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Abstract

Collecting high-quality labeled data for model
training is notoriously time-consuming and
labor-intensive for various NLP tasks. While
copious solutions, such as active learning for
small language models (SLMs) and prevalent
in-context learning in the era of large language
models (LLMs), have been proposed and allevi-
ate the labeling burden to some extent, their
performances are still subject to human in-
tervention. It is still underexplored how to
reduce the annotation cost in the LLMs era.
To bridge this, we revolutionize traditional ac-
tive learning and propose an innovative col-
laborative learning framework FreeAL to in-
teractively distill and filter the task-specific
knowledge from LLMs. During collaborative
training, an LLM serves as an active annota-
tor inculcating its coarse-grained knowledge,
while a downstream SLM is incurred as a stu-
dent to filter out high-quality in-context sam-
ples to feedback LLM for the subsequent la-
bel refinery. Extensive experiments on eight
benchmark datasets demonstrate that FreeAL
largely enhances the zero-shot performances
for both SLM and LLM without any human
supervision. The code is available at https:
//github.com/Justherozen/FreeAL.

1 Introduction

Modern machine learning models typically require
a huge collection of precisely labeled data, which
can be a labor-intensive and time-consuming pro-
cess. Even worse, it can be unrealistic in some
practical scenarios that demand much expertise,
such as medical diagnosis and industrial applica-
tions. To this end, a plethora of approaches have
been investigated to reduce the burden of anno-
tation, including semi-supervised learning (Sohn
et al., 2020; Berthelot et al., 2019), learning with
label noise (Han et al., 2018; Li et al., 2020), and so
on. Amongst them, active learning (Ein-Dor et al.,

∗Corresponding author.

Figure 1: Comparisons of FreeAL with traditional active
learning (AL) algorithms and supervised fine-tuning on
the SST-2 dataset. FreeAL surpasses all the active learn-
ing rivals and achieves near-supervised performance
without human annotation.

2020; Yuan et al., 2020; Margatina et al., 2021)
is a prominent solution that interactively queries
an external expert or oracle to mark the new data
points that the model wants to learn from. These
methods alleviate the labeling burden to some ex-
tent but still require human efforts in the annotation
or construction of the oracle to start with.

The recent prevalent large language models
(LLMs) (Ouyang et al., 2022; Thoppilan et al.,
2022; OpenAI, 2023), such as ChatGPT and PaLM
(Chowdhery et al., 2022), have exhibited strong
zero-shot learning ability by proper prompt design,
yet becoming a new remedy for data efficiency.
Even more inspiringly, LLMs emerge with the
so-called in-context learning (ICL) (Brown et al.,
2020) ability to learn from a few task-related la-
beled samples for boosted performance. Despite
the promise, some studies (Bang et al., 2023) find
that LLMs tend to underperform compared to fine-
tuned small language models (SLMs) on challeng-
ing tasks, which is also verified in our empirical
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studies (Table 3). One possible reason is that ICL
can not fully exploit supervised training samples
due to limited context length. Moreover, their ex-
tremely large size and limited accessibility also
hinder their training and generalization on specific
tasks. To date, it is still questionable how can we
generalize to downstream tasks with the least hu-
man annotation in the era of LLMs.

In this work, we present a novel collaborative
learning paradigm FreeAL that revolutionizes tra-
ditional active learning by interactively distilling
and filtering the task-related knowledge from the
LLMs. Our intuition is that, while LLMs are hard
to fine-tune, they are competent zero-shot learn-
ers (Wei et al., 2022; Kojima et al., 2022) and can
provide coarse-grained knowledge for downstream
tasks. On the other hand, SLMs are effective weak
learners (Li et al., 2020) that can distill valuable
clean samples from noisy supervision. To integrate
LLMs and SLMs synergistically as a whole, we
design a collaborative training framework where
LLM operates as an active annotator infusing its
knowledge and the SLM acts as a student to filter
out the high-quality input-label pairs to feed back
the LLM for subsequent label refinery. Empirically,
FreeAL iteratively boosts the unsupervised perfor-
mance of both SLMs and LLMs during collabo-
rative training for transductive and inductive set-
tings. As depicted in Figure 1, FreeAL allows us to
achieve an extraordinary annotation-performance
trade-off by obtaining competitive results on par
with the supervised counterparts while fully elimi-
nating human annotation costs.

Overall, our main contributions can be summa-
rized as follows,

• To the best of our knowledge, we are among
the first to overhaul traditional active learning
in the era of LLMs for boosted generalization
performance without any human supervision.

• We propose a novel collaborative learning
framework called FreeAL to employ the
LLMs as active annotators and the SLMs as
weak filters to interactively distill the task-
related knowledge from the LLMs.

• Our proposed FreeAL largely improves the
unsupervised learning performance for both
the LLMs and the SLMs, even approaching
the supervised counterparts in some scenarios.
Our results prove the feasibility of human-free
active labeling in the era of LLMs.

2 Related Work

2.1 Prompt-based Zero/Few-shot Learning
The emergent ability of LLMs has sparked height-
ened interest in prompt-based zero-shot and few-
shot learning (Ye et al., 2021; Schick and Schütze,
2021). Instead of fine-tuning on massive down-
stream data, in-context learning (ICL) (Brown et al.,
2020), which suits LLMs to new tasks with few-
shot input-label exemplars as demonstrations with-
out training, has shown promising few-shot perfor-
mance. It has been further improved by later works
(Liu et al., 2022; Lu et al., 2022; SU et al., 2023).

