
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pages 13276–13290
December 6-10, 2023 ©2023 Association for Computational Linguistics

NameGuess: Column Name Expansion for Tabular Data

Jiani Zhang∗†, Zhengyuan Shen∗, Balasubramaniam Srinivasan, Shen Wang,
Huzefa Rangwala, George Karypis

Amazon Web Services
{zhajiani, donshen, srbalasu, shenwa, rhuzefa, gkarypis}@amazon.com

Abstract

Recent advances in large language models
have revolutionized many sectors, including
the database industry. One common challenge
when dealing with large volumes of tabular
data is the pervasive use of abbreviated column
names, which can negatively impact perfor-
mance on various data search, access, and un-
derstanding tasks. To address this issue, we in-
troduce a new task, called NAMEGUESS, to ex-
pand column names (used in database schema)
as a natural language generation problem. We
create a training dataset of 384K abbreviated-
expanded column pairs using a new data fab-
rication method and a human-annotated evalu-
ation benchmark that includes 9.2K examples
from real-world tables. To tackle the com-
plexities associated with polysemy and am-
biguity in NAMEGUESS, we enhance auto-
regressive language models by conditioning
on table content and column header names –
yielding a fine-tuned model (with 2.7B param-
eters) that matches human performance. Fur-
thermore, we conduct a comprehensive anal-
ysis (on multiple LLMs) to validate the effec-
tiveness of table content in NAMEGUESS and
identify promising future opportunities. Code
has been made available at https://github.
com/amazon-science/nameguess.

1 Introduction

Tabular data is widely used for storing and organiz-
ing information in web (Zhang and Balog, 2020)
and enterprise applications (Leonard, 2011). One
common practice when creating tables in databases
is to use abbreviations for column headers due to
character length limits in many standard database
systems. For example, the maximum length for
column names in an SQL database is 256 bytes,
leading to the use of abbreviations such as "D_ID"
for “Department ID” and "E_NAME" for “Employee
∗ These two authors contributed equally.
† Corresponding author.

D_ID D_NAME E_NAME SAL COMM
10 Accounting Allen 14000 .4
10 Accounting Ward 13500 .3
30 Research Martin 12000 .3
20 Sales Turner 11000 .3
30 Research Smith 10500 .2

Table name: Employee_Salary_2022

Department
ID

Employee
Name CommissionDepartment

Name Salary
Output
Logical
Name

Input
Query
Column
Name

Figure 1: An example of the column name expansion
task. The input are query column names with table
context and the output are expanded logical names.

Name” as in Figure 1. While abbreviations can be
convenient for representation and use in code, they
can cause confusion, especially for those unfamil-
iar with the particular tables or subject matter. Col-
umn headers are essential for many table-related
tasks (Xie et al., 2022), and using abbreviations
makes it challenging for end users to search and
retrieve relevant data for their tasks.

Abbreviated column names can negatively im-
pact the usefulness of the underlying data. For
example, in the text2SQL semantic parsing task,
which converts natural language into formal pro-
grams or queries for retrieval, abbreviations can
lead to a mismatch with the terms used in the natu-
ral language queries. In fact, in the human-labeled
text2SQL spider dataset (Yu et al., 2018), 6.6% of
column names are abbreviations. Figure 2 shows
an example containing abbreviated column names
like "c_name" and "acc_bal" in tables, which mis-
match the terms “the name of all customers” and
“account balance”. Simple changes in using abbre-
viated column names in the spider dataset result in
a performance degradation of over ten percentage
points, with the exact match score of 66.63% (Xie
et al., 2022) dropping to 56.09% on the T5-large
model (Raffel et al., 2020). The effect of the abbre-
viated column names on table question answering
(QA) (Yin et al., 2020), and column relation dis-

13276

https://github.com/amazon-science/nameguess
https://github.com/amazon-science/nameguess

Figure 2: An example for Text2SQL semantic parsing.
The terms “the name of all customers” and “account
balance” do not match the abbreviated column names
c_name and acc_bal. Instead, they match with the
column names customer_ID and account_type.

covery (Koutras et al., 2021) are in Table 1 and
description is in Appendix A.1. The performance
degradation emphasizes the need for descriptive
column headers in handling tabular data.

Expanding column names and generating de-
scriptive headers also has other beneficial aspects.
First, using expanded column names can increase
the readability of tables, especially when complex
or technical data is present. The expansion also
enables data integration by allowing users to eas-
ily distinguish between tables with similar column
names but different meanings and helping identify
relationships between tables with different abbre-
viated column names. Finally, expanded column
names can also improve the efficacy of keyword-
based searches for discovering related tables.

This work addresses the task of expanding ab-
breviated column names in tabular data. To the
best of our knowledge, this is the first work to in-
troduce and tackle this problem. Unlike previous
textual abbreviation expansion works that formu-
lated the task as a classification problem with a
predefined set of candidate expansions (Roark and
Sproat, 2014; Gorman et al., 2021), we formulate
NAMEGUESS as a natural language generation
problem. Acquiring extensive candidate expan-
sions can be laborious, as pairs of abbreviated and
expanded column names are seldom present in the
same table. Conversely, abbreviation-expansion
pairs can be gleaned from textual data through co-
occurrence signals, such as parenthetical expres-
sions. Moreover, abbreviated headers may exhibit
ambiguity and polysemy arising from developer-
specific naming conventions and domain-related
variations in expansions.

To tackle NAMEGUESS, we first built a large
dataset consisting of 163,474 tables with 384,333
column pairs and a human-annotated benchmark

Figure 3: Exact match results for fine-tuned models (*),
non-finetuned LLMs, and human performance. Solid
and hollow symbols denote inclusion and exclusion of
sampled table contents.

with 9,218 column pairs on 895 tables. We
then proposed a method to produce training data
by selectively abbreviating well-curated column
names from web tables using abbreviation look-ups
and probabilistic rules. Next, we enhanced auto-
regressive language models with supervised fine-
tuning, conditioned on table content and column
headers, and conducted extensive experiments to
evaluate state-of-the-art LLMs. The overall model
performance is shown in Figure 3. While GPT-4 ex-
hibited promising performance on NAMEGUESS,
the deployment of such LLMs comes with much
larger memory and computation overheads. Our
findings indicate that supervised fine-tuning of
smaller 2.7B parameter models achieves close to
human performance, and including table contents
consistently improved performance. However, all
models found the task challenging, with the best
only achieving 54.7% accuracy on the extra-hard
examples, indicating room for improvement in ex-
panding abbreviated column names. Our main con-
tributions are:

1. Introduced a new column name expansion
task, named NAMEGUESS, as a natural lan-
guage generation problem,

2. Developed a large-scale training dataset for
the NAMEGUESS task using an automatic
method that largely reduces human effort,

3. Created a human-annotated evaluation bench-
mark with various difficulty levels, which pro-
vides a standard for comparing results,

4. Performed a comprehensive evaluation of
LMs of different sizes and training strategies
and compared them to human performance on
the NAMEGUESS task.

