et al., 2020).
This Wikipedia dump has been divided into non-
overlapping chunks of 100 words following (Chen
et al., 2017) and (Wang et al., 2019). Each chunk
corresponds to a document. In total, there are
21, 015, 324 documents.

4.2 Implementation Details
Hardware and libraries We use 32 Nvidia RTX
3090 GPUs with a total memory of 768 GB for
training and testing of FetcHR. The distributed
training is implemented in PyTorch with NCCL
backend (Paszke et al., 2019). Our model imple-
mentation is is based on the Huggingface Trans-
formers library (Wolf et al., 2020). The training
time of the FetcHR retriever is 30−50 hours for all
our experiments. For training the FiD-large reader,
we use a single Nvidia RTX A6000 GPU with 48
GB of RAM and gradient accumulation over 32
steps. This training takes about 100 hours.
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Dataset details We follow the train/test splits
from (Karpukhin et al., 2020) and we discard dat-
apoints when the gold documents don’t match the
applied Wikipedia dump. This filtering process
leaves us with a train set of 122,892 data points,
which come from Natural Question, TriviaQA, We-
bQuestions, and CuratedTREC.

Training details We initialize the model parame-
ters using the multiset checkpoint that was trained
and provided by DPR. For the contrastive loss func-
tion, we use in-batch negatives. Our total training
time is 30 epochs. The learning rate is 2 ·10−5, and
we use Adam optimizer (Kingma and Ba, 2014),
linear scheduling with warm-up, and a dropout rate
of 0.1. Our batch size is 256. We evaluate two
checkpoints after training: the one with the lowest
validation loss and the last checkpoint. The best
performing checkpoint is reported in this paper. For
distributing the training over multiple GPUs, we
compute the scores on each GPU first and gather
these scores to compute the loss. Then, we reduce
the loss back to each GPU and compute local gra-
dients. The final gradient update is averaged over
all local gradients.

Retrieval and search In the nearest neighbor
search function "NNSearch", documents that have
already been retrieved are excluded by iteratively
increasing k → k′ until k new documents are
retrieved. The underlying search algorithm uses
the Faiss library. However, due to computational
limitations, in most experiments, we use an IVF
search index with 131072 clusters and 128 infer-
ence probes. We end-to-end ran experiments using
both the IVF index and a flat index for exhaustive
search. The IVF index was built on four Nvidia
RTX 3090 GPUs that sums up to 96 GB VRAM.
During inference, we ran IVF and flat index on
CPU with access to 2 TB of physical memory. The
total search time required for FetcHR is about 0.5
s on IVF index and 150 s on the flat index for a
single inference.

4.3 Baselines

We compare FetcHR with DPR (Karpukhin et al.,
2020) by testing it on the state-of-the-art Fusion-in-
Decoder reader (FiD, (Izacard and Grave, 2021)).
DPR is the best performing retriever in the original
FiD publication and serves as a strong baseline.

The authors of DPR published multiple check-
points of their work, some of which are trained

on a single dataset (Natural Question) while oth-
ers are trained on multiple datasets (Natural Ques-
tion, TriviaQA, WebQuestions, CuratedTrec). We
compare with the checkpoint trained on multiple
dataset, which also serves as initialization of our
model. For a fair comparison, we re-evaluate the
DPR checkpoint on the same search index (IVF
and flat), with identical retrieval budget L × k,
identical tokenization and entity normalization. Re-
trieved documents are fed to the FiD reader with
pre-trained weights, as provided by the authors.
We use the Fusion-in-Decoder in either base or
large configuration. Fusion-in-decoder was trained
on the Natural Question, TriviaQA and SQuAD
v1.1 on 100 retrieved documents. We finetuned
FiD-large to read from 240 documents from the
Natural Question train set for 1 epoch. For the
WebQuestion dataset, we performed an additional
finetuning of the previously obtained Natural Ques-
tion checkpoint to compensate for the small size
of the WebQuestion dataset. We stopped this fine-
tuning after 15 epochs. We denote the finetuned
checkpoints as FiD-large trained in our tables.