On the other hand, zero-shot learning is much
more challenging without task-specific data. Direct
steering LLMs for predictions without in-context
demonstrations can lead to significantly degraded
performance (Gao et al., 2021). To bridge this,
some methods (Wei et al., 2022; Sanh et al., 2022;
Xu et al., 2022) adopt instruction tuning with a
multi-task paradigm to further pre-train the LLMs
with a collection of different tasks in shared prompt-
ing templates. However, these methods require
cumbersome training for LLMs and the overwhelm-
ing bulk of cross-task human annotations. Another
new line of research (Ye et al., 2022a; Meng et al.,
2022; Ye et al., 2022b) endeavors to ameliorate
zero-shot learning merely via dataset generation,
while the synthesized data commonly involves a no-
table portion of low-quality samples and misses the
nuanced semantics present in the original data. In
our work, we take inspiration from active learning
with an innovative viewpoint to distill and filter the
rich knowledge from LLMs for boosted zero-shot
generalization performance.

2.2 Active Learning
Active learning (AL) is a prevailing paradigm in
various NLP tasks (Yuan et al., 2020; Zhao et al.,
2020; Shelmanov et al., 2021; Wang et al., 2022)
that aims to reduce labeling effort by selecting only
the most useful examples to annotate. In each it-
eration of active learning, a model is trained on
the currently labeled data and then tasked with se-
lecting the most informative yet-to-be-labeled data
point to be labeled for boosted performance. Based
on different querying strategies (Settles and Craven,
2008), existing traditional active learning methods
can be categorized into uncertainty-based meth-
ods (Prabhu et al., 2019; Margatina et al., 2021)
and diversity-based methods (Sener and Savarese,
2018; Ru et al., 2020; Ash et al., 2020). While these
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Figure 2: Overview of FreeAL. In each collaborative training loop, the LLM serves as an active annotator imbuing
its knowledge. Then the SLM is employed as a filter to distill the task-related knowledge with robust self-training
from LLM and filter out a high-quality demonstration pool Ddemo to feedback the subsequent label refinery of LLM.

methods relieve the annotation burden to some ex-
tent, they still count on human experts as expensive
supervision sources to start with. To overcome
this high cost, we investigate the opportunities of
leveraging the rich knowledge of LLMs as a low-
cost supervision source for boosting generalization
performance without human effort.

3 Background

We consider unsupervised classification tasks with-
out human annotations. Given an unlabeled train-
ing datasetDtrain = {xi}ni=1 with n samples, where
x ∈ X is the input text and the corresponding
ground-truth label y ∈ Y = {1, . . . , C} is inac-
cessible. Our task is to predict the true label for
both the training datasetDtrain and test datasetDtest.
Our framework employs a pre-trained large lan-
guage model (LLM) P and a downstream small
language model (SLM) S . For the LLM, we define
a natural language template T (·) which contains
additional task-related information and a verbalizer
V (·) which maps each class label in {1, . . . , C}
to a pre-defined token in the prompt. For the fine-
tuning of SLM S with parameters θ, we adopt the
cross entropy loss li = −

∑
j∈Y ỹi

j logSj(xi, θ)

for training, where Sj(xi, θ) is the j-th entry of
SLM’s output softmax probability for the input xi
with the pseudo label ỹij .

Few-shot In-context Learning. When super-
vised data are available, we can directly em-
ploy the few-shot ICL for inference. In con-
crete, given a demonstration supporting pool
Ddemo = {xdemo

i , ỹdemo
i }mi=1 for prompt retrieval

during ICL, we construct a prompt including a
test input xtest and m-shot in-context examples
{(xdemo

j , ỹdemo
j )}mj=1 retrieved from Ddemo as the

demonstration. The final prompt steers the LLM
and the prediction is obtained via,

argmaxPy∈Y (V (y) | T (xdemo
1 , ỹdemo

1 ),

..., T (xdemo
m , ỹdemo

m ), T (xtest))
(1)

Despite the simplicity, the success of ICL largely
hinges on the demonstration pool Ddemo, which
requires human efforts of careful annotation for
every individual scenario and can be particularly
annoying for challenging tasks. To bridge this gap,
we resort to our proposed plug-and-play method
FreeAL without involving any human supervision.

4 FreeAL

In this section, we introduce our proposed frame-
work FreeAL which investigates the opportunity
for human-free active learning in the LLMs era. In
contrast to traditional active learning that requests
human annotation in each training loop, FreeAL
employs LLMs as weak annotators. In each train-
ing loop, we alternate the following steps:

1. Active labeling of the to-be-labeled samples
via LLMs based on the feedback from SLMs.

2. Training weakly supervised SLMs to distill
the task-related knowledge from noisy anno-
tations of LLMs and in turn feedback to them.

The overview of the FreeAL framework is dis-
played in Figure 2 and its overall pipeline is also
shown in Algorithm 1. In what follows, we will
elaborate on our FreeAL framework minutely.
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4.1 Active Labeling by LLMs

In this step, we leverage the strong in-context
learning ability of LLMs to assign weak labels to
unsupervised training corpora. In particular, the
core challenge lies in the construction of a proper
prompt containing demonstration samples. To this
end, we introduce two practical strategies for the
different life cycles of FreeAL.

Initial Annotation by Self-generated Demonstra-
tion. At the initial round of FreeAL, we are given
a purely unsupervised training set Dtrain. To en-
able pseudo-labeling via LLMs, we may directly
perform zero-shot ICL without access to a demon-
stration pool Ddemo. However, such a strategy can
largely impede the knowledge-distilling process of
SLMs due to shoddy initial annotations. To rem-
edy this, we design a novel self-generated demon-
stration technique by virtual data generation. No-
tably, when given some unlabeled samples and task-
descriptive instructions, humans can imitate the ex-
pression styles of these texts and leverage their own
knowledge to generate similar label-aware samples.
Motivated by this, we steer LLMs to first mimic the
format of unlabeled samples from Dtrain, which is
important to ICL according to recent research (Min
et al., 2022), and then generate new label-aware
examples to construct the initial Ddemo.