13277

Original
Column Names

Abbreviated
Column Names

Text2SQL
(Match score %) 66.63 56.09

Schema-based
Relation Detection
(Recall %)

100.00 59.50

Table QA
(Accuracy %) 84.32 80.49

Table 1: The effect of abbreviated column names on
three table understanding tasks. The performance drops
on all the tasks.

2 Problem Formulation

We formulate the NAMEGUESS task as a natural
language generation problem: given a query name
x from table t, generate a logical name y that de-
scribes the column. A table contains table content
and various schema data, like a table name, col-
umn headers, and data types. Let fθ be a generator
with parameters θ, the formulation becomes y =
fθ(x|t). Note that the query column names within
a table may take different forms, including abbre-
viations and full names. The output logical names
are expanded column names and should be easily
understandable without additional knowledge of
the table content. See Figure 1 for example inputs
and outputs in the "Employee_Salary_2022" ta-
ble, where "SAL" stands for “Salary” and "COMM"
stands for “Commission”.

3 Dataset Creation

We created a training dataset comprising 384,333
columns spanning 163,474 tables and a human-
labeled evaluation benchmark containing 9,218 ex-
amples across 895 tables for NAMEGUESS. The
main challenge in obtaining abbreviated-expanded
column name pairs is the rare co-occurrence of
these two names within the same table or database.
Therefore, we employed the strategies of convert-
ing well-curated column names to abbreviated
names that align with the naming convention of
database developers and annotating the abbreviated
column names based on the information in the in-
put table. Figure 4 illustrates the main steps for
creating the training and evaluation datasets. The
details of the source tables are discussed in Sec-
tion 3.1. The training and evaluation datasets are
constructed in Section 3.2 and Section 3.3.

Figure 4: The processes of creating the training and
evaluation datasets.

3.1 Table Collection

The training and evaluation datasets were obtained
from seven public tabular dataset repositories. To
ensure the quality of the tables, we filtered out
tables with less than five rows or columns and re-
moved tables with more than half of the entries
being NaN or more than half of column names
being duplicates. Table 2 summarizes the dataset
statistics.
City Open Data. We sourced tables from New
York (NYC), Chicago (CHI), San Francisco (SF),
and Los Angeles (LA), covering categories, such
as business, education, environment, health, art,
and culture. We downloaded all the tables using
Socrata Open Data APIs in June 2022.
GitTables was extracted from CSV files in open-
source GitHub repositories (Hulsebos et al., 2023).
GitTables is the largest dataset we can access with
a relatively larger table size.
WikiSQL was released for the text2SQL task
(Zhong et al., 2017). We only used the large corpus
of Wikipedia tables in this dataset.
Dresden Web Table Corpus (Eberius et al., 2015).
We only utilized the relational tables in this dataset
and applied strict filtering criteria to keep tables
with high-quality column names and contents. This
is the largest accessible dataset but with relatively
smaller tables than others.

3.2 Training Data Creation

We utilized two steps to convert logical names
to abbreviated names: (1) identifying the logical
names as the ground truth y and (2) abbreviating
the names as the input column names x.

13278

https://opendata.cityofnewyork.us
https://data.cityofchicago.org
https://datasf.org/opendata
https://data.lacity.org
https://gittables.github.io
https://github.com/salesforce/WikiSQL
https://wwwdb.inf.tu-dresden.de/misc/dwtc

Data
Source #Ex. #Table Avg.

#Col
Avg.

#Row
Training Datasets

NYC 16,697 1,921 23.2 642
GitTables 163,204 49,259 19.5 93
WikiSQL 22,963 9,268 6.4 20

DWTC 181,469 103,026 65.6 8
Overall 384,333 163,474 47.8 42

Evaluation Datasets
SF 4,781 388 23.9 643

CHI 3,975 442 21.1 605
LA 462 65 21.3 578

Overall 9,218 895 21.9 620

Table 2: Statistics for the training and evaluation
datasets. ‘#Ex.’ stands for ‘number of examples’. ‘Avg.
#Col’ is ‘the average number of columns per table’.

3.2.1 Logical Name Identification
Identifying high-quality column names from rela-
tional tables is essential, as further abbreviating
a vague term can lead to even more ambiguity.
Algorithm 2 in Appendix A.2 shows the detailed
algorithm with a vocabulary-based strategy. We
regarded a column name as well-curated only if all
the tokens in the column name can be found from
a pre-defined vocabulary. Here, we used the Word-
Ninja package to split the original column headers,
which allowed us to check whether individual to-
kens are included in the vocabulary.

To construct this pre-defined vocabulary, we
used WordNet open-class English words (Fellbaum,
1998) followed by a set of filtering criteria (such as
removing words with digits, punctuation, and short
words that are abbreviations or acronyms) so that
the classifier achieves high precision for detecting
the logical names, which further used as ground
truth labels.

3.2.2 Abbreviation Generation
After obtaining well-curated names, we used an
abbreviation generator to produce the abbreviated
names. Table 3 summarizes four abbreviation
schemes from logical to abbreviated names. We
adopted word-level abbreviation and acronym ex-
traction methods and limited word removal and
word order change cases, because specifying rules
for word removal or order change is an open-ended
and difficult-to-scale problem. Our abbreviated
name generator employs a probabilistic approach
to determine the specific method used for word-
level abbreviation. The method is chosen from the
following three options, with the selection proba-
bility determined by pre-defined weights:
Method 1 (keep): Left as-is. This is trivial but

Abbreviation
Schemes

Examples
Logical Name Abbreviated Name

Word-level
Abbreviation Current Balance CUR_BAL

Acronym
Extraction Fiscal Year 2021 FY_2021

Word
Removal Zip Code Zip

Word Order
Change Birth Rate 2018 2018_BR

Table 3: Examples of four common abbreviation
schemes for logical column names in database tables.

very common, especially when the column header
contains fewer words or words that cannot be fur-
ther shortened without creating ambiguity.
Method 2 (lookup): Replaced with an abbrevia-
tion from an expansion-abbreviation look-up table.
This is mainly for producing commonly-used abbre-
viations with enhanced diversity in naming style
that is hard to obtain using the above four refor-
matting methods. Examples include abbreviations
based on pronunciations (e.g., transaction →
txn and end-to-end→end2end), and symbolic
conversions (e.g., second → 2nd, number →
no./#, and at → @). The lookup dictionary con-
tains common abbreviations for 23,110 English
words or terms. In cases where multiple candi-
date abbreviations are available, the abbreviation is
chosen randomly.
Method 3 (rule): Processed by one of the word-
level abbreviation rules:

Rule 1: Keep the first k characters, k ∈ [1, 5]

(e.g. abbreviation k=4→ abbr);
Rule 2: Keep removing non-leading vowels un-

til the threshold k ∈ [1, 5] or all non-leading vow-

els have been removed (e.g. abbreviation
k=5→

abbrvtn, doodle k=5→ doodl);
Rule 3: Specifically, while the length of the

input string is longer than a specified threshold
value k ∈ [1, 5], the following steps are applied:
1) neighboring duplicate characters are removed,
2) vowels are removed randomly until no vowel
remain, and 3) consonants are removed randomly
until no consonant remains. (e.g. abbreviation
k=4→ abrv). This is to emulate the real-world data
and varying preferences of database developers.