4.4 Performance Metrics
Since the critical occurrence is a qualitatively met-
ric which cannot be measured automatically, we
follow the standard convention of retrieval accu-
racy and exact match from related work to measure
the performance of our model as follows:

Retrieval Accuracy The retrieval accuracy is the
probability that the correct answer span is included
in one of the documents that are retrieved. Nor-
malizations are performed, such as lower casing
as well as removing punctuation and articles. This
accuracy is commonly used to evaluate retrieval
systems but is not capturing the occurrence of crit-
ical features in the retrieved document collection
(see Figure 1).

Exact Match The performance of a reader is
measured by the exact match (EM) score. This
score is calculated by the percentage of exact
matches between the reader’s output and the cor-
rect answer. This score provides an end-to-end
QA score capturing also the occurrence of critical
features in the document collection.

4.5 Main Results
Figure 3 illustrates the retrieval accuracy of sin-
gle FetcHR layer. We consider retrieval budgets
of L × k = 10 and L × k = 120 and compare
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Retriever NQ WebQ
top-120 top-240 top-120 top-240

DPR-IVFIdx 81.7 83.8 81.6 83.4
FetcHR-IVFIdx 83.9 85.6 82.5 84.4
DPR-flat 86.5 88.2 85.2 87.3
FetcHR-flat 86.5 88.2 84.8 86.8

Table 1: Top-120 and -240 accuracy’s for different retriever on a flat and a compressed search space (IVFIdx).

Retriever FiD-base FiD-large FiD-large trained
top-120 top-240 top-120 top-240 top-120 top-240 top-240 top-240
NQ NQ NQ NQ WebQ WebQ NQ WebQ

DPR-IVFIdx 41.0 41.5 45.7 46.4 24.9 26.2 46.6 36.9
FetcHR-IVFIdx 43.7 43.7 48.1 49.3 26.1 27.2 48.7 39.9
DPR-flat 46.0 46.0 50.5 51.3 27.0 28.1 51.6 40.7
FetcHR-flat 46.7 46.6 50.8 52.0 27.1 28.2 53.3 48.0

Table 2: Exact-match scores with different readers on Natural Question and WebQuestion test sets.

the results to DPR which always retrieves at the
final output layer 12. In contrast to the rest of this
work, where FetcHR retrieves from all/multiple
layers simultaneously (L > 1), in this experiment
we retrieve from individual layers separately and
independently (L = 1). Figure 3 reveals that the
retrieval accuracy improves as the layer becomes
deeper. The final layer achieves the best perfor-
mance, while none of the FetchHR-layers outper-
forms DPR on its own, despite the last FetchHR-
layer reaches nearly the same accuracy as DPR.

In the second experiment, we show that retriev-
ing from all layers simultaneously achieves higher
performance than the best individual layer, for an
equal total number of retrieved documents. With
L = 12 layers and k = {10, 20}, we consider total
budgets of L × k = 120 and L × k = 240, re-
spectively. We combine all retrieved documents
as described in Section 3.4. The results are shown
in Table 1. FetcHR’s accuracy using all layers is
higher than DPR when the IVF index is used. How-
ever, it is equal or slightly worse when the flat index
is used. This might be a consequence of FetcHR
being able to explore a compressed search space
efficiently. While retrieval accuracy of FetcHR is
not better than DPR for the flat index, in the next
experiment we find that FetcHR performance is
always higher when integrated into a QA system
containing a reader to generate the answer.

We apply the Fusion-in-Decoder, a state-of-the-
art reader, in the third experiment. This reader takes

the retrieved documents combined with the input
question as input and generates the answer. The
exact match score is shown in Table 2 for question-
answering tasks from the Natural Question and
Web Question datasets. The documents provided
by FetcHR always enable the reader to score higher
than with the documents provided by DPR for all
datasets and documents budgets. This is especially
significant for the IVF index and the finetuned FiD
reader, but it holds consistently also for the other
scenarios, despite the lower retrieval performance
shown in Table 1. These results confirm that the
FetcHR document collection is superior compared
to the DPR documents for QA tasks. We conclude
that this improvement is due to a higher occurrence
of critical features of the input question in the re-
trieved document collection. Figure 1 showcase
three example questions with their corresponding
occurrence of features in the retrieved document
collection. We observe FetcHR to particular im-
prove on the critical feature.