Specifically, the data-generation prompt con-
tains a hand-crafted task-descriptive instruction
ρgen that explains the task background and Q
randomly-selected unlabeled samples cgen from
Dtrain as prototypes to imitate. An example of the
prompt is shown in Appendix B.3. The generation
process can be formulated as,

{(xgen, ỹgen)} ← P (ρgen, T (cgen)) (2)

The generated samples constitute the generated
dataset Dgen = {(xgen, ỹgen)}, which is then used
as demonstration pool (i.e.,Ddemo = Dgen) for the
subsequent labeling. Next, we follow the standard
ICL pipelines with demonstration selection (Liu
et al., 2022). Each prompt contains m-nearest-
neighbors from Ddemo with the highest embedding
similarity to xi. The ICL process follows Eq.(1).
With the demonstrations seen in the prompt, the
LLM is able to provide passable initial annotations
ỹ of the training dataset Dtrain = {xi, ỹi}ni=1, the
annotations ỹ are employed as pseudo-labels for
the subsequent training of SLM.

Algorithm 1 Pipeline of FreeAL

Input: Unlabeled dataset Dtrain = {xi}ni=1; pre-
trained LLM P and a downstream SLM S;

1: round← 1
2: while not convergent do
3: # For LLM: active annotation
4: if round = 1 then
5: # Initial self-generated demonstration
6: Generate {(xgen, ỹgen)} as Eq.(2);
7: Ddemo = Dgen = {(xgen, ỹgen)};
8: else
9: Receive Ddemo from SLM;

10: end if
11: In-context learning as Eq.(1) for labeling;
12: round← round+ 1;
13: # For SLM: knowledge distillation
14: Robust self-training as Eq.(3)
15: # Construction of Ddemo
16: Filter out class-wise clean subset Dj

clean
17: Adopt k-medoids on Dj

clean for Dj
demo

18: Ddemo = ∪j∈YDj
demo

19: Dnoisy = Dtrain \ (∪j∈YDj
clean)

20: Feed Ddemo and Dnoisy back to LLM
21: round← round+ 1;
22: end while

Refined Annotation in Subsequent Rounds. In
the later rounds, the SLM S is trained using the
weak annotation given by the LLM P . Meanwhile,
the SLM filters out a high-quality demonstration
pool Ddemo as feedback; details are shown in Sec-
tion 4.2. Then with a high-quality Ddemo, the LLM
P re-annotates the remaining noisy-prone samples
via few-shot ICL according to Eq. (1).

4.2 Knowledge Distillation by SLMs

Given the acquired weak annotations from LLM, it
is difficult for the LLM to distinguish its own errors
due to the confirmation bias. Fortunately, previous
studies (Han et al., 2018; Li et al., 2020) in weakly-
supervised learning have shown that deep models
have the potential of detecting noisy samples dur-
ing the training procedure. Therefore, after receiv-
ing weak labels, our intention is two-fold: (i)-train
a strong and robust downstream SLM that maxi-
mally distills task-specific knowledge; (ii)-employ
the derived SLM to filter out a high-quality demon-
stration pool to feedback LLM.

14523



4.2.1 Robust Self-training
Motivated by the memorization effect of DNNs
(Zhang et al., 2017), the SLM tends to first fit easy
patterns in the early stage of training. Thus, noisy
samples mostly pose larger loss values. To this
end, we adopt the selection-based technique (Li
et al., 2020) from noisy label learning to train a
robust SLM for knowledge distillation.

Formally, after a few warm-up epochs with stan-
dard training on noisy labels, given the standard
cross-entropy loss li that reflects how well the
model fits the sample xi, we fit a two-component
GMM to the loss li to find out those clean samples.
Let wi = p(g | li) represent the probability of xi
belonging to the Gaussian component with smaller
mean g, which can also be deemed as its clean
probability. Then we divide the training dataset
into a clean subset and a noisy subset by setting a
threshold τ on wi , which is considered as a labeled
set Dl and a noisy set Du respectively,

Dl = {(xi, ỹi) | xi ∈ Dtrain, wi ≥ τ} ,
Du = {(xi) | xi ∈ Dtrain, wi < τ} (3)

To improve the robustness of training, we uti-
lize consistency regularization for boosted perfor-
mance, which assumes that a classifier should pro-
duce a similar prediction on a local neighbor of
each data point. Given an input xi, we adopt back-
translation (Sennrich et al., 2016) to paraphrase it
and obtain the augmented version x

aug
i . For the

labeled and unlabeled data, the consistency regular-
izations are formulated,

Ll
cr =

1

|Dl|
∑

xi∈Dl

lce(x
aug
i , ỹi),

Lu
cr =

1

|Du|
∑

xi∈Du

lkl(S(x
aug
i ), S(xi))

(4)

where lce and lkl are standard cross entropy and KL
divergence respectively. Finally, the total loss for
self-training of SLM is aggregated,

Ltotal = Lclean + α(Ll
cr + Lu

cr) (5)

where Lclean is the cross entropy loss on Dl, α
is the loss weight parameter. We refer readers to
Appendix B.1 for more implementation details.

4.2.2 Demonstration Pool Filtering
While the SLM S can filter out a clean subset to
enhance its performance during self-training, other
stubborn noisy labels are hard to correct by SLM

itself due to the confirmation bias. Thanks to our
robust SLM, we can filter out those clean and rep-
resentative samples and construct a high-quality
demonstration pool Ddemo for the LLM to refur-
bish its potentially wrong predictions in previous
rounds. One may directly reuse the GMM-based
selection criterion again and take Dl as demonstra-
tions. However, such a selection procedure is too
aggressive since excessively over-selecting some
noisy samples may still improve the self-training
procedure. To this end, we would like to filter out a
more curated Ddemo that prioritizes representative
examples with accurate labels to be included.