Once a rule is selected from the above choices,
it is applied to all words within the same column
header. It is important to note that these rules do
not apply to non-alphabetical words. In the case of
numerical words representing a four-digit year, we
shorten it to a two-digit representation with a 50%

13279

https://github.com/keredson/wordninja/
https://github.com/keredson/wordninja/

Algorithm 1 Abbreviation generation

Inputs:
A lookup dictionary D and a string x

Initialize:
MethodX← select_method()
RuleX← select_rule()
abbr.words← ∅

x← tokenize(x) ▷ Input: well-curated
for xi in x do

if MethodX is keep then:
x̃i ← xi

if MethodX is lookup then
if xi ∈ D then

x̃i ← D[xi]
else

x̃i ← RuleX(xi)

if MethodX is rule then
x̃i ← RuleX(xi)

abbr.words
+← x̃i

x̃← combine(abbr.words) ▷ Output:
abbreviated

probability, e.g., 2020→ 20.
Hybrid Method. To simulate the naming con-
vention for database tables, a probability of 0.5 is
assigned for converting patterns subject to common
acronyms in the well-curated column headers. The
entire or a part of the well-curated form could be
replaced by an acronym, such as Employee Date
of Birth → EMP_DOB. Furthermore, additional
rules are introduced to selectively remove or switch
the order of words without altering the semantics
of the column name. For example, Event Name
→ Evnt and Mailing Address District 2013
→ 2013MailAddrDist. Note that when the same
word(s) appears in different columns of the same
table, we use the same abbreviation form.
Abbreviation Combination. As the last step of
the abbreviation algorithm, the combine() function
assigns an equal probability of concatenating the
resulting abbreviated words into camel case, Pascal
case, snake case, or simple combination which
further adds diversity in the naming style.
Overall Algorithm. The overall algorithm is in Al-
gorithm 1 with the probability of Method 1 (keep),
2 (lookup) and 3 (rule) set to 0.3, 0.6 and 0.1, re-
spectively. The probabilities for Rule 1, 2, and
3 in rule are set to 0.2, 0.4, and 0.4, respec-
tively. These assignments are undertaken to main-
tain statistics that resemble real-world datasets.

Figure 5: Examples with different difficulty levels. Each
example contains a query column name, sampled col-
umn contents, and a ground truth logical name.

3.3 Evaluation Benchmark Annotation

Instead of splitting a subset of training examples
for evaluation, we created a human-annotated eval-
uation dataset.

3.3.1 Human Annotations
The evaluation dataset was confirmed by 15 hu-
man annotators using the City Open Data from Los
Angeles, San Francisco, and Chicago. Detailed
instructions were provided to the annotators to en-
sure consistency in annotations. The instructions
are outlined as follows:

1. Read the table metadata, including table cate-
gory, name, and description.

2. Read and understand the original column
name and sampled cell values for that column.

3. Determine if the original column name is ab-
breviated or well-curated. If in a well-curated
form, provide only an “abbreviated variant”.
Otherwise, provide a “well-curated variant”
and an “abbreviated variant”.

4. When creating abbreviated names, please com-
bine abbreviated words as suggested by the
combining rules detailed in Table 3.

A pilot study was first implemented to produce a
small number of examples, followed by a quality
audit to ensure the guidelines were well-understood.
Note that the column names that were found to
be unclear or difficult to interpret even with the
provided metadata and column cell values were
discarded from the dataset. Finally, the annota-
tions underwent another audit process from a sep-
arate group of annotators. We employed a crite-
rion where if two out of three annotators agreed,
the annotation was considered to pass this agree-
ment measure. Overall, the annotations achieved
an agreement rate of 96.5%.

13280

3.3.2 Difficulty Breakdown
We divide the data samples into four difficulty lev-
els to gain deeper insight into the model perfor-
mance. This classification is based on the edit dis-
tance between characters in abbreviated names and
ground truth labels. Both names will first be tok-
enized and have underscores replaced with spaces,
and numbers/punctuations were discarded when
calculating the edit distance. Four categories are
established: (1) 1,036 (11%) easy examples, (2)
3,623 (39%) medium examples, (3) 3,681 (40%)
hard examples, and (4) 878 (10%) extra-hard exam-
ples. Figure 5 shows one representative example
from each level. The difficulty breakdown we em-
ploy is significantly different from dataset difficulty
breakdown or dataset cartography approaches in
literature (Swayamdipta et al., 2020; Ethayarajh
et al., 2022), since the column name expansion task
is formulated as a generation task as opposed to
classification tasks considered in prior literature.

4 Methods

Recent advances in pre-trained LMs (Radford et al.,
2019; Brown et al., 2020) have shown a strong abil-
ity to generate fluent text and the “emergent” per-
formance boost when scaling up LMs (Wei et al.,
2022). Therefore, we evaluated the performance
of both small and large LMs for NAMEGUESS.
We adopted two learning paradigms. First, we em-
ployed prompt-based learning with LLMs without
tuning model parameters. Second, we fine-tuned
small LMs. In particular, we utilized the super-
vised fine-tuning (Schick and Schütze, 2021a,b)
paradigm with task-specific prompts.

Training. We fine-tuned pre-trained LMs by
contextualizing column query names with table
content, incorporating sampled cell values and ta-
ble schema data. To limit the sequence length of a
linearized table, we selected N cell values in the
corresponding column (after removing duplicates)
for each query name. We truncated cell values
when they had more than 20 characters. Moreover,
instead of predicting individual query name sepa-
rately, we jointly predicted K query names. The
columns are stacked together to form the table con-
text data t′. This structured input is then serialized
and combined with a task prompt q. Specifically,

• t′ = "Column names: {x1}, ..., {xK} <SEP>
row 1: {c11}, ..., {c1K} <SEP> row 2: {c21}, ...,
{c2K} <SEP> ... row N : {cN1 }, ..., {cNK}",

• q = "As abbreviations of column names
from a table, {x1}|...|{xK} stand for
{y1}|...|{yK}.".

Here K represents the number of query names,
and N is the number of sampled rows in a table.
{xi|i = 1, ...,K} refers to the abbreviated column
names from the same table. {yi|i = 1, ...,K}
represents the ground-truth logical name. And
{cji |i = 1, ...,K; j = 1, ...N} denotes the sam-
pled cell values of each query name. We set K and
N to 10 based on the ablation study results after
testing different K and N values in Appendix A.6
Table 7. A table with more than ten columns is
split into multiple sequences. The prompt can also
be designed in different ways. These prompts were
selected by testing various template templates on
the GPT-2 XL model and choosing the ones that
yielded the best outcomes. We utilized decoder-
only models for training, where the entire prompt
sequence was employed to recover logical names
in an autoregressive manner.