Table 3 provides a broader comparison of the
performance of FetcHR to prior work on QA tasks.
We consider prior work where retriever and reader
are trained separately from the same or a strong
overlapping dataset as with FetcHR. We find that
FetcHR outperforms prior work when the FiD
reader is finetuned on the FetcHR output distri-
bution by 1.9 EM score on Natural Question and
2.1 EM score on Web Question.
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Closed-book QA Models NQ WebQ
T5-base (Roberts et al., 2020) 25.7 28.2
T5-large (Roberts et al., 2020) 27.3 29.5
T5-XXL (Roberts et al., 2020) 32.8 35.6
GPT-3 (Brown et al., 2020) 29.9 41.5

Open-book QA Models NQ WebQ
BM25+BERT (Lee et al., 2019) 26.5 21.3
QRQA (Lee et al., 2019) 33.3 30.1
DPR (Karpukhin et al., 2020) 41.5 42.4
ReConsider-base (Iyer et al., 2020) 43.1 44.4
ReConsider-large (Iyer et al., 2020) 44.5 45.9
RETRO 7.5B w. DPR (Borgeaud et al., 2021) 45.5 -
FiD-base (Izacard and Grave, 2021) 48.2 -
FiD-large (Izacard and Grave, 2021) 51.4 -
FetcHR-flat / FiD-large trained 53.3 48.0

Table 3: EM scores of related work compared to our results on the Natural Question and WebQuestion test sets.

4.6 Ablations

Importance of FetcHR layers We investigate
the importance of individual FetchHR layers when
retrieving simultaneously from all layers. If some
layers retrieve better documents than others, then
we may consider the opportunity of unbalancing
the contribution of different layers, i.e. letting those
layers retrieve more documents than the others. We
analyse individual layer performance by measur-
ing the averaged amount of documents containing
the answer span each layer retrieves additional to
previous layers – we call this support in the follow-
ing. Note that this support is different to Figure 3,
where retrieval is performed in single layers while
here retrieval is done in all layers. The results are
illustrated in Figure 4. In this case, k = 10 and
the total budget is L × k = 120. The majority of
correct documents is retrieved in the first layer but
we observe that each layer has a significant contri-
bution to the final retrieval performance showing
the benefit of retrieving in multiple layers. We also
observe that the middle layers have the lowest sup-
port. This low support could be a consequence of
having a strong overlap of retrieved documents to
previous layers sides while the first and last layer
retrieve very different documents due to the largest
difference in the hidden state representation of the
input question.

Distribution of retrieval budget over multiple
layers Given the results of Figure 4, we investi-
gate alternative ways of dividing the total budget of

documents L× k among the FetcHR layers, differ-
ent from distributing the budget uniformly. Table
4 provides an overview of the retrieval accuracy
in different configurations ranging from retrieval
in the last layer only, the first and last layer, up to
all layers. Note that the total amount of retrieved
documents is 120 for all experiments. From these
results, we conclude that the best configuration is
when retrieval is distributed over all layers equally
(i.e. L = 12, k = 10).

5 Conclusion

5.1 Summary
We presented retrieval-augmented transformers, a
multi-encoder retrieval system exploiting different
hierarchical abstractions of a model input. Our
experiments show a competitive retrieval perfor-
mance and a superior reader performance for two
benchmark tasks on the FiD reader.

Since FetcHR is a retrieval system, it does not
generate answers by itself and it requires a reader
that can process the retrieved documents. We found
that the FiD reader, in large configuration, is able
to process retrieved documents efficiently – with-
out additional training. Additional training of the
FiD reader on the output distribution of FetcHR
improved the performance even further and outper-
forms related work.

5.2 Discussion and Future Work
Our work shows that in the scenario of an end-
to-end question answering task, a high retrieval
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FetcHR layers k per layer accuracy
12 120 81.3
1, 12 60 82.6
1, 6, 12 40 83.1
1, 2, 3, 10, 11, 12 20 83.4
2, 4, 6, 8, 10, 12 20 83.5
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 10 83.9

Table 4: Retrieval accuracy on Natural Question with varying distributions of L and k for a retrieval budget. Note
that the total budget L× k = 120 is kept constant across different rows of the table.
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Figure 3: Top-10 (top) and top-120 (bottom) retrieval
accuracy when all documents are retrieved in a single
FetcHR layer compared to DPR. We evaluated this per-
formance on the test set of Natural Questions. The
accuracy is measured as percentage of top-k retrieved
documents containing the correct answer span.