The construction process mainly contains two
steps in a class-wise manner to cover every class
and ensure diversity. For the training subset Dj

train
of class j, following the memory effect of DNNs
(Zhang et al., 2017), we utilize the small loss cri-
terion and select samples with the smallest cross-
entropy loss li in the first R percent to construct
Dj

clean = {(xi, ỹi) | rank(li) ≤ R%, ỹi = j}.
In practice, we set a small R to ensure the high
precision of Dj

clean. Secondly, we further adopt
a simple clustering algorithm k-medoids on the
embeddings of SLM to filter out the most repre-
sentative medoids samples from Dj

clean to construct
Dj

demo. When the k-medoids algorithm gets con-
verged, the medoids of k clusters are collected as
Dj

demo. Finally the integral demonstration set is
merged from each class as Ddemo = ∪j∈YDj

demo.
With a high quality Ddemo, the great potential

of LLM P can be unleashed to refine those noisy-
prone samples Dnoisy = Dtrain \ (∪j∈YDj

clean) via
few-shot ICL as described in section 4.1.

5 Experiment

In this section, we provide the experimental results
to verify the effectiveness of the FreeAL frame-
work. More results, including visualizations and
model selection, can be found in Appendix.

5.1 Setup

Datasets. We evaluate the performance of
FreeAL on both sequence-level and token-level
tasks. For sequence-level tasks, we choose SST-2
(Socher et al., 2013), MR (Pang and Lee, 2005)
dataset for sentiment classification, SUBJ (Pang
and Lee, 2004) dataset for subjectivity classifica-
tion and TREC (Voorhees and Tice, 2000) for topic
classification. For token-level tasks, CoNLL03
(Tjong Kim Sang and De Meulder, 2003) dataset
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Model Round Demons/Annos SST-2 MR SUBJ TREC CoNLL03 MA BC5-C BC5-D

GPT-3.5-Turbo
0 Zero-shot 88.93 89.99 57.11 43.36 64.19 59.51 69.28 27.74
1 Self-generated 92.16 91.74 86.54 70.74 70.89 59.78 81.05 47.12
3 Selected by Round 2 94.93 92.89 90.33 77.70 74.71 61.38 82.40 52.59

RoBERTa 2 Annotated by Round 1 94.70 92.43 92.24 76.75 74.49 61.41 81.61 52.89
4 Annotated by Round 3 95.49 92.64 92.85 81.59 78.79 62.15 82.81 59.25

Table 1: Comparisons of transductive performance on training datasets of different tasks. BC5-C/D refers to
BC5CDR-Chemical/Disease dataset. For the token-level NER tasks (including CoNLL03, BC5-C, BC5-D) the
F1-score is given and For the other sequence-level tasks the test accuracy is provided.

Model Round Demons/Annos SST-2 MR SUBJ TREC CoNLL03 MA BC5-C BC5-D

GPT-3.5-Turbo
0 Zero-shot 92.47 90.05 55.65 77.20 66.47 59.71 67.85 29.60
1 Self-generated 93.73 90.85 83.85 80.00 70.22 59.97 76.90 50.68
3 Selected by Round 2 95.91 93.10 90.27 79.80 70.80 60.93 80.77 52.70

RoBERTa 2 Annotated by Round 1 94.29 89.35 92.95 86.80 71.82 61.91 80.55 53.38
4 Annotated by Round 3 94.66 90.20 94.45 91.40 76.12 62.64 81.13 58.90

Table 2: Comparisons of inductive performance on test datasets of different tasks. BC5-C/D refers to BC5CDR-
Chemical/Disease dataset. For the token-level NER tasks (including CoNLL03, BC5-C, and BC5-D) the F1-score is
given and For the other sequence-level tasks the test accuracy is provided.

is adopted for named entity recognition (NER). To
validate the feasibility of FreeAL in practical sce-
narios such as medical diagnosis and biochemi-
cal applications that demand highly specialized
domain-specific expertise, we also conduct exper-
iments on BC5CDR (Li et al., 2016) dataset with
chemical and disease interactions as token-level
NER tasks and Medical Abstract (MA) (Schopf
et al., 2022) dataset describing 5 different classes
of patient conditions as sequence-level classifica-
tion task. More details are listed in Table 4.

Performance Evaluation. In this work, we eval-
uate FreeAL from two aspects: (i)-Transductive
Performance: Given unsupervised training data,
we evaluate the training accuracy of FreeAL which
reflects how well task-specific knowledge is dis-
tilled; (ii)-Inductive Generalization: utilize the
derived models, including the SLM and Ddemo for
LLM, to further assess the generalization efficiency
on the unseen test set with the inductive learning
paradigm. We report the classification accuracy or
the F1 score on both training and testing sets. We
test the performance at different rounds. Round 0
denotes vanilla zero-shot learning of LLM. Round
1 and round 2 denote the performance of LLM and
SLM in the first training loop, while round 3 and
4 are those of the second refinery training loop, as
shown in Figure 2. For all experiments, we run
three times and report the averaged results.

Baselines. We compare FreeAL with multiple
zero-shot and supervised baselines for LLMs and
SLMs respectively. For LLMs, they are vanilla
zero-shot ICL without demonstrations (Brown
et al., 2020), supervised ICL with standard demon-
stration retrieval (Liu et al., 2022) from human-
labeled training data, and supervised ICL with k-
medoids to first filter a representative subset for
demonstration retrieval. For SLMs, they are zero-
shot distillation (Hinton et al., 2015; Smith et al.,
2022) that finetunes the SLMs by using the annota-
tions from zero-shot ICL of LLM as ground-truths,
and standard supervised fine-tuning that finetunes
the SLM with human-labeled data. We also com-
pare FreeAL with some traditional active learning
baselines in section 5.3.1, including (1) Random: It
acquires annotation of to-be-labeled data randomly.
(2) Entropy (Holub et al., 2008): It is the most
commonly used uncertainty-based baseline that ac-
quires samples with the highest predictive entropy.
(3) CAL (Margatina et al., 2021): It is a recent
active learning method that acquires contrastive
examples for pre-trained language models.