Prediction. Given K column names x1, ..., xK
in a table t, we used LM to predict the corre-
sponding logical names y1, ..., yK . To generate
predictions, we concatenated the linearized table
context t′ and the task prompt q as the input se-
quence. We used the same query prompt as in
training during inference, except that we removed
the ground truth. The modified query prompt be-
comes "As abbreviations of column names
from a table, {x1}|...|{xK} stand for".
For the non-finetuned LLMs, we provided a single
demonstration before the query prompt to ensure
that the model can generate answers in a desired for-
mat, i.e., "As abbreviations of column names
from a table, c_name | pCd | dt stand
for Customer Name | Product Code | Date."
We extracted the answer in the predicted sequence
when the <EOS> token or the period token is met
and then split the answers for each query name
with the | separator.

5 Experiments

We performed a comprehensive set of experiments
to answer (1) Can NAMEGUESS be solved as a
natural language generation task? (2) How does
fine-tuning and scaling the number of parameters
help the model handle NAMEGUESS? (3) Can
table contents aid disambiguation?

13281

5.1 Evaluation Metrics

We use three metrics for evaluation: exact match
accuracy, F1 scores based on partial matches, and
Bert F1 scores based on semantic matches.
Exact Match (EM). Similar to the exact match for
question answering, the exact match is computed
based on whether the predicted column name is
identical to the ground truth after normalization (ig-
noring cases, removing punctuations and articles).
F1 Score. Computed over individual normalized
tokens in the prediction against those in the ground
truth, as 2 · precision · recall/(precision+ recall),
where precision and recall are computed by the
number of shared tokens in the prediction and
ground truth label, respectively.
BertScore. The similarity score for each token
in the predicted phrase with that in the reference
phrase computed using pre-trained contextual em-
beddings (Zhang et al., 2020b). It demonstrates
better alignment with human judgment in sum-
marization and paraphrasing tasks than existing
sentence-level and system-level evaluation metrics.
We use rescaled BertScore F1 and roberta_large
(Liu et al., 2019) for contextual embeddings.

5.2 Representative Methods

We fine-tuned GPT-2 (Radford et al., 2019) and
GPT-Neo (Black et al., 2021) models from Hug-
ging Face. We conducted preliminary experi-
ments using the pre-trained small LMs without
fine-tuning but consistently obtained incorrect re-
sults. We also evaluated non-finetuned LLMs, in-
cluding Falcon-40B-Instruct (Almazrouei et al.,
2023), LLaMA-65B (Touvron et al., 2023), and
GPT-4 (OpenAI, 2023) using the same prompt. Fur-
thermore, we collected human performance from
6 annotators on 1,200 samples from the evaluation
set, including 300 from each difficulty level. The
annotators had access to 10 sampled cell values for
each column. Detailed setups are in Appendix A.5.

5.3 Results and Discussion

The main results, including models with and with-
out table context data, are in Table 4. Table 5
reports the EM results on four hardness levels, and
the F1 and Bert-F1 results are in Appendix Ta-
ble 6. The responses of Falcon-instruct, LLaMA,
and GPT-4 models may not match the demonstra-
tion example, resulting in potential answer extrac-
tion failures. In total, 92% of Falcon-instruct-40B,
96% of LLaMA-65B, and 99% of GPT-4 examples

EM F1 Bert F1
Model q t′+q q t′+q q t′+q
GPT-2 (124M)

∗ 10.4 25.7 27.9 46.4 37.2 52.6
GPT-2 (1.5B)

∗ 35.1 37.8 56.5 59.5 61.6 63.6
GPT-Neo (1.3B)

∗ 38.3 41.6 58.8 62.4 62.4 66.1
GPT-Neo (2.7B)

∗ 40.6 43.8 61.4 64.7 65.7 68.2
Human - 43.4 - 66.5 - 65.4
Falcon-Inst. (40B) 51.2 53.4 68.4 75.6 72.2 73.3
LLaMA (65B) 53.3 56.2 69.6 71.2 73.3 74.0
GPT-4 69.3 73.4 82.2 85.5 81.6 86.2

Table 4: Overall exact match (EM), F1, and Bert-F1
scores (%) of fine-tuned models, LLMs (non-finetuned),
and human performance. Fine-tuned models are marked
with ∗. t′ + q indicates the results of incorporating
sampled table contents, and q refers to only using task
prompts without table contents.

have successfully extracted answers. The scores in
the tables are calculated based on the predictions
with successful extractions.
Effect of Model Size. From Table 4 we see
that among the fine-tuned models, the GPT-2-
124M model exhibits particularly poor perfor-
mance, while the fine-tuned GPT-Neo-2.7B model
achieves the highest overall EM, F1, and Bert F1
scores. With a similar number of parameters, the
GPT-Neo-1.3B model has a 3.8% higher overall
EM score than GPT-2-1.5B. With a much larger
size, GPT4 achieves 29.6% higher EM than the
best fine-tuned model.
Effect of Fine-Tuning. Without fine-tuning, the
small to medium models achieve <1% overall EM
scores, producing almost random predictions. How-
ever, the NAMEGUESS training data allows a se-
ries of fine-tuned small to medium-sized models to
approach human performance with a much cheaper
inference cost than LLMs. Still, a big gap exists
between these fine-tuned models and LLMs.
Human Performance. One important observa-
tion is that human performance on NAMEGUESS

test set (also human-annotated) is far from perfect.
However, the fine-tuned models can slightly exceed
human performance (the fine-tuned GPT-Neo-2.7B
is 0.4% higher in EM). Intuitively, expanding from
query name x into logical name y is much more
challenging than reverse since it requires a deeper
understanding of the meaning and context of the ab-
breviations to identify and reconstruct the original
phrase accurately.
Effect of table context data. Expanding abbrevi-
ated column names may require a deep understand-
ing of table content. For example, "E_NAME" can
represent “Employer Name” instead of “Employee

13282

Easy Med-
ium Hard Extra

Hard
GPT-2 (124M)

∗ 41.4 30.3 19.0 16.1
GPT-2 (1.5B)

∗ 53.8 42.7 32.3 21.1
GPT-Neo (1.3B)

∗ 54.3 47.2 36.8 23.6
GPT-Neo (2.7B)

∗ 55.3 50.4 38.0 27.2
Falcon-Inst. (40B) 62.2 59.3 49.0 36.5
LLaMA (65B) 62.2 62.9 52.3 37.9
GPT-4 71.7 79.9 72.0 54.7
Human 53.7 53.7 33.7 30.2

Table 5: Exact match scores (%) of fine-tuned models,
LLMs (non-finetuned), and human performance for four
difficulty levels. ∗ indicates fine-tuned models.