accuracy does not always translate to a high EM
score of the reader output. We observe a better
EM score of the reader despite an equal/slightly
worse retrieval accuracy of the retriever. This ap-
pears to be contra-intuitive. However, a generative
reader such as FiD performs inference over all re-
trieved documents at the same time. Typically, the
answer to a question appears multiple times within
the retrieved document collection. We believe this
document distribution to be better, when the critical
features of questions occur more often (see Figure
1). This might lead to future work aiming to de-
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Figure 4: Support of each FetcHR layer to the final
retrieval performance.

velop automated metrics for retrieval systems when
end-to-end question answering is the goal.

Another interesting observation is that FetcHR
obtains the largest improvement in many scenar-
ios on a compressed IVF index. We believe this
is influenced by a wider exploration of the com-
pressed search space, in addition to the hierarchical
retrieval. This wider exploration might be a con-
sequence of different queries from the individual
FetcHR layers.

FetcHR demonstrated that a well performing re-
triever can be obtained with a query encoder build
from just a few transformer-layers. With just a
single transformer-layer and an attached retrieval
network, we obtained decent retrieval performance.
In the future, this may allow more hardware-
efficient inference, shifting computational needs
from the transformer network to the nearest neigh-
bour search method. In future work, end-to-end
training methods of FetcHR with FiD might lead
to a fusion language model with both parametric
and non-parametric knowledge over multiple lay-
ers. We believe this will have a significant impact
on knowledge-intense tasks.
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6 Limitations

Despite being trainable and usable for most datasets
and document memories, there are some limitations
to consider. The first one is related to the retrieval
index. The discussed flat retrieval index scales
poorly to large document memories. Despite being
commonly used in research publications, the practi-
cal application of flat indices is limited due to long
inference times on large document memories. Due
to the poor scaling of the flat index, we also pre-
sented results on the much fast and more scalable
IVFIndex. Another limitation is related to the DPR
retriever as initial checkpoint for the retriever. We
found very good retrieval results when FetcHR is
trained on one of the pretraining datasets for DPR,
however we observed a performance drop when
FetcHR is used on a novel dataset. As this drop is
expected for most models when train and test data
distribution are not matching, a solution to this is
an additional training of DPR following the DPR
approach on the new dataset first. Afterwards, the
presented FetcHR training can be conducted.

Ethics Statement

FetcHR shares the same ethical considerations and
societal impact as prior work on language models
and retrieval systems. Even though FetcHR im-
proves performance on knowledge-intense tasks, it
inherits the bias given by the training data and the
collection of documents in the memory. This bias
might lead to unfair or misleading model outputs.
Since FetcHR does not have an explicit mecha-
nism to detect and prevent a manipulated document
memory, it could get prone to retrieve documents
containing fake knowledge.
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A Datasets

The datasets used in this work are open-source
and widely used in the community. We make
use of a preprocessed and published version by
(Karpukhin et al., 2020) which can be down-
loaded from here: https://github.com/
facebookresearch/DPR. In Table 5 the
statistics of these datasets can be found.

Natural Question (Kwiatkowski et al., 2019)
URL: https://ai.google.com/
research/NaturalQuestions/
download
License: https://github.com/
google-research-datasets/
natural-questions/blob/master/
LICENSE

WebQuestions (Berant et al., 2013)
URL: https://github.com/
google-research/language/
tree/master/language/orqa#
getting-the-data
License: https://nlp.stanford.edu/
software/sempre/

TriviaQA (Joshi et al., 2017)
URL: http://nlp.cs.washington.edu/
triviaqa/
License: https://github.com/
mandarjoshi90/triviaqa/blob/
master/LICENSE

CuratedTrec (Baudiš and Šedivỳ, 2015)
URL: https://github.com/brmson/
dataset-factoid-curated
License: https://github.com/brmson/
dataset-factoid-curated/tree/
master/trec
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Dataset Filtered Train Development Test
Natural Questions 58,880 8,758 3,610
WebQuestions 2,474 8,837 2,032
TriviaQA 60,413 361 11,313
CuratedTREC 1,125 133 694

Table 5: Datasets used in this work.

28