Implementation Details. We adopt OpenAI’s
GPT-3.5-Turbo language model, also known as
ChatGPT, as our LLM and we use RoBERTa-Base
from Huggingface Transformers (Wolf et al., 2020)
as the downstream SLM. For the biomedical tasks
including MA and BC5DER dataset, we utilize a
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Model Ablation Human SST-2 MR SUBJ TREC CoNLL MA BC5-C BC5-D

GPT-3.5-Turbo

Zero-shot ICL ✗ 92.47 90.05 55.65 77.20 66.47 59.71 67.85 29.60
FreeAL (ours) ✗ 95.91 93.10 90.27 79.80 70.80 60.93 80.77 52.70
∆ Absolute gain - +3.44 +3.05 +34.6 +2.60 +4.33 +1.22 +12.9 +23.1

Supervised ICL (Standard) ✓ 96.06 92.85 89.30 81.50 85.46 61.22 82.24 68.63
Supervised ICL (k-medoids) ✓ 96.10 93.19 90.35 82.60 84.97 61.13 82.06 67.93

RoBERTa

Zero-shot distillation ✗ 92.81 88.60 59.25 82.80 69.71 61.22 77.05 31.98
FreeAL (ours) ✗ 94.66 90.20 94.45 91.40 76.12 62.64 81.13 58.90
∆ Absolute gain - +1.85 +1.60 +35.2 +8.60 +6.41 +1.42 +4.08 +26.9

Supervised FT ✓ 94.89 91.05 95.95 96.70 88.11 63.96 87.26 75.38

Table 3: Performance comparison of FreeAL with the zero-shot and supervised counterparts on the test dataset.
BC5-C/D refers to BC5CDR-Chemical/Disease dataset. The results of FreeAL are in bold. Supervised FT refers to
supervised fine-tuning. The absolute gain indicates the improvement of FreeAL compared to the zero-shot baseline.

Dataset Domain #Token #Train #Test

SST-2 Sentiment cls 19.3 6,920 1,821
MR Sentiment cls 21.6 8,662 2,000
SUBJ Subjectivity cls 24.5 8,000 2,000
TREC Topic cls 10.2 5,452 500
CoNLL03 NER 14.59 14,041 3,453

MA Medical cls 205.3 11,550 2,888
BC5CDR NER 25.92 4,560 4,797

Table 4: A list of benchmarks used in the experiments.
#Train and #Test indicate the size of the training and
test dataset. #Token is the number of tokens on average
for the corresponding training dataset.

BioMed-RoBERTa-base (Gururangan et al., 2020)
that is pre-trained on the Semantic Scholar corpus
as SLM for boosted performance. For fair compar-
isons, all the ICL processes of the LLM comprise
m = 10 context examples as demonstrations ex-
cept on MA dataset 5 is adopted due to the maxi-
mum context length 4,096 for GPT-3.5-Turbo. The
collaborative training process is performed on the
training dataset first and then the fine-tuned SLM
and the Ddemo for LLM are utilized to be evalu-
ated on the test dataset. More details of the robust
self-training are put in Appendix B.2.

5.2 Main Results

Table 1 and Table 2 display the results of FreeAL
at different rounds in the collaborative training
progress on the training and test dataset for trans-
ductive and inductive performance respectively. Ta-
ble 3 reports the comparisons of FreeAL with other
zero-shot and supervised counterparts.

Based on these results, it can be observed that
FreeAL significantly enhances the unsupervised
performance of both LLM and SLM. Free exceeds

the zero-shot ICL for the LLM by 3.44%, 3.05%,
and 2.60% on the SST-2, MR, and TREC dataset re-
spectively. It reaches a staggering lead of 34.6% on
the SUBJ dataset where the LLM fails to adapt to
on its own. In the medical diagnosis and biochemi-
cal fields, FreeAL also exhibits a notable advantage
of 12.9% and 23.1% on the chemical and disease
tasks of the BC5CDR dataset. FreeAL showcases a
similar trend of leading performance for the SLMs.
Interestingly, In comparison to the supervised coun-
terparts, FreeAL achieves competitive performance
on par with these supervised rivals on some sim-
ple tasks such as SST-2 and SUBJ datasets and
greatly narrows the gap between the zero-shot and
fully-supervised performances on other challeng-
ing tasks. Notably, the performance can be further
improved with more interaction rounds (also larger
cost), but 4 rounds of interaction can achieve satis-
factory results empirically. These results suggest
that FreeAL is able to fully distill the task-related
knowledge from LLMs’ weak supervision. More
analyses can be found in Section 5.3.2.

5.3 Analysis

5.3.1 Comparisons with Active Learning

We also compare our FreeAL framework with some
traditional active learning methods on the SST-2
and MR dataset. As shown in Table 5 and Fig-
ure 1, It can be observed that FreeAL outstrips
the traditional active learning baselines with 20%
and 50% acquired human annotations, which fur-
ther indicates that FreeAL can serve as a superior
alternative to traditional active learning by lever-
aging the rich knowledge of LLMs as a low-cost
human-free supervision source.
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Method Human Anno SST-2 MR

Random 20% samples 92.42 88.10
50% samples 92.92 89.10

Entropy 20% samples 92.37 88.65
50% samples 94.29 90.00

CAL 20% samples 93.36 88.45
50% samples 94.56 89.75

FreeAL (ours) ✗ 94.66 90.20

Table 5: Comparisons of FreeAL with traditional active
learning algorithms on the SST-2 and MR dataset.

5.3.2 Effect of Collaborative Training
From a more nuanced perspective of the perfor-
mance improvements at different rounds on the
training set in Table 1, it can be noticed that FreeAL
iteratively refines the noisy annotations during the
collaborative training. The improvement from
round 0 to 1 indicates the effectiveness of self-
generated demonstrations for better initial annota-
tions. The performance advancements from rounds
1 to 2 and rounds 3 to 4 demonstrate the ability
of robust self-training for SLM to distill valuable
knowledge from noisy annotations. Further, the per-
formance boost from round 2 to round 3 verifies the
efficacy of the active label refinery process. For the
test dataset in Table 2, the performance changes fol-
low a similar trend with some fluctuations, which
have been further discussed in Appendix A.1.