Name” with company names among column val-
ues. By comparing the performance of fine-tuned
and non-fine-tuned models with sampled table con-
tent (t′ + q) and without table content (q only) in
Table 4, we find that incorporating sampled table
contents can increase the performance of all the
models, with a huge boost of 15% for the smallest
GPT-2 (124M) model.
Difficulty Breakdowns. We observe a trend of
decreasing exact match scores on more difficult
examples. From the difficulty breakdown, the fine-
tuned small LMs can outperform humans on easy
examples but are worse on extra hard examples.
Conversely, GPT-4 outperforms all other models
and human results, especially in medium and hard
divisions. The LLMs are infused with broader
knowledge regarding hard and extra hard examples.
They are better at interpreting the exact meaning
of the misleading abbreviations that often involve
uncommon acronyms words or ambiguous ways of
combining abbreviations.

6 Related Work

6.1 Table Understanding and Metadata
Augmentation Tasks

Great strides have been achieved in table under-
standing (Dong et al., 2022). Descriptive column
names are crucial for task performance, aiding the
model in comprehending table semantics and con-
ducting cell-level reasoning. Column type detec-
tion (Hulsebos et al., 2019; Zhang et al., 2020a;
Suhara et al., 2022) and column relationship iden-
tification (Deng et al., 2022; Iida et al., 2021;
Wang et al., 2021) involve assigning predefined
types, like semantic labels or database column re-
lationships. Semantic column type detection and
NAMEGUESS, though related to columns, have
distinct objectives. The former predicts types with

predefined labels (classification task), while the lat-
ter refines tokens within names, often at the word
level (e.g., "c_name" expands to “customer name”).
Table question answering (Yin et al., 2020; Herzig
et al., 2020; Yang et al., 2022; Xie et al., 2022) re-
quires models to understand both tables and natural
language questions and to perform reasoning over
the tables. Other tasks, such as table description
generation (Gong et al., 2020), table fact verifica-
tion (Eisenschlos et al., 2021), and formula predic-
tion (Cheng et al., 2022), also require meaningful
column names to aid the model in understanding
the overall semantic meaning of tables.

6.2 Abbreviation Expansion and Acronym
Disambiguation

Abbreviations are widely used in social network
posts (Gorman et al., 2021), biomedical articles (Yu
et al., 2002), clinic notes (Wu et al., 2015) and
scientific documents (Zilio et al., 2022; Pouran
Ben Veyseh et al., 2020). Abbreviation expan-
sion and acronym disambiguation tasks are typ-
ically formulated as classification problems (Am-
mar et al., 2011; Pouran Ben Veyseh et al., 2020),
which involve selecting an expansion for an ab-
breviation from a set of candidates based on the
context information. The ad hoc abbreviation ex-
pansion task (Gorman et al., 2021) is similar to the
NAMEGUESS task but limits the per-token transla-
tion imposed on the dataset creation process and the
developed solutions. Meanwhile, NAMEGUESS is
a natural language generation problem suitable for
a wide range of lengths of abbreviations and expan-
sions. Regarding abbreviation expansion, our most
relevant work is by Cai et al. (2022). However, this
work primarily addresses text messages/SMS ab-
breviations, aiming to reduce message length and
minimize typos. In contrast, our task focuses on
generating meaningful and human-readable expan-
sions for column name-based abbreviations.

7 Conclusion and Future Works

We introduced a new task related to expanding the
commonly-used abbreviated column names in tab-
ular data, developed and created two benchmark
datasets to facilitate the study of this task, and ana-
lyzed the performance of many language modeling
methods to solve this task. One future direction is
to utilize similar examples that provide contextual
information to solve this task, preferably feeding
these examples through in-context learning.

13283

8 Ethics Statement

The human annotations, including abbrevi-
ated/logical column names for the evaluation set,
were collected through hired annotators from a data
annotation service. Annotators were instructed to
strictly refrain from including any biased, hate-
ful, or offensive content towards any race, gen-
der, sex, or religion. The annotations passed
through audits, where they were examined by a
separate group of annotators and reached a 96.5%
agreement ratio. The human performance on the
NAMEGUESS test set was collected from database
and dialogue/linguistics experts.

9 Limitations

One limitation of our work is the need for real rela-
tional database tables. The training and evaluation
sets we used were all public web-related tables,
which generally have fewer rows and lack the meta-
data of primary and secondary keys. This work
is just the first step to introduce this topic to the
NLP community, and further research is needed to
improve the performance with methods that better
capture context around relational data. Moreover,
the scope of handling omitted information in the
original column names, like column header “glu-
cose”, which stands for “fasting glucose”, is be-
yond NAMEGUESS. One possible solution is to
collect and utilize more table metadata information.
For example, if the table name contains the term
“fasting”, then the original column name “glucose”
will most likely be inferred as “fasting glucose”.

References
Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz Al-

shamsi, Alessandro Cappelli, Ruxandra Cojocaru,
Merouane Debbah, Etienne Goffinet, Daniel Hes-
low, Julien Launay, Quentin Malartic, Badreddine
Noune, Baptiste Pannier, and Guilherme Penedo.
2023. Falcon-40B: an open large language model
with state-of-the-art performance.

Waleed Ammar, Kareem Darwish, Ali El Kahki, and
Khaled Hafez. 2011. Ice-tea: in-context expansion
and translation of english abbreviations. In Interna-
tional Conference on Intelligent Text Processing and
Computational Linguistics (CICLing), pages 41–54.
Springer.

Sid Black, Leo Gao, Phil Wang, Connor Leahy,
and Stella Biderman. 2021. GPT-Neo: Large
Scale Autoregressive Language Modeling with Mesh-
Tensorflow.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Advances
in Neural Information Processing Systems (NeurIPS),
volume 33, pages 1877–1901.

Shanqing Cai, Subhashini Venugopalan, Katrin
Tomanek, Ajit Narayanan, Meredith Morris, and
Michael Brenner. 2022. Context-aware abbreviation
expansion using large language models. In Proceed-
ings of the 2022 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies (NAACL-
HLT), pages 1261–1275.

Zhoujun Cheng, Haoyu Dong, Ran Jia, Pengfei Wu,
Shi Han, Fan Cheng, and Dongmei Zhang. 2022.
FORTAP: using formulas for numerical-reasoning-
aware table pretraining. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (ACL), pages 1150–1166.

Xiang Deng, Huan Sun, Alyssa Lees, You Wu, and Cong
Yu. 2022. Turl: Table understanding through repre-
sentation learning. ACM SIGMOD Record, 51(1):33–
40.

Haoyu Dong, Zhoujun Cheng, Xinyi He, Mengyu Zhou,
Anda Zhou, Fan Zhou, Ao Liu, Shi Han, and Dong-
mei Zhang. 2022. Table pre-training: A survey
on model architectures, pre-training objectives, and
downstream tasks. In Proceedings of the Thirty-First
International Joint Conference on Artificial Intelli-
gence (IJCAI), pages 5426–5435.

Julian Eberius, Katrin Braunschweig, Markus Hentsch,
Maik Thiele, Ahmad Ahmadov, and Wolfgang
Lehner. 2015. Building the dresden web table corpus:
A classification approach. In 2015 IEEE/ACM 2nd
International Symposium on Big Data Computing
(BDC), pages 41–50. IEEE.