To further validate the efficacy of collaborative
training, we also conduct additional ablation exper-
iments for the components of FreeAL as shown in
Table 6. For the generalization performance on the
SLM, we compare FreeAL with its variant that dis-
cards robust self-training and adopts the standard
cross entropy loss for training (including round 2
and 4). It can be observed that robust self-training
largely improves the performance of FreeAL. For
the performance of LLM, we ablate FreeAL with
other selection strategies from traditional active
learning rather than small loss selection, including
random selection and entropy selection that selects
samples with the lowest entropy values with the
same budget as small loss selection. We can see
that entropy selection slightly makes up for the
poor performance of random selection, but still
lags behind FreeAL by a notable margin.

5.3.3 Impact of In-Context Examples m
Then, we show the effect of different numbers m
of in-context examples during the process of ICL

Model Ablation SST-2 MR

RoBERTa FreeAL 94.66 90.20
w/o robust self-training 89.18 88.95

GPT-3.5-Turbo
FreeAL 95.91 93.10
with random selection 95.12 92.15
with entropy selection 95.65 92.67

Table 6: Ablation study of FreeAL for the SLM and
LLM on the SST-2 dataset and MR dataset.

Figure 3: Ablation study of different numbers of in-
context examples m on the SST-2 and MR dataset.

on the SST-2 and MR datasets. As shown in Figure
3, FreeAL is able to produce a competitive perfor-
mance to the supervised rivals over a wide range of
m from 1 to 20, this further verifies the robustness
of FreeAL and we can simply adopt m = 10 for
fair comparisons in our experiments.

6 Conclusion

In this work, we overhaul the traditional active
learning in the era of LLMs and propose a novel
framework called FreeAL that merely relies on the
knowledge of LLMs to enhance human-free gen-
eralization performance. The key idea of FreeAL
is to distill and filter the task-related knowledge
from LLMs with a collaborative framework, where
the LLM is employed as an active annotator and
the SLM is engaged as a weak learner to filter out
valuable samples for label refinery. The empirical
results indicate that FreeAL can largely improve
unsupervised performance and reaches compara-
ble performance with supervised rivals in some
tasks. While our FreeAL framework operates au-
tonomously without human supervision, it is flexi-
ble and can be easily boosted with additional lim-
ited human supervision, which we leave for our
future work. We hope that our work can spark
heightened interest in developing new active anno-
tation algorithms in the era of LLMs.
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Limitations

Our proposed FreeAL is a collaborative framework
that aims to enhance unsupervised performance
without human effort. Despite its effectiveness,
there is still much potential for improvement. First,
the effectiveness of FreeAL largely hinges on the
strong ability of LLMs. For some domains that
are extremely challenging or eccentric, the com-
monly adopted GPT-3.5-Turbo nowadays may fail
to provide a qualified initial annotation, even with
self-generated demonstrations. Our model is antic-
ipated to be suitable for these circumstances with
the advancement of more powerful LLMs across
diverse domains. Besides, we thoroughly forgo
human efforts in our FreeAL framework while in
practical scenarios there may exist more or less
available human support. It remains underexplored
how to effectively combine the supervision from
human experts and LLMs to synergize their individ-
ual strengths, and we leave it for our future work.

Ethics Statement

While our proposed FreeAL serves as an innova-
tive way to enhance generalization performance
without human intervention, the predictions and
self-generated demonstrations of the adopted LLM
API may include bias and unfairness. Indeed, if
one utilizes FreeAL with such biased annotations,
it may unpleasantly yield unfair and biased pre-
dictions based on characteristics like race, gender,
disabilities, LGBTQ, or political orientation. To
alleviate this issue, we recommend that potential
users first use bias reduction and correction tech-
niques to remove biased text and predictions so as
to improve overall fairness and ethical standard.
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A Additional Experimental Results

A.1 Discussion on Model Selection
With our collaborative training paradigm, we are
able to interactively distill and filter task-related
knowledge from LLMs. Empirically, our FreeAL
method significantly enhances the zero-shot (dis-
tillation) performance of both SLMs and LLMs as
discussed in Section 5. One intriguing finding is
that, in the majority of evaluation cases, the final
SLMs outperform the LLMs. This observation can
be attributed to the superior distillation ability of
SLMs during the weakly-supervised fine-tuning
process. Consequently, we believe that SLMs re-
main a viable choice for practical deployment due
to their impressive fine-tuned performance and low
computational requirements. Furthermore, in more
general scenarios, we recommend the utilization
of a validation set to determine the most suitable
model for deployment.

A.2 FreeAL Can Reduce the Annotation Cost
As FreeAL solely depends on the knowledge of
LLM and not on human efforts, it can naturally be
leveraged as a low-cost data labeler in real-world
scenarios. In Table 7, we evaluate the cost disparity
between FreeAL and human annotations. Follow-
ing previous work (Wang et al., 2021), for human
labeling, it costs $0.11 per 50 input tokens with a
minimum of $0.11. For FreeAL, the cost per exam-
ple for m-shot inference is estimated approximately
as (#Token× (m+1)+ 100)× 2× (2× 10−6),
where #Token is the average token numbers in
Table 4, (2× 10−6) is the cost for GPT-3.5-Turbo
per token, 100 is roughly the tokens for the task-
specific descriptions and the model reply. For each

Source SST-2 MR SUBJ TREC MA

Human 0.11 0.11 0.11 0.11 0.55
FreeAL 1.2e−3 1.3e−3 1.5e−3 8.5e−4 4.5e−3

Table 7: Comparisons of annotation cost($) per example
between human labeling and FreeAL.

Model Round Annotations SST-2 MR

RoBERTa

- Vanilla FreeAL 94.66 90.20
1 Initial 10% from LLM 87.97 81.20
2 Another 10% from LLM 93.69 87.75
3 Another 10% from LLM 93.76 88.95

Table 8: Results with multi-round annotation strategies.

sample, the ICL is performed at most twice as ini-
tial annotations and refined annotations. It can be
observed that FreeAL can serve as a much cheaper
data labeler while achieving passable performance.

When entrusted with a training set that is too
large to label the entire dataset, the annotation
cost can be further reduced by a simple multi-
round solution. The core idea is to rely more on
the weakly-supervised-learning capability of SLM
to distill from a small number of annotated labels.

Specifically, for the initial annotation round of
LLM, we randomly sample a subset of P% sam-
ples (empirically we set P = 10) to be annotated
by LLM. After that, for robust self-training, we per-
form the original training process for the labeled
data Dlabeled and simply extend the consistency
regularization Lu

cr for the noisy set Du to the origi-
nally unlabeled data (i.e., Du = Du ∪Dunlabeled

). For the demonstration pool filtering, the con-
struction process of Ddemo is the same, while for
Dnoisy we randomly sample another subset of P%
samples from the unlabeled samples to be anno-
tated by LLM for the next iterations. The amount
of iteration rounds can be larger than the original
FreeAL if available to gradually distill the task-
related knowledge with limited annotation cost.

As shown in the Table 8, such a simple remedy
is able to achieve competitive results close to the
original FreeAL with merely 10% of the previous
cost each round, which proves the feasibility of
FreeAL when we cannot afford to label the entire
dataset. Notably, the process of randomly sam-
pling the to-be-annotated subset on SLMs can be
further improved with other advanced query strate-
gies (e.g., uncertainty-based), which is a classic
topic in traditional active learning.
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Model Ablation Round SST-2 MR

GPT-3.5-Turbo FreeAL Round 1 ⇒ 2 ⇒ 3 93.73 ⇒ 95.91 90.85 ⇒ 93.10
FreeAL w/o interaction Round 1 ⇒ 3 93.73 ⇒ 95.37 90.85 ⇒ 92.15

RoBERTa FreeAL Round 2 ⇒ 3 ⇒ 4 94.29 ⇒ 94.66 89.35 ⇒ 90.20
FreeAL w/o interaction Round 2 ⇒ 4 94.29 ⇒ 94.27 89.35 ⇒ 89.55

Table 9: Ablation results of the interaction between the LLM and SLM for FreeAL on the SST-2 and MR dataset.

Model SST-2 MR SUBJ

RoBERTa-Base 94.66 90.20 94.45
RoBERTa-Large 95.83 91.15 95.80

Table 10: Comparisons of FreeAL with different SLMs.

A.3 Impact of SLM’s Size

We also conduct experiments to reveal the impact
of the size of SLM. As depicted in Table 10, when
the size of SLM grows larger from RoBERTa-
Base to RoBERTa-Large, FreeAL displays superior
performance. This observation indicates that our
FreeAL is compatible with different sizes of down-
stream SLM and the performance can be further
improved with a larger SLM.

A.4 Comparisons with Other AL Methods

Here we provide comparisons with some other ac-
tive learning selection strategies, including Prob-
Cover (Yehuda et al., 2022), BADGE (Ash et al.,
2020), Region Entropy and Region CAL (Yu et al.,
2022) in the Table 11. It can be observed that
FreeAL exceeds all its rivals, which consistently
demonstrates the superior performance of FreeAL.

A.5 Comparisons with
Dataset-generation-based Methods

We further supplement comparisons with some
dataset-generation-based methods, including Ze-
roGen (Ye et al., 2022a), ProGen (Ye et al., 2022b)
and SunGen (Gao et al., 2023). Our FreeAL is
fundamentally different from them in several per-
spectives. First, these dataset-generation-based
methods are tailored for an extreme scenario where
training data is completely missing, which is un-
practical in reality. Second, these methods typi-
cally generate low-quality samples, because they
overlook the nuances and semantics present in the
original authentic data. As a result, they mostly
require generating a huge amount of synthetic data
for decent performance. For example, on the SST-2
dataset, these methods generate 200k synthesized
samples while authentic training samples are only

Method Human Anno SST-2 MR

ProbCover 20% samples 92.92 87.95
50% samples 93.49 89.75

BADGE 20% samples 93.14 88.15
50% samples 93.97 89.90

Region Entropy 20% samples 92.53 87.55
50% samples 94.03 88.75

Region CAL 20% samples 92.37 88.20
50% samples 92.70 89.00

FreeAL (ours) ✗ 94.66 90.20

Table 11: Comparisons of FreeAL with some other
active learning algorithms on the SST-2 and MR dataset.

6.9k. Empirically, our FreeAL still outperforms
these dataset-generation-based methods by a no-
table margin, as shown in Table 12.

A.6 Results with More Distillation Methods

We also provide the comparisons with some other
robust distillation methods, including GCE (Zhang
and Sabuncu, 2018), SL (Wang et al., 2019) and
ELR (Liu et al., 2020) in Table 13. We can see
that FreeAL largely advances the performances of
all these distillation baselines. Overall, FreeAL is
designed as a flexible framework and we choose an
empirically strong self-training algorithm for distil-
lation to prove the feasibility of human-free active
learning. One may design more power distillation
algorithms for improved results, which we leave
for future work.

A.7 Effect of Interaction for LLM and SLM

To further demonstrate the importance of interac-
tion between the LLM and the SLM. We provide
the inductive performance for FreeAL without in-
teraction. For the LLM, it directly adopts its own
predictions on the training dataset at round 1 as the
demonstration pool directly for testing. While the
SLM employs its own predicted labels as supervi-
sion at round 2 directly for testing.