Julian Martin Eisenschlos, Maharshi Gor, Thomas
Müller, and William W Cohen. 2021. Mate: Multi-
view attention for table transformer efficiency. In
Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 7606–7619.

Kawin Ethayarajh, Yejin Choi, and Swabha
Swayamdipta. 2022. Understanding dataset
difficulty with V-usable information. In Proceedings
of the 39th International Conference on Machine
Learning (ICML), volume 162, pages 5988–6008.

Christiane Fellbaum. 1998. WordNet: An electronic
lexical database. MIT press.

13284

https://huggingface.co/tiiuae/falcon-40b
https://huggingface.co/tiiuae/falcon-40b
https://link.springer.com/chapter/10.1007/978-3-642-19437-5_4
https://link.springer.com/chapter/10.1007/978-3-642-19437-5_4
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.18653/v1/2022.naacl-main.91
https://doi.org/10.18653/v1/2022.naacl-main.91
https://doi.org/10.18653/v1/2022.acl-long.82
https://doi.org/10.18653/v1/2022.acl-long.82
https://doi.org/10.1145/3542700.3542709
https://doi.org/10.1145/3542700.3542709
https://doi.org/10.24963/ijcai.2022/761
https://doi.org/10.24963/ijcai.2022/761
https://doi.org/10.24963/ijcai.2022/761
https://ieeexplore.ieee.org/document/7406328
https://ieeexplore.ieee.org/document/7406328
https://aclanthology.org/2021.emnlp-main.600
https://aclanthology.org/2021.emnlp-main.600
https://proceedings.mlr.press/v162/ethayarajh22a.html
https://proceedings.mlr.press/v162/ethayarajh22a.html

Heng Gong, Yawei Sun, Xiaocheng Feng, Bing
Qin, Wei Bi, Xiaojiang Liu, and Ting Liu. 2020.
TableGPT: Few-shot table-to-text generation with ta-
ble structure reconstruction and content matching. In
Proceedings of the 28th International Conference on
Computational Linguistics (COLING), pages 1978–
1988.

Kyle Gorman, Christo Kirov, Brian Roark, and Richard
Sproat. 2021. Structured abbreviation expansion in
context. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2021, pages 995–1005.

Jonathan Herzig, Pawel Krzysztof Nowak, Thomas
Müller, Francesco Piccinno, and Julian Eisenschlos.
2020. TaPas: Weakly supervised table parsing via
pre-training. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics
(ACL), pages 4320–4333.

Madelon Hulsebos, Çagatay Demiralp, and Paul Groth.
2023. Gittables: A large-scale corpus of relational
tables. Proceedings of the ACM on Management of
Data, 1(1):1–17.

Madelon Hulsebos, Kevin Hu, Michiel Bakker, Emanuel
Zgraggen, Arvind Satyanarayan, Tim Kraska, Ça-
gatay Demiralp, and César Hidalgo. 2019. Sherlock:
A deep learning approach to semantic data type de-
tection. In Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery
& Data Mining (KDD), pages 1500–1508.

Hiroshi Iida, Dung Thai, Varun Manjunatha, and Mohit
Iyyer. 2021. TABBIE: pretrained representations of
tabular data. In Proceedings of the 2021 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, (NAACL-HLT), pages 3446–3456.

Christos Koutras, George Siachamis, Andra Ionescu,
Kyriakos Psarakis, Jerry Brons, Marios Fragkoulis,
Christoph Lofi, Angela Bonifati, and Asterios Katsi-
fodimos. 2021. Valentine: Evaluating matching tech-
niques for dataset discovery. In 2021 IEEE 37th In-
ternational Conference on Data Engineering (ICDE),
pages 468–479.

Edward M Leonard. 2011. Design and implementation
of an enterprise data warehouse. Marquette Univer-
sity.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

S. Melnik, H. Garcia-Molina, and E. Rahm. 2002. Sim-
ilarity flooding: a versatile graph matching algorithm
and its application to schema matching. In Proceed-
ings 18th International Conference on Data Engi-
neering (ICDE), pages 117–128.

OpenAI. 2023. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774.

Amir Pouran Ben Veyseh, Franck Dernoncourt,
Quan Hung Tran, and Thien Huu Nguyen. 2020.
What does this acronym mean? introducing a new
dataset for acronym identification and disambigua-
tion. In Proceedings of the 28th International Confer-
ence on Computational Linguistics (COLING), pages
3285–3301.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. The Journal of Machine Learning Research
(JMLR), 21(1):5485–5551.

Brian Roark and Richard Sproat. 2014. Hippocratic
abbreviation expansion. In Proceedings of the 52nd
Annual Meeting of the Association for Computational
Linguistics (ACL), pages 364–369.

Timo Schick and Hinrich Schütze. 2021a. Few-shot
text generation with natural language instructions. In
Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 390–402.

Timo Schick and Hinrich Schütze. 2021b. It’s not just
size that matters: Small language models are also few-
shot learners. In Proceedings of the 2021 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies (NAACL-HLT), pages 2339–2352.

Yoshihiko Suhara, Jinfeng Li, Yuliang Li, Dan Zhang,
Çağatay Demiralp, Chen Chen, and Wang-Chiew
Tan. 2022. Annotating columns with pre-trained lan-
guage models. In Proceedings of the 2022 Inter-
national Conference on Management of Data (SIG-
MOD), pages 1493–1503.

Swabha Swayamdipta, Roy Schwartz, Nicholas Lourie,
Yizhong Wang, Hannaneh Hajishirzi, Noah A. Smith,
and Yejin Choi. 2020. Dataset cartography: Mapping
and diagnosing datasets with training dynamics. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 9275–9293.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Daheng Wang, Prashant Shiralkar, Colin Lockard, Binx-
uan Huang, Xin Luna Dong, and Meng Jiang. 2021.
Tcn: Table convolutional network for web table in-
terpretation. In Proceedings of the Web Conference
2021, page 4020–4032.