As displayed in Table 9, we observe that the
SLM itself is hard to distill from its own predic-
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Method SST-2 SUBJ

ZeroGen 87.27 80.45
ProGen 88.42 -
SunGen 89.45 83.25
FreeAL (DitilBERT) 91.82 92.15
FreeAL (RoBERTa) 94.66 94.45

Table 12: Comparisons of FreeAL with dataset-
generation-based methods. We adopt DistilBERT as
the SLM of FreeAL for fair comparisons.

tions due to the inevitable confirmation bias, e.g.,
improves 0.2% compared with FreeAL’s improve-
ment of 0.85% on the MR dataset and even de-
grades on the SST-2 dataset. For the LLM, it can
self-improve itself, but still underperforms our col-
laborative mechanism. Notably, LLM has an in-
escapable upper bound on the performance, accord-
ing to our empirical findings where SLM outper-
forms LLM on 6 out of a total of 8 datasets. Such
results indicate that the interaction between LLM
and SLM can bring new opportunities to converge
to a consensus result between them.

A.8 Additional Visualization Results
We further provide some additional visualization
results, including the transductive performance on
the training dataset (i.e., the accuracy of pseudo
labels) at different rounds in Figure 4 and the vi-
sualization of comparisons with traditional active
learning methods on the MR dataset in Figure 5.

B Additional Implementation Details

B.1 More Details of Robust Self-training
During robust self-training, we also involve a
mixup training strategy that interpolates the em-
beddings and the corresponding pseudo labels on
the clean subsetDl to encourage linear behavior be-
tween samples. A virtual mixed training example
is generated by linearly interpolating the randomly
sampled pair of examples (xi, ỹi) and (xj , ỹj) in
Dl and taking a convex combination of labels as
the regression target,

Emb(xm) = σEmb(xi) + (1− σ)Emb(xj)

ym = σỹi + (1− σ)ỹj
(6)

where Emb(xi) is the embedding of xi and σ ∼
Beta(ς, ς) and we simply set ς = 4. The mixup
loss is denoted as Lmix. the total loss for self-
training of SLM is aggregated,

Ltotal = Lclean + α(Lcr + Lmix) (7)

Method SST-2 MR

Zero-shot distillation 92.81 88.60
FreeAL with GCE 93.68 88.90
FreeAL with SL 93.91 89.50
FreeAL with ELR 94.01 89.70
Vanilla FreeAL 94.66 90.20

Table 13: Comparisons with more distillation methods.

Figure 4: Performance of FreeAL on the training set at
different rounds during collaborative training.

B.2 More Implementation Details

In our experiments, for the LLM API, we follow
the default official settings of the GPT-3.5-Turbo-
0301 version. In the demonstration retrieval of ICL,
we adopt the unsupervised embeddings with bert-
base-uncased at the initial annotation round and the
embeddings of SLM for later rounds. The construc-
tion and retrieval of Ddemo are both performed in a
class-wise manner to compose the final demonstra-
tions. For the robust self-training of SLM, we adopt
the hyperparameters either from previous works or
fixed at a moderate value empirically without care-
ful tuning. We finetune the SLM on the basis of the
trainer of Huggingface for 50 epochs. The batch
size is fixed at 32 with a maximum sequence length
of 128. We adopt the AdamW optimizer with a
learning rate selected from {3e−4, 3e−5, 3e−6}
and a weight decay of 0.01. For robust self-training,
the threshold τ of GMM selection is fixed at 0.7 and
the ratio R of demonstration selection is fixed at
20. The loss weight parameter α is linearly ramped
up from 0 to 1 to avoid overfitting false labels at
the start. For evaluation of performance for LLM,
as LLMs sometimes output ambiguous predictions
outside the label space, these values are treated
as random labels in the label space and repeated
multiple times to evaluate the average performance
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Step Prompt Details

Demonstration Generation

You are required to produce 100 English examples with labels for the task
of text classification on the MR (Movie Review) dataset. These samples
will be used as prompt examples for the GPT model. MR dataset is
used in sentiment-analysis experiments and this dataset contains movie-
review documents labeled with respect to their overall sentiment polarity
(positive or negative). The task is to classify a movie review as positive
or negative according to their overall sentiment polarity. For example,
100 of the unlabeled samples in MR dataset are as follows: ["review":
"enigma is well-made , but it’s just too dry and too placid ."] ["review":
"the weakest of the four harry potter books has been transformed into the
stronger of the two films by the thinnest of margins ."] ......

Active Annotation

You are a helpful assistant for the task of text classification on the MR
(Movie Review) dataset. You reply with brief, to-the-point answers with
no elaboration as truthfully as possible. MR (Movie Review) dataset is
used in sentiment-analysis experiments and this dataset contains movie-
review documents labeled with respect to their overall sentiment polarity
(positive or negative). Your task is to a binary classification to classify a
movie review as positive or negative according to their overall sentiment
polarity. The category is divided into two types: ’positive’ and ’negative’.
Given a movie review: <QUERY>. How do you feel about the sentiment
polarity of the given movie review, is this positive or negative? please
answer in a single line with ’positive’ or ’negative’.

Table 14: An example of prompt design on the MR dataset for the step of demonstration generation and active
annotations. The in-context examples are omitted for the active annotation process here.

Figure 5: Comparisons of FreeAL with traditional active
learning (AL) algorithms and supervised fine-tuning on
the MR dataset. FreeAL surpasses all the active learning
rivals and achieves near-supervised performance with-
out human annotation.

during evaluation. Then in subsequent rounds, the
SLMs adopt their own previous predictions to re-
place these ambiguous annotations of LLMs for
robust self-training. For token-level tasks, as the

selection process is performed on the token level
in a different manner, we select those tokens with
high confidence and matched predictions to pseudo-
labels as clean and then filter out those samples
whose tokens are all clean to constitute the clean
subset. The consistency regularization and mixup
loss are only suitable for the sequence-level tasks
and are disabled in the token-level NER tasks.

B.3 Prompt Design
We provide our prompt design on the MR dataset
for the initial demonstration generation step and ac-
tive annotation step in Table 14. Notably, we adopt
the GPT-3.5-Turbo as our LLM so the prompts are
also in the chat style with instructions.
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