13285

https://doi.org/10.18653/v1/2020.coling-main.179
https://doi.org/10.18653/v1/2020.coling-main.179
https://doi.org/10.18653/v1/2021.findings-emnlp.85
https://doi.org/10.18653/v1/2021.findings-emnlp.85
https://doi.org/10.18653/v1/2020.acl-main.398
https://doi.org/10.18653/v1/2020.acl-main.398
https://doi.org/10.1145/3588710
https://doi.org/10.1145/3588710
https://doi.org/10.1145/3292500.3330993
https://doi.org/10.1145/3292500.3330993
https://doi.org/10.1145/3292500.3330993
https://doi.org/10.18653/v1/2021.naacl-main.270
https://doi.org/10.18653/v1/2021.naacl-main.270
https://doi.org/10.1109/ICDE51399.2021.00047
https://doi.org/10.1109/ICDE51399.2021.00047
https://epublications.marquette.edu/cgi/viewcontent.cgi?article=1118&context=theses_open
https://epublications.marquette.edu/cgi/viewcontent.cgi?article=1118&context=theses_open
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://doi.org/10.1109/ICDE.2002.994702
https://doi.org/10.1109/ICDE.2002.994702
https://doi.org/10.1109/ICDE.2002.994702
https://arxiv.org/abs/2303.08774
https://doi.org/10.18653/v1/2020.coling-main.292
https://doi.org/10.18653/v1/2020.coling-main.292
https://doi.org/10.18653/v1/2020.coling-main.292
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://jmlr.org/papers/volume21/20-074/20-074.pdf
https://jmlr.org/papers/volume21/20-074/20-074.pdf
https://jmlr.org/papers/volume21/20-074/20-074.pdf
https://aclanthology.org/P14-2060
https://aclanthology.org/P14-2060
https://aclanthology.org/2021.emnlp-main.32
https://aclanthology.org/2021.emnlp-main.32
https://doi.org/10.18653/v1/2021.naacl-main.185
https://doi.org/10.18653/v1/2021.naacl-main.185
https://doi.org/10.18653/v1/2021.naacl-main.185
https://doi.org/10.1145/3514221.3517906
https://doi.org/10.1145/3514221.3517906
https://doi.org/10.18653/v1/2020.emnlp-main.746
https://doi.org/10.18653/v1/2020.emnlp-main.746
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://doi.org/10.1145/3442381.3450090
https://doi.org/10.1145/3442381.3450090

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel,
Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, Ed H.
Chi, Tatsunori Hashimoto, Oriol Vinyals, Percy
Liang, Jeff Dean, and William Fedus. 2022. Emer-
gent abilities of large language models. Transactions
on Machine Learning Research.

Yonghui Wu, Jun Xu, Yaoyun Zhang, and Hua Xu. 2015.
Clinical abbreviation disambiguation using neural
word embeddings. In Proceedings of BioNLP 15,
pages 171–176.

Tianbao Xie, Chen Henry Wu, Peng Shi, Ruiqi Zhong,
Torsten Scholak, Michihiro Yasunaga, Chien-Sheng
Wu, Ming Zhong, Pengcheng Yin, Sida I. Wang, Vic-
tor Zhong, Bailin Wang, Chengzu Li, Connor Boyle,
Ansong Ni, Ziyu Yao, Dragomir Radev, Caiming
Xiong, Lingpeng Kong, Rui Zhang, Noah A. Smith,
Luke Zettlemoyer, and Tao Yu. 2022. Unifiedskg:
Unifying and multi-tasking structured knowledge
grounding with text-to-text language models. In
Proceedings of the 2022 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 602–631.

Jingfeng Yang, Aditya Gupta, Shyam Upadhyay,
Luheng He, Rahul Goel, and Shachi Paul. 2022.
TableFormer: Robust transformer modeling for table-
text encoding. In Proceedings of the 60th Annual
Meeting of the Association for Computational Lin-
guistics (ACL), pages 528–537.

Pengcheng Yin, Graham Neubig, Wen-tau Yih, and Se-
bastian Riedel. 2020. TaBERT: Pretraining for joint
understanding of textual and tabular data. In Proceed-
ings of the 58th Annual Meeting of the Association for
Computational Linguistics (ACL), pages 8413–8426.

Hong Yu, George Hripcsak, and Carol Friedman. 2002.
Mapping abbreviations to full forms in biomedical ar-
ticles. Journal of the American Medical Informatics
Association, 9(3):262–272.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li,
Qingning Yao, Shanelle Roman, Zilin Zhang, and
Dragomir R. Radev. 2018. Spider: A large-scale
human-labeled dataset for complex and cross-domain
semantic parsing and text-to-sql task. In Proceedings
of the 2018 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 3911–
3921.

Dan Zhang, Madelon Hulsebos, Yoshihiko Suhara,
Çağatay Demiralp, Jinfeng Li, and Wang-Chiew Tan.
2020a. Sato: Contextual semantic type detection in
tables. Proc. VLDB Endow., 13(12):1835–1848.

Shuo Zhang and Krisztian Balog. 2020. Web table ex-
traction, retrieval, and augmentation: A survey. ACM
Transactions on Intelligent Systems and Technology,
11(2):1–35.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020b. Bertscore: Eval-
uating text generation with BERT. In 8th Inter-
national Conference on Learning Representations
(ICLR).

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2sql: Generating structured queries from
natural language using reinforcement learning. arXiv
preprint arXiv:1709.00103.

Leonardo Zilio, Hadeel Saadany, Prashant Sharma,
Diptesh Kanojia, and Constantin OrÄƒsan. 2022.
Plod: An abbreviation detection dataset for scien-
tific documents. In Proceedings of the Language
Resources and Evaluation Conference (IREC), pages
680–688.

13286

https://openreview.net/forum?id=yzkSU5zdwD
https://openreview.net/forum?id=yzkSU5zdwD
https://doi.org/10.18653/v1/W15-3822
https://doi.org/10.18653/v1/W15-3822
https://aclanthology.org/2022.emnlp-main.39
https://aclanthology.org/2022.emnlp-main.39
https://aclanthology.org/2022.emnlp-main.39
https://aclanthology.org/2022.acl-long.40
https://aclanthology.org/2022.acl-long.40
https://aclanthology.org/2020.acl-main.745
https://aclanthology.org/2020.acl-main.745
https://academic.oup.com/jamia/article/9/3/262/749329
https://academic.oup.com/jamia/article/9/3/262/749329
https://aclanthology.org/D18-1425
https://aclanthology.org/D18-1425
https://aclanthology.org/D18-1425
https://doi.org/10.14778/3407790.3407793
https://doi.org/10.14778/3407790.3407793
https://doi.org/10.1145/3372117
https://doi.org/10.1145/3372117
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr
https://arxiv.org/abs/1709.00103
https://arxiv.org/abs/1709.00103
https://aclanthology.org/2022.lrec-1.71
https://aclanthology.org/2022.lrec-1.71

(a) An example of unionable relation extraction task. (b) An example of joinable relation extraction task.

Figure 6: Unionable/Joinable relation extraction tasks with abbreviated column names. The column names in
blue are the corrupted names. Column D_ID should match Department_ID, D_NAME with Department_Name, and
E_NAME with Name for unionable column pairs. Column E_NAME matches with column Employee_Name for the
joinable relation.

Figure 7: An table Question Answer (QA) task example. After corrupting the column names in the table (i.e., the
names in blue), the keyword in the question ‘college’ may fail to locate the abbreviated column name Col..

A Appendix

A.1 The Effect of Abbreviated Column
Names on Table Understanding Tasks

Unionable and Joinable Relation Detection. The
unionable and joinable column relation extraction
tasks are illustrated in Figure 6. The original re-
call score of the schema-based relation detection
(with expanded column name) in Table 1 is cited
from the Valentine paper (Koutras et al., 2021).
The datasets used in Valentine were fabricated by
corrupting the column names or the column cells.
The results of the original datasets have the same
column names in two tables, so the recall score
is 1.0. The best schema-based method (i.e., Simi-
larity Flooding (Melnik et al., 2002)) drops from
1.0/1.0 to 0.63/0.56 (an average score of 0.595)
on unionable/joinable relation detection tasks with
expanded and abbreviated column names. As il-
lustrated in the Valentine study, even when other
schema information, such as data types and transi-

tive relationships, is available, the lack of descrip-
tive column names can hinder the effectiveness of
schema-based methods in identifying unionable
and joinable columns.

Table Question Answering Table question an-
swering (QA) aims to derive answers from tables
for natural language questions. Typically, the task
requires two steps: translating natural language
questions to corresponding SQL queries and then
extracting the answers from the SQL queries. In
order to test the effect of the abbreviations of the
column names for Table QA, we used the abbre-
viated method in section 3.2.2 to corrupt the col-
umn names in tables of the WikiSQL (Zhong et al.,
2017) dataset and used the same training and eval-
uation script in UnifiedSKG (Xie et al., 2022) with
the T5-large model. The accuracy drops from 84.32
to 80.49, recorded in Table 1.

13287

A.2 The Logical Name Identification
Algorithm

See Algorithm 12.

Algorithm 2 Logical name identification
procedure IS_LOGICAL_NAME(x)

if x ∈ V then
return 1 ▷ well-curated

else
x← tokenize(x)
for xi ∈ x do

if isdigit(xi) then:
continue

xi ← lemmatize(xi)
if xi /∈ V then

return 0 ▷ not well-curated
return 1 ▷ well-curated

A.3 Training/Evaluation Set Details

Some variations in the table size are included in the
training and evaluation set. As seen from Figure
8, most tables have fewer than 100 columns, and
there could be some small tables with fewer than
five columns since the columns that initially had
abbreviated ambiguous names were filtered before
generating abbreviated columns. We limit the num-
ber of rows per table for training and evaluation
sets to less than 1000.

Figure 8: Additional statistics for NAMEGUESS train-
ing and test datasets. Top: The distribution of the num-
ber of columns per table. Bottom: The distribution of
the number of rows (cells) per column.

A.4 Annotation Interface
Figure 9 shows the interface that the annotators
used to produce both the abbreviated column names
(“Cryptic Variant”) and well-curated column names
(“Well-Curated Variant”) based on the column con-
tents (“Original Column Name”, “Sampled Col-
umn Values”) and table metadata (“Table Name”,
“Table Category”, and “Table Description”). The
“Comments” column includes some explanations
or clarifications for ambiguous samples.

A.5 Experimental Setup
All fine-tuning experiments on GPT-21, GPT-2-
XL2, GPT-Neo-1.3B3, GPT-Neo-2.7B4 and infer-
ences were run using eight NVIDIA A100 GPUs.
The inference results from GPT-4 was generated
using OpenAI API calls5. The model weights for
LLaMA-65B6 and Falcon-Instruct-40B 7 models
were downloaded and hosted using Text Genera-
tion Inference (TGI) toolkit 8. We used a global
batch size of 128 and a learning rate of 10−6 dur-
ing the fine-tuning process. We used beam search
with a beam size of 5 during inference, which per-
formed better than decoding by sampling. The
results of the evaluation benchmark reported in the
experimental tables were obtained from the best
checkpoint of each model on a single run.

1https://huggingface.co/gpt2
2https://huggingface.co/gpt2-xl
3https://huggingface.co/EleutherAI/gpt-neo-1.3B
4https://huggingface.co/EleutherAI/gpt-neo-2.7B
5https://platform.openai.com/docs/models/gpt-4
6https://ai.meta.com/blog/
large-language-model-llama-meta-ai/

7https://huggingface.co/tiiuae/
falcon-40b-instruct

8https://github.com/huggingface/
text-generation-inference

13288

https://huggingface.co/gpt2
https://huggingface.co/gpt2-xl
https://huggingface.co/EleutherAI/gpt-neo-1.3B
https://huggingface.co/EleutherAI/gpt-neo-2.7B
https://platform.openai.com/docs/models/gpt-4
https://ai.meta.com/blog/large-language-model-llama-meta-ai/
https://ai.meta.com/blog/large-language-model-llama-meta-ai/
https://huggingface.co/tiiuae/falcon-40b-instruct
https://huggingface.co/tiiuae/falcon-40b-instruct
https://github.com/huggingface/text-generation-inference
https://github.com/huggingface/text-generation-inference

Easy Medium Hard Extra Hard
Model EM F1 B-F1 EM F1 B-F1 EM F1 B-F1 EM F1 B-F1
GPT-2 (124M)

∗ 41.4 65.2 66.9 30.3 44.9 54.4 19.0 44.4 49.2 16.1 38.4 42.8
GPT-2 (1.5B)

∗ 53.8 73.4 73.7 42.7 58.7 65.5 32.3 59.4 62.1 21.1 46.8 50.2
GPT-Neo (1.3B)

∗ 54.3 72.8 74.4 47.2 62.4 68.5 36.8 62.9 64.8 23.6 48.1 51.6
GPT-Neo (2.7B)

∗ 55.3 73.8 76.5 50.4 64.7 70.7 38.0 64.8 66.4 27.2 53.0 56.0
Falcon-Inst. (40B) 62.2 75.6 77.2 59.3 71.2 76.0 49.0 71.1 72.2 36.5 58.2 62.0
LLaMA (65B) 62.2 73.9 77.2 62.9 72.1 76.6 52.3 72.7 73.6 37.9 57.9 60.9
GPT-4 71.7 81.1 81.2 79.9 87.6 89.5 72.0 87.3 86.8 54.7 74.4 75.7
Human 53.7 74.4 74.8 53.7 69.3 72.8 33.7 64.7 59.9 30.2 54.4 48.3

Table 6: Exact match (EM), F1, and BertScore-F1 (B-F1) scores (%) of fine-tuned models, LLMs (non-finetuned),
and human performance for four difficulty levels. ∗ Fine-tuned models.

A.6 Ablation Studies
A.6.1 Difficulty Breakdowns.
The full results of all the models on four different
difficulty levels are in Table 6.

A.6.2 The Effect of Different Jointly
Predicted Query Column Names K and
Different Number of Sampled Rows N .

We evaluated the exact match (EM) scores on var-
ied values of K and N on the LLaMA-65B model.
From Table 7, we note that an increase in the values
of K and N results in a rise in EM scores, although
the rate of increase tends to diminish for higher K
and N values. Thus, we set the values of K and N
at 10 for other models in the experiments.

#column name(K) /
#sampled row (N)

N=1 N=10

K=1 45.7 49.0
K=5 54.3 55.5
K=10 56.0 56.2

Table 7: Exact match scores (%) with different K and
N values for the LLaMA-65B model.

13289

Figure 9: A screenshot for the interface used by annotators.

13290

